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Chapter 4

Topological Spaces

In the previous chapters, we discussed the convergence of sequences, the continuity
of functions, and the compactness of sets. We expressed these properties in terms
of a metric or norm. Some types of convergence, such as the pointwise convergence
of real-valued functions defined on an interval, cannot be expressed in terms of a
metric on a function space. Topological spaces provide a general framework for
the study of convergence, continuity, and compactness. The fundamental structure
on a topological space is not a distance function, but a collection of open sets;
thinking directly in terms of open sets often leads to greater clarity as well as
greater generality.

4.1 Topological spaces

Definition 4.1 A topology on a nonempty set X is a collection of subsets of X,
called open sets, such that:

(a) the empty set @ and the set X are open;
(b) the union of an arbitrary collection of open sets is open;
(c) the intersection of a finite number of open sets is open.

A subset A of X is a closed set if and only if its complement, A° = X \ A, is open.

More formally, a collection T of subsets of X is a topology on X if:

(a) 0,X e T;
(b) if G €T for a € A, then |J,c 4 Ga € T;
(c) ifG;eTfori=1,2...,n,then N, G; € T.

We call the pair (X, T) a topological space; if T is clear from the context, then we
often refer to X as a topological space.

Example 4.2 Let X be a nonempty set. The collection {@, X}, consisting of the
empty set and the whole set, is a topology on X, called the trivial topology or
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Fig. 4.1 The Hausdorff property.

indiscrete topology. The power set P(X) of X, consisting of all subsets of X, is a
topology on X, called the discrete topology.

Example 4.3 Let (X,d) be a metric space. Then the set of all open sets defined
in Definition 1.36 is a topology on X, called the metric topology. For instance, a
subset G of R is open with respect to the standard, metric topology on R if and
only if for every € G there is an open interval I such that z € I and I C G.

Example 4.4 Let (X, T) be a topological space and Y a subset of X. Then
S={HCY|H=GNY for some G € T}

is a topology on Y. The open sets in Y are the intersections of open sets in X with
Y. This topology is called the induced or relative topology of Y in X, and (Y,S)
is called a topological subspace of (X, 7). For instance, the interval [0,1/2) is an
open subset of [0, 1] with respect to the induced metric topology of [0,1] in R, since
[0,1/2) = (-1/2,1/2) N[0, 1].

A set V C X is a neighborhood of a point z € X if there exists an openset G C V
with z € G. We do not require that V itself is open. A topology 7 on X is called
Hausdorff if every pair of distinct points =,y € X has a pair of nonintersecting
neighborhoods, meaning that there are neighborhoods V, of z and Vj, of y such
that V, NV, = 0 (see Figure 4.1). When the topology is clear, we often refer to X
as a Hausdorff space. Almost all the topological spaces encountered in analysis are
Hausdorff. For example, all metric topologies are Hausdorff. On the other hand, if
X has at least two elements, then the trivial topology on X is not Hausdorff.

We can express the notions of convergence, continuity, and compactness in terms
of open sets. Let X and Y be a topological spaces.

Definition 4.5 A sequence (z,) in X converges to a limit x € X if for every
neighborhood V' of z, there is a number N such that z,, € V for all n > N.

This definition says that the sequence eventually lies entirely in every neighbor-
hood of z.
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Fig. 4.2 The interval and the circle are not homeomorphic. There are arbitrarily close points on
the circle, P and @ in the figure, which have inverse images near the left and right end points of
the interval respectively. Hence, the inverse images are not close and the inverse map cannot be
continuous.

Definition 4.6 A function f : X — Y is continuous at z € X if for each neigh-
borhood W of f(z) there exists a neighborhood V of x such that f(V) C W. We
say that f is continuous on X if it is continuous at every x € X.

Theorem 4.7 Let (X,7) and (Y,S) be two topological spaces and f : X - Y.
Then f is continuous on X if and only if f~1(G) € T for every G € S.

Thus, a continuous function is characterized by the property that the inverse
image of an open set is open. We leave the proof to Exercise 4.4.

Definition 4.8 A function f : X — Y between topological spaces X and Y is a
homeomorphism if it is a one-to-one, onto map and both f and f~! are continuous.
Two topological spaces X and Y are homeomorphic if there is a homeomorphism
f: X—>Y.

Homeomorphic spaces are indistinguishable as topological spaces. For example,
if f: X — Y is a homeomorphism, then G is open in X if and only if f(G) is open
in Y, and a sequence (z,) converges to z in X if and only if the sequence (f(zy))
converges to f(z) in Y.

A one-to-one, onto map f always has an inverse f~!, but f~! need not be
continuous even if f is.

Example 4.9 We define f : [0,27) — T by f(#) = ¢, where [0,27) C R with the
topology induced by the usual topology on R, and T C C is the unit circle with the
topology induced by the usual topology on C. Then, as illustrated in Figure 4.2, f
is continuous but f~! is not.

Definition 4.10 A subset K of a topological space X is compact if every open
cover of K contains a finite subcover.
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It follows from the definition that a subset K of X is compact in the topology
on X if and only if K is compact as a subset of itself with respect to the relative
topology of K in X. This contrasts with the fact that a set G C Y may be relatively
open in Y, yet not be open in X. For this reason, while we define the notion of
relatively open, we do not define the notion of relatively compact.

4.2 Bases of open sets

The collection of all open sets in a topological space is often huge and unwieldy.
The topological properties of metric spaces can be expressed entirely in terms of
open balls, which form a rather small subset of the open sets. In this section we
introduce subsets of a topological space that play a similar role to open balls in a
metric space.

Definition 4.11 A subset B of a topology 7 is a base for T if for every G € T there
is a collection of sets B, € B such that G = |J, Ba. A collection N of neighborhoods
of a point z € X is called a neighborhood base for x if for each neighborhood V' of
x there is a neighborhood W € N such that W C V. A topological space X is first
countable if every x € X has a countable neighborhood base, and second countable
if X has a countable base.

Example 4.12 The collection of all open intervals (a,b) with a,b € R is a base for
the standard topology on R. The collection of all open intervals (a,b) C R with
rational endpoints a,b € Q is a countable base for the standard topology on R.
Thus, the standard topology is second countable.

Example 4.13 Let X be a metric space and A a dense subspace of X. The set of
open balls By /,(x), with n > 1 and 2 € A is a base for the metric topology on X.
A metric space is first countable, and a separable metric space is second countable.

Example 4.14 If X is topological space with the discrete topology, then the col-
lection of open sets

B={{z} |z e X}

is a base. The discrete topology is first countable, and if X is countable, then it is
second countable.

It is often useful to define a topology in terms of a base.

Theorem 4.15 A collection of open sets B C T is a base for the topology 7 on a
set X if and only if B contains a neighborhood base for z for every z € X.

Proof. Suppose B is a base for 7. If N is a neighborhood of € X, then there is
an open set G € T such that x € G C N. Since B is a base, there are sets B, € B
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such that |J, Bo = G. Therefore, there is an « such that v € B, and B, C N. It
follows that B contains a neighborhood base for .

Conversely, if a collection of open sets B contains a neighborhood base for every
x € X, then for every open set G € T and every x € G there exists B, € B such
that © € B, C G. Therefore, | J, B, = G, so B is a base for the topology. d

Example 4.16 Suppose that X is the space of all real-valued functions on the
interval [a, b]. We may identify a function f : [a,b] = R with a point Hze[a,b] f(x)
in R*? 5o X = RI*! is the [a, b]-fold Cartesian product of R. Let 2 = {z1,...,2,},
where z; € [a,b], and y = {y1,...,yn}, where y; € R, be finite subsets of [a, b] and
R, respectively. For € > 0, we define a subset B, , . of X by

Byye={feX||f(z;)—yi| <efori=1,...,n}. (4.1)

The topology of pointwise convergence is the smallest topology on X that contains
the sets B, y . for all finite sets  C [a,b], y C R, and € > 0. We have f, — f with
respect to this topology if and only if f,(z) — f(z) for every z € [a,b]. If f € X
and y; = f(z;), then the sets B, , . form a neighborhood base for f € X. This
topology is not first countable.

The set B,y in (4.1) is called a cylinder set. It has a rectangular base

-6y +e)x(y2—€ya+e€) X... X (Yp — €yn +€)

in the x1,%2,...,2, coordinates, and is unrestricted in the other coordinate di-
rections. More picturesquely, By 4. is sometimes called a “slalom set,” because it
consists of all functions whose graphs pass through the “slalom gates” at x; with
radius € and center y;.

A base for the topology of pointwise convergence is given by all finite inter-
sections of sets of the form B, , .. In fact, it is sufficient to take the sets of the
form

(feX||f(z:)—yi| <efori=1,...,n} (4.2)

where n € N, {z1,...,z,} C [a,b], {y1,.--,yn} C R, and ¢; > 0. The sets of
functions in (4.2) with intervals of variable width €; > 0 generate the same topology
as the sets with intervals of a fixed width because By . with € = mine; > 0 is
contained inside the set in (4.2).

We say that a topological space (X,7T) is metrizable if there is a metric on X
whose metric topology is 7. For a metrizable space, we can give sequential char-
acterizations of compact sets (Theorem 1.62), closed sets (Proposition 1.41), and
continuous functions (Proposition 1.34). These sequential characterizations may
not apply in a nonmetrizable topological space. There is, however, a generalization
of sequences, called nets, that can be used to express all the above properties in an
analogous way [12]. We will not make use of nets in this book.
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For example, the closure A of a subset A of a topological space X is the smallest
closed set that contains A. If X is metrizable, then A is the set of limits of convergent
sequences whose terms are in A (see Section 1.5), but if X is a not metrizable, then
this procedure may fail. We call the set of limit points of sequences in A the
sequential closure of A and denote it by a°. The sequential closure is a subset of
the closure, but it may be a strict subset, as illustrated by the following example.

Example 4.17 Consider the space of all functions f : [0,1] = R with the topology
of pointwise convergence. For each m,n > 1, we let

fmn(®) = [cos(mlnz)]?".

We define functions f,, and f by the pointwise limits,

fn(z) = lim fm,n(x):{ 1 ifz=k/ml, k=0, .,ml,

n—o00 0 otherwise,
. [ 1 ifzeQn]0,1],
f(=) = Tr}l—rgloo fm(z) = { 0 otherwise.

Let A = {fm,n | m,n >1}. Then these limits show that

—=5

fne A’ fed .

It is possible to show that the pointwise limit of a sequence of continuous functions

on [0, 1] is continuous on a dense subset of [0,1]. Since f is nowhere continuous in

[0,1], it is not the pointwise limit of any subsequence of the continuous functions

fmn- Therefore, f € A but f ¢ A°. This example shows that the topology of
pointwise convergence on the real-valued functions on [0, 1] is not metrizable.

A linear space with a topology defined on it, which need not be derived from a
norm or metric, such that the operations of vector addition and scalar multiplication
are continuous is called a topological linear space, or a topological vector space. The
space of real-valued functions on a set with the topology of pointwise convergence
is an example of a topological linear space. Topological linear spaces, such as the
Schwartz space, also arise in connection with distribution theory (see Chapter 11).

4.3 Comparing topologies

Let 71, 72 be two topologies on the same space X. Then 73 is said to be finer or
stronger than Ty if 71 C T2, meaning that 72 has more open sets; we also say that
T1 is coarser or weaker than T». If 77 is stronger than 75, then z,, — x with respect
to 71 implies that z,, — = with respect to 7. For example, the strongest topology
on any set is the discrete topology, and a sequence converges with respect to the
discrete topology if and only if it is eventually constant. The weakest topology



Comparing topologies 87

on any set is the trivial topology, and every sequence converges with respect to
the trivial topology. It is possible that two topologies 71, T2 are not comparable,
meaning that 77 is neither finer nor coarser than 7.

Proposition 4.18 Let X and Y be two spaces, each with two topologies, 71, 72
and 81, S respectively. Suppose that f: (X,71) — (Y,S1) is a map from X to YV
that is continuous with respect to the indicated topologies.

(a) If 73 is finer than Ty, then f: (X, 72) — (Y,S1) is continuous.
(b) If S, is coarser than Sy, then f: (X, 71) — (Y,S2) is continuous.

Proof. These statements are a direct consequence of the general definition of
continuity in Definition 4.6. |

The identity map I : (X,7) = (X,T), where I(z) = z, is a homeomorphism
when we use the same topology 7 on the domain and range. This is not true when
we use two different topologies on X. For example, the identity map from a set X
containing at least two elements equipped with the trivial topology to the set X
equipped with the discrete topology,

I:(X,{0,X}) = (X, P(X)),

is discontinuous at every point x € X. As the following theorems show, the identity
map is a useful tool for comparing topologies on a set.

Theorem 4.19 Let 7; and 7> be two topologies on X. Then the identity map
I:(X,T1) — (X,7Tz) is continuous if and only if 77 is finer than 75.

Proof. This is a direct consequence of Theorem 4.7. O

Corollary 4.20 The identity map I : (X,7;) = (X, 7Tz2) is a homeomorphism if
and only if 73 = 75.

Theorem 4.21 Let 71 and 73 be two topologies on X. Then the equality of T;
and 7Tz is equivalent to the following condition: for all topological spaces (Y,S), a
function f : (X, 71) — (Y,S) is continuous if and only if the function f : (X, 732) —
(Y, S8) is continuous.

Proof. 1If 71 = 73, then the condition about continuous functions f : X — Y is
trivial. Conversely, taking (V,S) = (X, T1) and (Y,S) = (X, T2), we see that the
condition implies that I : (X,71) — (X, 72) is a homeomorphism, so 71 = 7> from
Corollary 4.20. O

A topology is often defined by the specification of a neighborhood base at each
point. We therefore want to compare topologies in terms of their neighborhood
bases.
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Theorem 4.22 Let 7; and 73 be two topologies on X. Suppose that for each
z € X there are neighborhood bases A7 and N> of z for 71 and 7z, respectively,
such that for every Vi € N; thereis a V5 € A with V5 C V4. Then 73 is finer than
Ti.

Proof. The hypothesis of the theorem implies that I : (X,73) — (X, 71) is con-
tinuous, so the result follows from Theorem 4.19. O

Corollary 4.23 Let 7; and 73 be two topologies on X. Then 71 = 7> if and only
if for each x € X there are neighborhood bases M; and My of z for 71 and T,
respectively, such that for every V3 € M there is a V5 € M» with Vo C V3, and
there are neighborhood bases N7 and N3 of x for 7; and 75, respectively, such that
for every Wa € Ny there is a Wy € N with Wy C Wo.

Different metrics, or norms, on a space X can lead to the same topology. For
example, this is certainly the case if d; and d» are two metrics on X such that
di(z,y) = 2ds(z,y) for all x,y € X. More generally, if two metrics lead to the same
set of convergent sequences, then all their topological properties are the same.

Theorem 4.24 Two metric topologies, defined by two metrics on the same space,
are equal if and only if they have the same collection of convergent sequences with
the same limits.

Proof. The proof is a direct application of Corollary 4.20 and the sequential
characterization of continuity on metric spaces. d

4.4 References

In this chapter, we have limited our discussion to the basic definitions of point set
topology. For more information, see Kelley [28] and Rudin [48].

4.5 Exercises

Exercise 4.1 Suppose that K is a compact subspace of a Hausdorff space. Prove
that K is closed. Show that this result need not be true if X is not Hausdorff.

Exercise 4.2 If A is a subset of a topological space, then the interior A° of A is
the union of all open sets contained in A, the closure A of A is the intersection of all
closed sets that contain A, and the boundary OA of A is defined by 0A = A A¢.
Show that a set is closed if and only if it contains its boundary, and open if and only
if it is disjoint from its boundary. What are the closure, interior, and boundary of
the Cantor set in R with its usual topology?
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Exercise 4.3 Let (X,d;) and (Y,dz) be metric spaces. Prove that the topolog-
ical definitions of convergence and continuity are equivalent to the metric space
definitions in Definitions 1.12 and 1.26.

Exercise 4.4 Prove Theorem 4.7.

Exercise 4.5 A topological space is connected if it is not the disjoint union of two
non-empty open sets.

(a) What are the connected subsets of R?
(b) Show that X x Y is connected if X and Y are connected.

Exercise 4.6 Show that R is homeomorphic to (0, 1), but not to R2.
HINT. Show that R? remains connected when one point is removed.



