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Chapter 7

Fourier Series

What makes Hilbert spaces so powerful in many applications is the possibility of
expressing a problem in terms of a suitable orthonormal basis. In this chapter,
we study Fourier series, which correspond to the expansion of periodic functions
with respect to an orthonormal basis of trigonometric functions. We explore a
variety of applications of Fourier series, and introduce an important related class of
orthonormal bases, called wavelets.

7.1 The Fourier basis

A function f: R — C is 27-periodic if
flz+27m) = f(x) for all z € R.

The choice of 27 for the period is simply for convenience; different periods may be
reduced to this case by rescaling the independent variable. A 27-periodic function
on R may be identified with a function on the circle, or one-dimensional torus,
T = R/(2xZ), which we define by identifying points in R that differ by 2an for
some n € Z. We could instead represent a 27-periodic function f : R — C by a
function on a closed interval f : [a,a + 27] — C such that f(a) = f(a + 27), but
the choice of a here is arbitrary, and it is clearer to think of the function as defined
on the circle, rather than an interval.

The space C(T) is the space of continuous functions from T to C, and L?(T) is
the completion of C'(T) with respect to the L2-norm,

1= ( [1s@r az) "

Here, the integral over T is an integral with respect to = taken over any interval of
length 27. An element f € L?(T) can be interpreted concretely as an equivalence
class of Lebesgue measurable, square integrable functions from T to C with respect
to the equivalence relation of almost-everywhere equality. The space L?(T) is a
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150 Fourier Series

Hilbert space with the inner product

- / F@g(c) de
T

The Fourier basis elements are the functions

en(z) = ——e™m. (7.1)

Our first objective is to prove that {e, | n € Z} is an orthonormal basis of L?(T).
The orthonormality of the functions e,, is a simple computation:

1 .
eimr "% dg;

(em,en) = \/2—7_‘_ \/ﬂ

1 27

- i(n—m)z
- e dx

_ 1 ifm=mn,

N 0 ifm#n.

Thus, the main result we have to prove is the completeness of {e, | n € Z}. We
denote the set of all finite linear combinations of the e,, by P. Functions in P are
called trigonometric polynomials. We will prove that any continuous function on
T can be approximated uniformly by trigonometric polynomials, a result which is
closely related to the Weierstrass approximation theorem in Theorem 2.9. Since
uniform convergence on T implies L2-convergence, and continuous functions are
dense in L%(T), it follows that the trigonometric polynomials are dense in L?(T),
so {en} is a basis.

The idea behind the completeness proof is to obtain a trigonometric polyno-
mial approximation of a continuous function f by taking the convolution of f with
an approximate identity that is a trigonometric polynomial. Convolutions and ap-
proximate identities are useful in many other contexts, so we begin by describing
them.

The convolution of two continuous functions f,g : T — C is the continuous
function f x g : T — C defined by the integral

(f+9)@ /f:v— (7.2)

By changing variables y — = — y, we may also write

(f *9)x /f y) dy,

so that fxg=gx* f.
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Definition 7.1 A family of functions {¢, € C(T) | n € N} is an approzimate
identity if:

() ¢n(z) 20; (7.3)

(b) / pn(x)dx =1 for every n € N; (7.4)
T

(¢) lim on(z)dz =0 for every § > 0. (7.5)

=0 Js<|z|<m

In (7.5), we identify T with the interval [—m,x].

Thus, each function ¢,, has unit area under its graph, and the area concentrates
closer to the origin as n increases. For large n, the convolution of a function f with
n, therefore gives a local average of f.

Theorem 7.2 If {p, € C(T) | n € N} is an approximate identity and f € C(T),
then ¢, * f converges uniformly to f as n — oo.

Proof. From (7.4), we have

We also have that

(on+ (@) = / on(0)f(z — ) dy.

T

We may therefore write

(on * f)(@) — f(2) = /Tson(y) [f(z —y) — f(x)] dy. (7.6)

To show that the integral on the right-hand side of this equation is small when n
is large, we consider the integrand separately for y close to zero and y bounded
away from zero. The contribution to the integral from values of y close to zero is
small because f is continuous, and the contribution to the integral from values of y
bounded away from zero is small because the integral of ¢, is small.

More precisely, suppose that € > 0. Since f is continuous on the compact set
T, it is bounded and uniformly continuous. Therefore, there is an M such that
|f(z)] < M for all z € T, and there is a 6 > 0 such that |f(z) — f(y)| < € whenever
|z — y| < 8. Then, estimating the integral in (7.6), we obtain that

l(pn * f)(z) = f(2)] < /7r en(y) [f(z —y) — f(2)| dy

-

< /ydgon(y) F( —y) - F(=)] dy
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+ /lylzéson(w f@—y) - f(=)] dy

< e /lyld(,on(y)dw /mf"(y) 1@ — )|+ £ (@)] dy
< e+2M on(y) dy.

ly|>6
Taking the sup of this inequality over z, the lim sup as n — oo, and using (7.5), we
find that
limsup [|¢n * f — flloo <€
n—oo

Since € > 0 is arbitrary, it follows that ¢, * f — f uniformly in C(T). O

Theorem 7.3 The trigonometric polynomials are dense in C(T) with respect to
the uniform norm.

Proof. For each n € N, we define the function ¢,, > 0 by
on(z) =cn (1 +cosz)™. (7.7)

We choose the constant ¢, so that

/gon(x) de = 1. (7.8)
T

Since 1 + cosz has a strict maximum at z = 0, the graph of ¢,, is sharply peaked
at x = 0 for large n, and the area under the graph concentrates near x = 0.
In particular, {¢,} satisfies (7.5) (see Exercise 7.1). It follows that {¢,} is an
approximate identity, and hence ¢, * f converges uniformly to f from Theorem 7.2.

To complete the proof, we show that ¢, * f is a trigonometric polynomial for
any continuous function f. First, ¢, is a trigonometric polynomial; in fact,

n
. 2
on(z) = z anke™®®, where anp =2 "cn (n fk)

k=—n

Therefore,

pnrf@) = [ 3 aue () dy

k=—n

> ame™ [ e 1) dy

k=—n

n
E: ikz
bke s

k=—n
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where
by = ank/e_ikyf(y) dy.
T

Thus, ¢, * f is a trigonometric polynomial. d

From the completeness of the Fourier basis, it follows that any function f €
L?(T) may be expanded in a Fourier series as

where the equality means convergence of the partial sums to f in the L?-norm, or
2

lim dr = 0.
N—oo Jr

1 &L
En:Z_ane —f(:n)

From orthonormality, the Fourier coefficients fn € C of f are given by fn = (en, [),
or

N 1 —inx
fn = \/—Z_W/Tf(a:)e dx.

Moreover, Parseval’s identity implies that

oo

/T @@ dr= S Fudn.

n=—oo

In particular, the L?-norm of a function can be computed either in terms of the
function or its Fourier coefficients, since

o0 2

[ir@ra= 3 |F

n=—oo

(7.9)

Thus, the periodic Fourier transform F : L?(T) — ¢?(Z) that maps a function to
its sequence of Fourier coefficients, by
Fr=(Rh)_
n—=-—oo
is a Hilbert space isomorphism between L?(T) and ¢?(Z). The projection theorem,
Theorem 6.13, implies that the partial sum

1 X
fN(ilU)Z\/—2—7r > Fae™
n=—N

is the best approximation of f by a trigonometric polynomial of degree N in the
sense of the L2-norm.
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An important property of the Fourier transform is that it maps the convolution of
two functions to the pointwise product of their Fourier coefficients. The convolution
of two L2-functions may either be defined by (7.2), where the integral is a Lebesgue
integral, or by a density argument using continuous functions, as in the following
proposition.

Proposition 7.4 If f,g € L?(T), then f x g € C(T) and
£ * gllec < (I £1l2llgll2- (7.10)

Proof. 1If f,g € C(T), then application of the Cauchy-Schwarz inequality to (7.2)
implies that

[f*g@)] < I li2llgll-

Taking the supremum of this equation with respect to z, we get (7.10). If f,g €
L2(T), then there are sequences (fx) and (gj) of continuous functions such that
|f = frll2 = 0 and ||g — gkll2 = 0 as k — oo. The convolutions fj * gj are
continuous functions. Moreover, they form a Cauchy sequence with respect to the
sup-norm since, from (7.10),

1(f5 = fr) * gill o + 1fx * (95 — 9r)ll
1£5 = felly llgslly + (1 felly 195 — grll,
M (|15 = frlls + llg; — gklly) -

Here, we use the fact that || f;]|, < M and [|gx||, < M for some constant M because
the sequences converge in L?(T). By the completeness of C(T), the sequence ( fi*gx)
converges uniformly to a continuous function f*g. This limit is independent of the
sequences used to approximate f and g, and it satisfies (7.10). O

1f5 * g — fr * grll

INIA A

The inequality (7.10) is a special case of Young’s inequality for convolutions (see
Theorem 12.58).

Theorem 7.5 (Convolution) If f,g € L?(T), then
(f % 9)p, = V27 foGn- (7.11)

Proof. Because of the density of C(T) in L?(T), and the continuity of the Fourier
transform and the convolution with respect to L?-convergence, it is sufficient to
prove (7.11) for continuous functions f, g. In that case, we may exchange the order
of integration in the following computation:

\/%_W /Tf * g(x)e” "% dg
\/%—W/T (/Tf(w —)g(y) dy) e~ dx

—

(f*9),
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[ o= ([ 1o =nemmien ae) giuye=mvay
fa /T 9(y)e ™ dy
= V2 fuGn-

This proves the theorem. a

Alternatively, we may prove Theorem 7.5 directly for f, g € L'(T). The exchange
in the order of integration is justified by Fubini’s theorem, Theorem 12.41.

The L2-convergence of Fourier series is particularly simple. It is nevertheless
interesting to ask about other types of convergence. For example, the Fourier series
of a function f € L?(T) also converges pointwise a.e. to f. This result was proved
by Carleson, only as recently as 1966. An analysis of the pointwise convergence of
Fourier series is very subtle, and the proof is beyond the scope of this book. For
smooth functions, such as continuously differentiable functions, the convergence of
the partial sums is uniform, as we will show in Section 7.2 below.

The behavior of the partial sums near a point of discontinuity of a piecewise
smooth function is interesting. The sums do not converge uniformly; instead the
partial sums oscillate in an interval that contains the point of discontinuity. The
width of the interval where the oscillations occur shrinks to zero as N — 0, but
the size of the oscillations does not — in fact, for large N, the magnitude of the
oscillations is approximately 9%of the jump in f at the jump discontinuity. This
behavior is called the Gibbs phenomenon. As a result, care is required when one
uses Fourier series to represent discontinuous functions.

It is often convenient to modify the orthonormal basis {e,(z)} in (7.1) slightly.
First, if we use the non-normalized orthogonal basis {e"*}, then the Fourier ex-
pansion of f € L?(T) is

e ~
f@ =3 Fuem,

n=—oo

where
Fo= oz [ F@)e
= — x)e .
" 27 T
Second, the real-valued functions
{1,cosnz,sinnz | n=1,2,3,...}

also form an orthogonal basis, since

eznw + e—'LTLiE . eznw _ e—'LTLiE
cosnr = ——— sinr = -
2 ’ 2
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The corresponding Fourier expansion of f € L?(T) is

1 oo
f(z) = 500 + Z {an cosnz + by, sinnzx},

n=1

where
1 1 1 .
ap = —/f(x)d:c, ap = —/f(:c)cosna:da:, by, = —/f(m)smn:cd:c.
T JT m™JT T JT

This basis has the advantage that a real-valued function has real Fourier coefficients
an, bn- A second useful property of this basis is that its elements are even or odd.
A function f is even if f(—x) = f(z) for all z, and odd if f(—x) = —f(z) for all x.
Even functions f have a Fourier cosine expansion of the form

flz) = %ao + i an, cos(nz),

n=1

while odd functions f have a Fourier sine expansion of the form
o
fz) = Z by, sin(nx).
n=1

If a function is defined on the interval [0, 7], then we may extend it to an even or an
odd 27 periodic function on R. The original function may therefore be represented
by a Fourier cosine or sine expansion on [0, 7] (see Exercise 7.3). The quality of
the approximation of a function by the partial sums of a Fourier series sometimes
depends significantly on the basis used for the expansion. This is illustrated in
Figure 7.1.

Fourier series of multiply periodic functions are defined in an entirely analogous
way. A function f: R? — C is 27-periodic in each variable if

flxi, 2o, ...,z +2m,...,xq) = f (21, T2, .-, Tiye oo, Tq) fori=1,...,d.

We may regard a multiply periodic function as a function on the d-dimensional
torus T¢ = R?/(27Z)%, which is the Cartesian product of d circles. An orthonormal
basis of L?(T¢) consists of the functions

1 in-x
en(x) = We’ )
where x = (21,...,24) € T?, n = (ny,...,nq) € Z% and

n-xX=n1r + -+ ngrq.

The Fourier series expansion of a function f € L?(T?) is

1 7 inx
f(X):W Z fae™,

neZd
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3 3
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Fig. 7.1 Fourier sine (left) and cosine (right) series for two piecewise linear functions. Note the
difference in the quality of the approximations.

where the series converges unconditionally with respect to the L2-norm, and

~

fn:

W L (X)€7 dx.

7.2 Fourier series of differentiable functions

There is an important connection between the smoothness of a function and the
rate of decay of its Fourier coefficients: the smoother a function (that is, the more
times it is differentiable), the faster its Fourier coefficients decay. Heuristically, a
smooth function contains a small amount of high frequency components.

If f € C'(T) is continuously differentiable, then we can relate the Fourier coef-
ficients of f’ to those of f using an integration by parts:

~

3 _ 1 27re—inz I.Z' T
1 1 2w
= \/—Z_W[f(%)_f(o)]_\/—Z_w |

= inf,. (7.12)

(—in)e™™ f(z) dx

Thus, differentiation of a function corresponds to multiplication of its Fourier coef-
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ficients by in. It follows by induction that if f € C*(T), then
& = (in)* fo.

Equation (7.12) may be used to define the notion of the derivative of a function
whose derivative is square integrable, but need not be continuous. Such a derivative
is called a weak derivative. The space of functions in L2 whose weak derivatives are
in L? is denoted by H!, and is an example of a Sobolev space.

Definition 7.6 The Sobolev space H'(T) consists of all functions

1 & & A
T) = — e € L*(T
@)=z 3 F (M
such that
> 2
Z n?|fn| < oo.
n=-—oo

The weak L2-derivative f' € L*(T) of f € H'(T) is defined by the L?-convergent
Fourier series

oo

f@=—= Y infem.

n=—0oo

The space H'(T) is a Hilbert space with respect to the inner product

o) = [ {T@ata) + P @)} do.

By Parseval’s theorem, the H!-inner product of two functions may be written in
terms of their Fourier coefficients as
oo

oy = 3 (1+1) Fugn-

n=—oo

Convergence with respect to the associated H'-norm corresponds to mean-square
convergence of functions and their derivatives.

A continuously differentiable function belongs to H'(T) and its weak derivative
is equal to the usual pointwise derivative. It follows from the density of C(T) in
L?(T) that H'(T) is the completion of the space C''(T) of continuously differentiable
functions (or the space of trigonometric polynomials) with respect to the H!-norm.

If f,g € H'(T), then the definition of f’ and Parseval’s theorem imply that

oz = S infagn=— 3 FuinGn=—(f.9") 1>

n=-—0oo =
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After replacing f by f, we see that weak derivatives satisfy integration by parts:

/Tf'gdx:—/ng'da:. (7.13)

There are no boundary terms in the integration by parts formula for periodic func-
tions. We can use (7.13) to give an equivalent definition of the weak L>-derivative
of a function in terms of its integral against a smooth test function. If f € H'(T),
then the linear functional F : C1(T) C L?(T) — C defined by

F(y) = - /]r foldz,  @eCiT),

is bounded. Conversely, if F' is bounded for a given function f € L?(T), then, since
C*(T) is dense in H!(T), the bounded linear transformation theorem, Theorm 5.19,
implies that F extends to a unique bounded linear functional on L?(T). The Riesz
representation theorem (see Theorem 8.12 below) therefore implies that there is a
unique function f' € L*(T) such that F(y) = (F , ) holds for all ¢ € C*(T). This
leads to the following alternative definition of a weak L2-derivative.

Definition 7.7 A function f € L?(T) belongs to H'(T) if there is a constant M

such that
/ fo'dz
T

If f € HY(T), then the weak derivative f' of f is the unique element of L?(T) such
that

< M||g||lz for all ¢ € CH(T).

/f’cpd:c:—/fcp'dm for all p € C1(T).
T T

More generally, for any & > 0, we define the Sobolev space
oo . o0
HK(T) = {f € L*(T) ‘ flz) = Z cne'™, Z In|?*|c,|? < oo}.
n=—o0o n=-—oo

If k is a natural number, the space H* consists of functions with k square-integrable
weak derivatives, but the Fourier series definition makes sense even when k is not
a natural number.

Lemma 7.8 Suppose that f € H¥(T) for k > 1/2. Let

N
SN(SU)Z\/% " Fue (7.14)
n=—N

be the Nth partial sum of the Fourier series of f, and define

] = ( > | )/
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Then there is a constant Cy, independent of f, such that

||SN f”oo

= Nk— 1/2)

and (Sn) converges uniformly to f as N — oo.

Proof. Since Sy € C(T) for every N € N and C(T) is complete with respect to
the supremum norm, it is sufficient to prove that for all M > N,

=Sl < i ]

This equation follows from (7.12) and the Cauchy-Schwarz inequality:
1

> |

A

1SN — Swll

CVET o oem
1 ~1 1
= = > Wk
\/2_7TN<|n\§M Il
1/2 1/2
1 ~ 12 1
< N Z n|*¥ ‘fn Z [n|2F

N<|n|<M N<|n|<M

IN
i
R

~5

=
\
<
[\3
?S"
| S
—
S~
[V

which proves the result with

Cp = —F——v——.
2w (2k — 1) O

A corollary of this lemma is a special case of the Sobolev embedding theorem,
which implies, in particular, that if a function on T has a square-integrable weak
derivative, then it is continuous.

Theorem 7.9 (Sobolev embedding) If f € H*(T) for k > 1/2, then f € C(T).

Proof. From Lemma 7.8, the partial sums of the Fourier series of f converge
uniformly, so the limit is continuous. d

More generally, if f € H*(T), then the Fourier series for the derivatives f)
converge uniformly when k > j + 1/2, so f € C*(T), where £ is the greatest integer
strictly less than k — 1/2. For functions of several variables, one finds that f €
H*(T?) is continuous when k > d/2, and j-times continuously differentiable when
k > j+d/2 (see Exercise 7.5). Roughly speaking, there is a “loss” of slightly more
than one-half a derivative per space dimension in passing from L? derivatives to
continuous derivatives.
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7.3 The heat equation

Fourier series are an essential tool for the study of a wide variety of problems in
engineering and science. In this section, we use Fourier series to solve the heat, or
diffusion, equation which models the flow of heat in a conducting body. This was
the original problem that led Jean-Baptiste Fourier to develop the series expan-
sion named after him, although similar ideas had been suggested earlier by Daniel
Bernoulli. The same equation also describes the diffusion of a dye or pollutant in a
fluid.

We consider a thin ring made of a heat conducting material. In a one-dimen-
sional approximation, we can represent the ring by a circle. We choose units of
space and time so that the length of the ring is 27 and the thermal conductivity of
the material is equal to one. The temperature u(z,t) at time ¢ > 0 and position
z € T along the ring satisfies the heat or diffusion equation,

Ut = Ugyg, (715)
u(z,0) = f(z),

where f : T — R is a given function describing the initial temperature in the ring.
If u(z, t) is a smooth solution of the heat equation, then, multiplying the equation
by 2u and rearranging the result, we get that

u?), = (2uu — 22,
( )t ( Z)w T

Integration of this equation over T, and use of the periodicity of u, implies that

i/uz(w,t) dz = —2/ |ug(z,t)|? de < 0.

Therefore, ||u(-,t)|| < ||£(-)||, where ||-|| denotes the L?-norm in z, so it is reasonable
to look for solutions u(-,t) that belong to L2(T) for all ¢t > 0.

To make the notion of solutions that belong to L? more precise, let us first
suppose that the initial data f is a trigonometric polynomial,

N
fl@)y="Y_ faem™. (7.16)
n=—N
We look for a solution
N
u(z,t) = z un (t)e™®, (7.17)
n=—N

that is also a trigonometric polynomial, with coefficients ., (t) that are continuously
differentiable functions of ¢. Using (7.17) in the heat equation, computing the ¢ and
z derivatives, and equating Fourier coefficients, we find that u,,(t) satisfies

U + nu, =0, (7.18)
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un(o) = fns

where the dot denotes a derivative with respect to t. Thus, the PDE (7.15) reduces
to a decoupled system of ODEs. The solutions of (7.18) are

Un(t) = fae™ ™t

Therefore, the solution of the heat equation with the initial data (7.16) is given by

N
u(z,t) = Z foe™™ teine (7.19)
n=—N

We may write this solution more abstractly as

u( ) =T@) (),

where T'(t) : P — P is the linear operator on the space P of trigonometric polyno-
mials defined by

T(t)

N N
. D) .
§ : fnezmc — § fne—n teznw_
n=—N n=—N

Parseval’s theorem (7.9) implies that, for ¢ > 0,

N N
ITOFR= D 1l < 3 |fal? = 11
n=—N

n=—N

Thus, the solution operator T'(t) is bounded with respect to the L2-operator norm
when ¢ > 0. The operator T'(¢) is unbounded when ¢ < 0.

By the bounded linear transformation theorem, Theorem 5.19, there is a unique
bounded extension of T'(t) from P to L?(T), which we still denote by 7T'(t). Explic-
itly, if

f@)y= Y fae™ € LX(T)

n=—0oo

then u(-,t) = T'(t)f € L*(T) is given by

u(z,t) = i fne_"Ztei"z. (7.20)

n=—oo

We may regard this equation as defining the exponential
T(t) — et82/8z2

of the unbounded operator A = §2/0z” with periodic boundary conditions. Rather
than consider in detail when this Fourier series converges to a continuously differen-
tiable, or classical, solution of the heat equation that satisfies the initial condition
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pointwise, we will simply say that the function w obtained in this way is a weak

solution of the heat equation (7.15). In Chapter 11, we will see that this point of

view corresponds to interpreting the derivatives in (7.15) in a distributional sense.
The operators T'(t) have the following properties:

(a) T(0) =T;
(b) T(s)T'(t) =T(s+t) for s,t > 0;
(c) T(t)f — f ast — 0T for each f € L*(T).

In particular, T'(t) converges strongly, but not uniformly, to I as t — 0. We say
that {T'(t) | t > 0} is a Co-semigroup, in contrast with the uniformly continuous
group of operators with a bounded generator defined in Theorem 5.49.

The action of the solution operator T'(t) on a function is given by multiplica-
tion of the function’s nth Fourier coefficient by e~""t. The convolution theorem,
Theorem 7.5, implies that for ¢ > 0 the operator has the spatial representation
T(t)f = gt * f of convolution with a function g¢, called the Green’s function, where

o0

g@) = o= 3 et (7.21)

Using the Poisson summation formula in (11.43), we can write this series as an
infinite, periodic sum of Gaussians,

gt(x \/_ Z (z—27n)? /4t

We can immediately read off from (7.20) several important qualitative properties
of the heat equation. The first is the smoothing property. For every t > 0, we have
u(-,t) € C(T), because the Fourier coefficients decay exponentially quickly as
n — oo. This holds even if the initial condition has a discontinuity, as illustrated
in Figure 7.2 for the case of a step function. In more detail, we have

o
n2k‘ne—nt‘ <max{ 2k—nt} 12 < oo
n;oo' 11 ax Z | fom]

for each k > 0, so u(-,t) € H¥(T) for every k € N. The Sobolev embedding theorem
in Theorem 7.9 implies that u(-,t) € C*¥~1(T) for every k € N, and therefore u(z,t)
has continuous partial derivatives with respect to x of all orders. It then follows
from the heat equation that « has continuous partial derivatives with respect to ¢
of all orders for ¢ > 0.

The second property is irreversibility. A solution may not exist for ¢ < 0, even
if the “final data” f is C'*°. For example, if

oo

flz) = Z e”IMlein® ¢ 0(T),

n=—oo
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then the Fourier series solution (7.20) diverges for any ¢ < 0. Equivalently, letting
t — —t, we see that the initial value problem for the backwards heat equation,

Ut = —Ugg, u(.z‘,O) = f(m)a

may not have a solution for ¢ > 0, and is said to be ill-posed. This ill-posedness
reflects the impossibility of determining the temperature distribution that led to a
given observed temperature distribution because of the rapid damping of tempera-
ture variations that fluctuate rapidly in space.

The third property is the exponential decay of solutions to an equilibrium state
as t = +o00. It follows from the heat equation that the mean temperature,

W = 5= [ f@da,

is independent of time since

i/u(:c,t)dxz/ut(x,t)d:c=/um(x,t)d:c=0.
dt Jy T T

The solution u(x,t) converges exponentially quickly to its mean value, because

oo
Sup Z fne—nzteinz_<u> < Zlfn|e—n2t
2€T |2 n#0
2 1/2
2
< |Swr| [y
n#0 n=1
< Cllfllgee™,

where C is a suitable constant. The exponential decay is a consequence of a spectral
gap between the lowest eigenvalue, zero, of the operator %/0z? on T and the rest
of its spectrum.

Heat diffusion on a ring leads to periodic boundary conditions in z. Other
types of problems may be analyzed in an analogous way. An interesting example
is the modeling of seasonal temperature variations in the earth as a function of
depth. If we neglect daily fluctuations, a reasonable assumption is that the surface
temperature of the earth is a periodic function of time with period equal to one
year, and that the temperature at a depth x below the surface is also a periodic
function of time. We further require that the temperature be bounded at large
depths.

We choose a time unit so that 1 year = 27, and a length unit so that the thermal
conductivity of the earth, assumed constant, is equal to one. The temperature
u(z,t) then satisfies the following problem in z > 0, ¢t > 0:

Ut = Ugg,

u(0,t) = f(t),



The heat equation 165

Fig. 7.2 The time evolution of the temperature distribution on a ring. The initial distribution
is a step function. A truncated Fourier series is used to approximate the step function, and the
Gibbs phenomenon can be seen near the points of discontinuity. The final distribution is uniform.

u('7t) € Loo([O,OO)),
u(z,t) = u(z, t + 27).
Here, f(t) is a given real-valued, 2w-periodic function that describes the seasonal

temperature variations at the earth’s surface.
We expand the temperature u(x,t) at depth z in a Fourier series in ¢,

oo

u(z,t) = Z un (z)e'™.

n=—oo

Use of this expansion in the heat equation implies that the coefficients u, (x) satisfy

—ult 4+ inu, = 0, (7.22)
un(0) = fn,

Uy € L™,

where the prime denotes a derivative with respect to z, and f, is the nth Fourier
coefficient of f,

1 —in
nzﬂAmktﬁ
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The solution of (7.22) is
foexp(£y/n(1+i)z/v/2)  ifn>0
un(x) =< fo ifn=0.
frexp(£/[n|(1 —i)z/V2) ifn<0

The solutions with the plus sign in the exponent are excluded because they are
unbounded as £ — oo. The solution for u(z,t) is therefore

o
u(z,t) = fO+Zfne_|n/2|1/2wei("t—|n/2|1/2z)
n=1
-1
+ Z fe~ /2 P2 gilnt+n/2]! %) (7.23)

For example, suppose that the surface temperature is given by a simple harmonic
function

u(0,t) = a + bsint.

Then (7.23) may be written as

u(z,t) = a+bexp (—%) sin (t— %) .

See Figure 7.3 for a graph of this solution. The exponential damping factor in front
of the sine function describes a reduction in the magnitude of the variations in the
earth’s temperature below the surface. The argument of the sine function indicates
that there is a depth-dependent phase shift in the temperature variations. At a
depth = /27, the variations are reduced by a factor of e~™ ~ 0.04, and are
opposite in phase to the surface temperature. For realistic numerical values of the
thermal conductivity of the soil, this happens at a depth of about 13 feet. Thus, 13
feet below the surface the maximum temperature is reached in winter and minimum
in summer! At this depth, the difference between winter and summer temperatures
is reduced by a factor of about 25, as compared with the temperature difference
at the surface. This reduction explains the usefulness of wine cellars, since it is
important to store wine at a cool, uniform temperature.

7.4 Other partial differential equations

Fourier series may be used to study periodic solutions of any linear, constant coeffi-
cient partial differential equation. In this section, we consider a number of examples,
including the wave equation and Laplace’s equation, the two other classical linear
partial differential equations of applied mathematics, in addition to the heat equa-
tion. The Fourier series may be interpreted either as classical solutions if they
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Fig. 7.3 The temperature of the earth as a function of time and depth. The time unit is one
year divided by 2«. The unit of depth is roughly 1 meter. The temperature unit is arbitrary. The
maximum and minimum temperature at the surface (z = 0) represent the maximum and minimum
mean soil temperatures attained during summer and winter respectively.

converge sufficiently quickly to have continuous derivatives, or as weak solutions if
they do not.
The one-dimensional wave equation is

U = Cgy. (7.24)

This equation describes the propagation of waves with a constant speed ¢, such
as waves on an elastic string, sound waves, or light waves in a vacuum. The wave
equation (7.24) is second order in time ¢, so we expect that two initial conditions are
required to specify a unique solution. The initial value problem for wave propagation
on a circle is

Ut — CUgg = 0,
u(x,0) = f(x),
ut(x,O) = g(x)a

where f,g € L?(T) are given functions.
The separated solutions of the wave equation (7.24), proportional to e"®, are

u(z,t) — (aeinct + be—z’nct) eimv
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for n # 0, and
u(z,t) =a+ bt
for n = 0. Superposing these solutions, the general solution is of the form
u(z,t) = ag + bot + Z {anei"(z+0t) + bnei"(m’d)} . (7.25)
n#£0

The constants a,, and b, can be determined from the initial conditions as
1 i 1 i
ao = fo, bo=g0o, an=5(fn——9n)> bun=z{fnt+—0n),
2 nce 2 ne

where f, and g, are given by

fo=ge [ £@e™ gn= o [ g

=27TT

In contrast with the heat equation, the solution exists for both ¢ > 0 and ¢ < 0,
there is no smoothing of the initial data, and the solution does not converge to a
stationary solution as ¢ — oo.

The two-dimensional Laplace equation is

Ugg + Uyy = 0. (7.26)

We will use Fourier series to solve a boundary value problem for Laplace’s equation
in the unit disc

Q={(z,y) | 2* +y* < 1}.
The Dirichlet problem consists of (7.26) in  with the boundary condition
u=f on 012, (7.27)

where f : T — R is a given function. In polar coordinates (r,0) we may write
(7.26)—(7.27) for u(r,0) as

1 1 .
. (rur), + U = 0 inr<1,
u(1,6) = f(0).

The Laplace equation in polar coordinates has the separated solutions
u(r,0) = (ar™ +br ") e? for n € Z.

The general solution of Laplace’s equation that is bounded inside the unit disc is
therefore
oo

u(r,8) = Z anr!™ e, (7.28)

n=—oo
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The boundary condition implies that

1 .
n=o— [ f(B)e " db.
0 = 5= [ 1)
Using the convolution theorem, we may write (7.28) in r < 1 as

u(r,0) = (9" x )(9),

where g" : T — R is the Poisson kernel,

oo

1 .

- |n| jind

9" (0) = o E ri™e™”.
n=—oo

The geometric series for n > 0 and n < 0 may be summed to give

N | 1—1r2
9'(6) = 271 —2rcosf + 12
The series in (7.28) converges to an infinitely differentiable — in fact, analytic —
function in r < 1 for any f € L?(T), so the Laplace equation smoothes the boundary
data.
In 1895 Korteweg and de Vries introduced a nonlinear PDE to describe water
waves in shallow channels:

Ut = UUp + Uggg- (7.29)

This KdV equation has exact localized traveling wave solutions called solitary waves,
or solitons. A remarkable fact is that, in spite of its nonlinearity, the KdV equa-
tion can be solved exactly by the inverse scattering method introduced by Gardner,
Greene, Kruskal, and Miura in 1967. This method depends on a surprising connec-
tion between the nonlinear KdV equation and a spectral problem for an associated
linear operator (see Exercise 9.15). We will not discuss the inverse scattering method
here, but we will use Fourier analysis to describe the dispersive property of the KAV
equation.

If w is sufficiently small, then we do not expect the nonlinear term uu, to
influence the solution significantly, so we omit it in a first approximation. We
therefore consider the linearized KdV equation,

Ut = Uggg- (7.30)
The general solution that is a 27-periodic function of z is
oo
u(z,t) = Z anen(@=n’t),
n—=-—o0o

Notice that the speed of propagation of e™® depends on n, that is, on the wave-
length. Since the components in the wave with different wavelengths propagate at
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1.5 1.5
1 1
0.5 0.5
0 0
-0.5 -0.5
0 2 4 6 0 2 4 6
1.5 1.5
1 1
0.5 0.5
0 0
-0.5 -0.5
0 2 4 6 0 2 4 6

Fig. 7.4 The effect of dispersion is illustrated here with the solution (7.30) of the linearized KdV
equation on a ring for times t = 0,e~19,e=2, and ¢ = e. The initial condition is a step function.

different speeds, a wave generally spreads out or disperses; hence the name disper-
sive waves. In particular, a wave front does not maintain its shape while propagat-
ing. See Figure 7.4 for an illustration. Contrast this with the solution of the wave
equation (7.25), where different Fourier components propagate at the same speed.
The wave equation is said to be nondispersive. Another example of a dispersive
wave equation, the Schrédinger equation from quantum mechanics, is discussed in
Exercise 7.13.

7.5 More applications of Fourier series

The use of Fourier series is not restricted to differential equations. In this section,
we consider two other applications.

The first is a solution of the isoperimetric problem, which states that of all closed
curves of a given length, a circle encloses the maximum area. This result can also
be stated as an inequality: for any closed curve of length L enclosing an area A, we
have

4TA < L2 (7.31)

with equality if and only if the curve is a circle. Equation (7.31) is called the
isoperimetric inequality. There are many different proofs of this result; the one we
give, using Fourier series, is due to Hurwitz.
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In order to state and prove a precise result, we reformulate the problem analyt-
ically. Without loss of generality, we consider curves whose lengths are normalized
to 27, and that are parametrized by arclength, s, positively oriented in the counter-
clockwise direction. We may represent such a smooth, closed curve I in the plane
R? by

(z,y) = (f(s),9(s)) (7.32)
where f,g: T — R are continuously differentiable functions such that
f(s)? +4(s)?=1. (7.33)

Here, the dot denotes a derivative with respect to s.

Green’s theorem states that if {2 is a region in the plane with a smooth, positively
oriented boundary Q) and u,v : @ — R are continuously differentiable functions,
then

/ {ugs + vy} dedy = / {udy — vdz} .
Q 80

If T does not intersect itself, then the use of Green’s theorem with v = z/2 and
v = y/2 implies that the area A enclosed by I is given by

A= / {19)i() = 9(5)/(s) )} ds. (7.34)

The expressions in (7.33) and (7.34) make sense for general functions f,g € H(T).
Thus, an analytical formulation of the isoperimetric problem is to find functions
f,9 € HY(T) that maximize the area functional A in (7.34) subject to the constraint
(7.33).

Theorem 7.10 Suppose that a curve I is given by x = f(s), v = g(s), where
f,g9 € HY(T) are real-valued functions that satisfy (7.33), and the area A enclosed
by T is given by (7.34). Then A < 7, with equality if and only if T is a circle.

Proof. We Fourier expand f and g as
[ === 3 R )= Y g™ (13
= on e n ) g\s) = o n:_oogn . .

Since f and g are real valued, we have f,n = z and §_,, = g, for all n. Integration
of (7.33) over T gives

21 = /T {f'(s)2 + g(s)2} ds.

From Parseval’s theorem, this equation implies that

oo

2r= > n2{

n=—oo

fn

2
+ |§n|2} : (7.36)
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and equation (7.34) implies that

24 = i in {f_ngn - fng_n} :

Subtracting these series and rearranging the result, we find that
1 ~ 2 2
27r—2A=§§){‘nfn—zgn +(n2—1)< +|gn|2)}.

Since the terms in the series on the right hand side of this equation are nonnegative,
it follows that A < w. Moreover, we have equality if and only if f, = g, = 0 for
n > 2, and f; = ig;. Equation (7.36) implies that |fi1| = y/7/2, so that

Jz’-\l:\/geié’ ’gl:_i\/geié’

for some 6 € R. Writing fo = V2mxy and go = V2myo, where zg,y9 € R, we find
from (7.35) that

2 ~ ~
+‘n§n+ifn fn

f(s) = xg + cos(s +6), 9(s) = yo + sin(s + 9).
Thus, if A =7, the curve z = f(s), y = g(s) is a circle. O

Our final application is an ergodic theorem for one of the simplest dynamical
systems one can imagine, namely, rotations of the circle. We will prove another
ergodic theorem for more general dynamical systems later on, in Theorem 8.37.

Let v € R. We define a map F, : T — T on the circle T by

F,(z) = z + 27y. (7.37)

This map is called the circle map or the rotation map. For every xg € T, the iterated
application of F, generates a sequence of points (z,);2q, where z,, = F}(zo). The
set {x,} is called the orbit or trajectory of xy under F.,. If v is rational, then these
points eventually repeat, and each orbit contains finitely many distinct points. If
is irrational, then z,, # x, for m # n, and there are infinitely many points in each
orbit (see Figure 7.5).

If f: T — C is a continuous function on T, we define two averages of f, a time
average

N
(nloo) = Jim 5y 3 Son)

and a phase-space average,

(Pon = 55 [ F1e) e
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This phase-space average may be regarded as a probabilistic average with respect
to a uniform probability measure on T. The following ergodic theorem, proved by
Weyl in 1916, states that time averages and phase-space averages are equal when ~
is irrational. This result is false when + is rational.

Theorem 7.11 (Weyl ergodic) If « is irrational, then
(He(zo) = (flopn (7.38)
for all f € C(T) and all zg € T.

Proof. First, we show that (7.38) holds for the functions ™ for each m € Z.
If m = 0, then both averages are equal to 1. If m # 0, then {e!™®),, = 0, and the
time average may be explicitly computed as follows:

N
. 1 .
imz _ : § : im(zo+2mny)
(™ = Jim 5 +1&~ ¢

N
eimwo Z [627rim’y]n
n=0

eim:co (1 _ [eQWim'y]N—i-l)

1 — e2mimy

li
NgnooN—F].
1

I

N N +1
= 0,

where we use the fact that e2™™ £ 1 for irrational . Since both averages are

linear in f, it follows that (7.38) holds for all trigonometric polynomials.

The trigonometric polynomials are dense in C(T). Therefore, if f € C(T) and
€ > 0, then there is a trigonometric polynomial p such that ||f — p||c < €, and

1 N 1 2w 1 N 1 e
N—-i-lnz::of(w")_ﬁ/o f(z)dz N—H;p(mn)_ﬂ/o p(z)dz|.

Taking the lim sup of this equation as N — 0o, we obtain that

<2+

N
1
1 N1 - < Ze.
ljﬂn_ffop N+1 T;)f(xn) (f)pn| < 2e
Since € > 0 is arbitrary, this proves (7.38) for all f € C(T) and all zo € T. O

A consequence of this ergodic theorem is the following result, which says that
the points in an orbit {z,, | n > 0} are uniformly distributed on the circle.

Corollary 7.12 Suppose that v is irrational and [ is an interval in T of length A.
Then

lim #{n|0<n<N,z, €I} A
N5oo N+1 2’

(7.39)

where #S denotes the number of points in the set S.
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Fig. 7.5 The repeated images of the origin under the circle map, F,;‘(O), for 1 <mn < 100. On the
left, ¥ = 2/7 is rational. On the right, ¥ = (v/5 — 1)/2 is the golden ratio, which is irrational.

Proof. Let xr be the characteristic function of the interval I. Then (7.39) is
equivalent to the statement that

{(xr)t = (X1)ph- (7.40)

This equation does not follow directly from Theorem 7.11 because 7 is not contin-
uous. We therefore approximate x; by continuous functions. We choose sequences
(fx) and (gx) of nonnegative, continuous functions such that f; < xr < g and

/1rfk($)d$—>/TX1($)dw, /Tgk(x)d:v—)/jrxf(x)dm as k — oo.

We leave it to the reader to construct such sequences. Since fr < xr1 < g,

1 N 1 N 1 N
- < < __ - )
N+1;)fk($n) A N+17;0X1(m") S NF1 ng(xn)

n=0

Taking the limit as N — oo of this equation, and applying Theorem 7.11 to the
functions fx and gr, we obtain that

N
1 1
1 < limi
27T/Tfk(a:) de < 1}\rrn1nf —N+1nE:0X1(mn)

N
1 1

< i <= da.

< ljifnjgopN+IT;)XI(xn) < 27T/Tgk(a:) ar

Letting &k — oo, we find that

N
1 1
— < liminf ——
o @ dz < ninf 57 D xaen)
1 N
< limsup E z
- N—oo N"‘ln:OXI( n)
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1
< o= [ xi(z)de.
27 T
It follows that the limit defining the time average of x exists and satisfies equation

7.40) for all zg € T. O
(7.40)

Theorem 7.11 actually holds for every f € L!(T), except possibly for a set of
initial points z¢ in T with zero Lebesgue measure. The proof, however, requires
additional results from measure theory.

One application of the ergodic theorem is to the numerical integration of func-
tions by the Monte Carlo method, in which one approximates the phase average, or
integral, of f by a time average. This method is not required in the simple case
of functions defined on a circle, but it is useful for the numerical integration of
functions that depend on a large number of independent variables, where standard
numerical integration formulae may become prohibitively expensive.

7.6 Wavelets

In this section, we introduce a special class of orthonormal bases of L?([0,1]) and
L?(R), called wavelets. These bases have proved to be very useful in signal analysis
and data compression. With this application in mind, we will refer to the indepen-
dent variable as a “time” variable. Wavelet bases in several independent variables
are equally useful in image compression and many other applications.

Fourier expansions provide an efficient representation of stationary functions
whose properties are invariant under translations in time. They are not as efficient
in representing other types of functions, such as transient functions that vanish on
most of their domain, or functions which vary much more rapidly at some times than
at others. In the case of periodic functions, Parseval’s identity in Theorem 6.26,

I7IP ="

n

2

’

fn

suggests that a large number of terms in a Fourier series expansion of f is needed if
the quantity || f|| is distributed over a large number of coefficients . which are not
too small. For example, from Lemma 7.8, this happens when f is discontinuous,
so that its Fourier coefficients decay slowly as n — oco. Signals with sharp, or
almost discontinuous, transitions and transient signals supported on a relatively
small portion of the relevant time interval, such as the short beeps transmitted by
a modem, are very common.

It is often useful to compress a signal before transmission or storage. To represent
a function f(t) accurately on the interval 0 < ¢ < 1 by storing a finite number of
values f(nAt), where n = 0,..., N with N = 1/At, we need to choose At small
enough that all rapid transitions can be reconstructed from this list of values. If
the changes are rapid, then At has to be small and N has to be large. Suppose,
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however, that we have an orthonormal basis of L%([0,1]) with the property that a
finite linear combination of basis elements with M terms, where M is much smaller
than N, yields a good approximation of the function f. Then we can store or
transmit the function with M instead of N numbers without significant loss of
information. Roughly speaking, we would then have compressed the data with a
compression ratio of N : M. One reason for the use of wavelets in representing
signals, or images, is that they allow for large compression ratios. There are many
different kinds of wavelets, but all of them share the property that they describe a
function at a sequence of different time, or length, scales. This allows us to represent
a function efficiently by using wavelets whose local rate of variation is adapted to
that of the function. We begin by describing a simple example, the Haar wavelets.
We define the Haar scaling function ¢ € L*(R) by

w(@) = {

The function ¢ is the characteristic function of the interval [0,1), and is often
referred to as a “box” function because of the shape of its graph. The basic Haar
wavelet, or mother wavelet, 1 € L*(R) is given by

1 if0<z<1,

. (7.41)
0 otherwise.

1 if0<z<1/2
Yla)=4¢ -1 if1/2<z<1, (7.42)
0 otherwise.

These functions satisfy the scaling relations

p(z) = o(22) + o2z — 1), (7.43)
P(z) = o(22) — (22 — 1). (7.44)
For n, k € Z, we define scaled translates ¢, , ¥nr € L2(R) of ¢, 1 by
oni(@) =270 (2"e — k), Ynrlz) =2 (2" — k). (7.45)
First, consider the Hilbert space L*([0,1]) with its usual inner product. For
n=0,1,2,..., let V,, be the finite-dimensional subspace

Vi ={f | f is constant on [k/2",(k + 1)/2") for k=0,...,2" —1}. (7.46)

Elements of V,, are step functions that are constant on intervals of length 27 ™. The
value of f € V,, at the right endpoint z = 1 is irrelevant, since functions in L2([0, 1])
that are equal a.e. are equivalent. Clearly, we have V,, C Vj,41.

The function ¢y,  is the characteristic function of the interval [k2™ ", (k+1)2™).
The set

is therefore a basis of V,, for each n > 0. Since 4,41 D A,, the sets A, are not
disjoint, and we cannot form a basis of | J,,cy Vn by taking their union. Instead, for
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Fig. 7.6 Some members of the sets of functions B, defined in (7.47).

n=20,1,2,..., we define subsets B, of V,, by
Bo ={¢0,0}, Bnt1={¢nk|k=0,1,...,2" —1}. (7.47)
The subsets B,, and B,, are disjoint for n # m. The union of these sets, B =
U Bn, or
B ={poo}U{tnr|n=0,1,2,...,k=0,1,...,2" — 1}, (7.48)

is called the Haar wavelet basis of L?([0,1]). Some of these basis functions are
illustrated in Figure 7.6.
Solving (7.43)—(7.44) for ¢(2z) and ¢(2z — 1), we get

0(22) = 1 (p(z) + (),
022~ 1) = 3 (p(a) — ¥())

It follows by induction from dyadic dilations z +— 2z of these equations that ¢y,
is a linear combination of ¢g ¢ and ¥, with m < n. Hence the linear span of B
contains bases A,, of V,, for every n € N. Using this fact, we can prove that B is a
basis of L?([0,1]).

Lemma 7.13 The set B in (7.48) is an orthonormal basis of L?([0, 1]).

Proof. It follows from Exercise 7.17 that B is an orthonormal set, so we just have
to show that it is complete. Suppose that f € C([0,1]) and € > 0. By Theorem 1.67,
f is uniformly continuous, so there is an n such that |f(z) — f(y)| < e for all
z,y € [0,1] with |z — y| < 27™. We define the step function approximation g € V,,
of f by

om_1

g@) = Y 7 (k27) pui(@).
k=0
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Then g is in the linear span of Uzl_:lo B,,, and

sup |f(z) —g(z)| <e (7.49)

0<z<1
Thus any f € C([0,1]) is the uniform limit of finite linear combinations of functions
in B. Since the continuous functions are dense in L?([0,1]), and the sup-norm is
stronger than the L?-norm, the orthonormal set B is complete in L?([0, 1]). O

We define the Haar wavelet basis B of L2(R) in a similar way, as
B={Ynr|n€L,keL}, (7.50)

where 1, 1 is defined in (7.45). This basis includes wavelets supported on intervals
of arbitrarily large length, when n is large and negative, as well as on intervals of
arbitrarily small length, when n is large and positive. The wavelet basis of L?(R)
does not include a scaling function ¢, in contrast with the wavelet basis (7.48) of
L2([0, 1)).

Lemma 7.14 The set B in (7.50) is an orthonormal basis of L?(R).

Proof. The set B is orthonormal, so we just have to show that it is complete.
Suppose that f € L?(R) is orthogonal to B. Then f is orthogonal to all wavelets
¥,k that are supported on any compact interval [—-2V,2V]. Since we can transform
the interval [—2%V,2V] to [0,1] by a translation z — x + 2V and a dyadic dilation
z — 2= (N+Dg and the basis B is invariant under such translations and dilations,
it follows from Lemma 7.13 that f is constant on every compact interval [—2V,2V].
Therefore f is constant on R. Since the nonzero constant functions do not belong
to L?(R), we conclude that f = 0, so B is complete. O

The Haar wavelets are very simple, compactly supported, orthonormal, step
functions that take only three different values. Each wavelet is obtained by dilation
and translation of a single basic wavelet v, derived from a scaling function ¢.
These properties make the Haar wavelets especially suitable for the representation
of localized functions, as well as functions that vary on different lengthscales at
different locations, and functions with a self-similar, fractal structure.

A drawback of the Haar wavelets is that they are discontinuous, so the par-
tial sums approximating a continuous function are also discontinuous. It is often
desirable to have continuous approximations of continuous functions, and C? ap-
proximations of C? functions. This is one motivation for the introduction of other
wavelet bases. For definiteness, we consider wavelet bases of L?(R). The follow-
ing azioms of multiresolution analysis capture the essential properties of the Haar
wavelet basis that we want to generalize.

Definition 7.15 (Multiresolution analysis) A family {V,, | n € Z} of closed
linear subspaces of L*(R) and a function ¢ € L?(R) are called a multiresolution
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analysis of L?(R) if the following properties hold:

(a) f(z) € V,, if and only if f(2z) € V,,41 for all n € Z (scaling); (7.51)
(b) V,, C V41 for all n € Z (inclusion); (7.52)
(€) Unez Vo = L2(R) (density); (7.53)
(d) Npez Va = {0} (maximality); (7.54)
(e) there is a function ¢ € L?(R) N L'(R) such that {p(z — k) | k € Z}

is an orthonormal basis of V; (basis). (7.55)

The five properties required in this definition are not independent. One can
prove that (d) follows from (a), (b), and (e), and that, under the assumption that
(a), (b), and (e) hold, (c) is equivalent to the property that $(0) # 0, where @ is
the Fourier transform of ¢. For brevity, we do not prove these statements here.

The spaces V,, defined in (7.46) and the function ¢ defined in (7.41) satisfy these
axioms. We call ¢ the scaling function of the multiresolution analysis. We will ex-
plain how to obtain an orthonormal wavelet basis of L2(R) from this structure.
When the scaling function ¢ is the box function, defined in (7.41), this procedure
will reproduce the Haar wavelets, but other scaling functions lead to different or-
thonormal wavelet bases.

From (7.51) and (7.55) it follows that

A, ={2"2p(2"x — k) | k€ Z}

is an orthonormal basis of V,, for each n € Z. Since V,, C V41, each function in
A, is a linear combination of functions of 4,1, so the sets A, are not linearly
independent. To obtain linearly independent sets of functions, we define closed
linear subspaces W, of V41 by

Vn+1 V ® W

The subspaces W,, are called wavelet subspaces. From their definition and the
inclusion property (7.52), we see that W,, and W,, are orthogonal subspaces for
m # n. Moreover, from Exercise 7.16, properties (7.52)—(7.54) imply that

P w, = L*®. (7.56)

Now suppose that we have a function 1 € L?(R), called a wawvelet, such that
{¢(x — k) | k € Z} is an orthonormal basis of Wy.

Equation (7.58) below shows how the wavelet 1) is obtained from the scaling function
. It then follows from the scaling axiom (7.51) that for each n € Z the set

B, = {2"/2¢(2"m —k)|ke Z}
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is an orthonormal basis of W, so, from (7.56), their union
B= {2"/2¢(2"x —k) | nke Z}

is an orthonormal basis of L?(R).

The axioms of multiresolution analysis impose severe restrictions on the scaling
function. Translates of the scaling function must be orthogonal, and the function
must be a linear combination of scaled translates of itself, meaning that there are
constants ¢ such that

p(r) = Z crp(2z — k). (7.57)
kezZ
For example, the Haar scaling function satisfies (7.43), so in that case ¢o =¢; =1
and ¢ = 0 otherwise. For simplicity, we assume that ¢; € R and all but finitely
many of the coeflicients ¢, are zero.
The basic wavelet 1 belongs to V7 and is orthogonal to V5. The following
function satisfies these conditions:

¥(z) = D (-1)*er_rp(2z — k). (7.58)

kEZ

For example, in the case of the Haar wavelets, this equation gives (7.44). The
function ¢ in (7.58) clearly belongs to Vi, since it is a linear combination of the
orthonormal basis elements 2'/2¢(2z — k) of Vi. Moreover, for j € Z, we find from
(7.57) and (7.58) that

(p(x = j),¥(=) = 3 Z(_l)kck—2jcl—k-

kEZ

This sum is zero for every j € Z, since the change of summation variable from k—2j
to 1 — k implies that

S (DFerogierk =Y (D) Fe gepgy = =D (~1)Fer_gjer i
kez kEZ kEZ

Hence 1) is orthogonal to Vg. The translates {¢)(z — k) | k € Z} form a basis of W,
but we omit a proof of this fact here.

Next, we derive restrictions on the coefficients ¢, in the scaling equation (7.57).
We assume that the integral of ¢ is nonzero. It can, in fact, be shown that this is
necessarily the case. By rescaling ¢ and z, we may assume without loss of generality

that
[e@ds=1. [ j@Pd=1.
R R

Changing variables z — 2x, we see that

[eena=5 [leeapd =3
R R
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Integration of (7.57) over R therefore implies that

> =2 (7.59)

kEZ

Since {¢(2x — k)|k € Z} is an orthogonal set, an application of Parseval’s identity
to (7.57) implies that

Y =2 (7.60)

kEZ

The orthogonality of p(z — j) and ¢(z) for j # 0, together with (7.57), further
imply that

> cronjek =0 for j € Z and j # 0. (7.61)
kEZ

Finally, it is often useful to require that several moments of the wavelet ¢ vanish,
meaning that

/wmzﬁ(w)dxzo form=0,1,...,p—1. (7.62)
R

The scaling coeflicients ¢; and the wavelet ¢ must therefore satisfy (7.59)—(7.61).
For example, the Haar wavelet coefficients cg = 1, ¢; = 1, and ¢ = 0 for k # 0,1
satisfy these conditions, and (7.62) with p = 1, but there are many other possible
choices of the scaling coefficients.

One interesting choice, that satisfies (7.62) with p = 2, is due to Daubechies:

w=30+V3), a=;6+V)
1 1
0222(3—\/3); CBZZ( _\/5)7

and ¢ = 0 otherwise. We call the corresponding wavelet the D4 wavelet. We can
find the scaling function ¢ by regarding (7.57) as a fixed point equation and solving
it iteratively, starting with the box function, for example, as an initial guess:

Pnt1(z) = Z arpn (2 — k), n >0,
kEZ

wo(z) = X[0,1)(5U)-

It is possible to show that ¢,, converges to a continuous function ¢ whose support
is the interval [0, 3]. There is no explicit analytical expression for ¢, which is shown
in Figure 7.7. As suggested by this figure, the D4 scaling and wavelet functions ¢
and ¢ are Holder continuous (see Definition 12.72) but not differentiable.
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Fig. 7.7 The scaling function ¢ for the D4 wavelets.

7.7 References

Beals [3] gives an elegant discussion of Fourier series, Hilbert spaces, and distri-
butions. Rauch [44] discusses Fourier solutions of linear constant coefficient PDEs
in more detail. See Whitham [56] for more on dispersive and nondispersive waves.
Dym and McKean [10] contains a discussion of the Gibbs phenomenon, a proof of
the isoperimetric inequality, and much more besides. Korner [29] is a wide-ranging
introduction to the theory and applications of Fourier methods. In particular, it has
a discussion of the Monte Carlo integration techniques mentioned in Section 7.5.
There are many accounts of wavelets: for example, see Mallet [35]. Some algorithms
for the numerical implementation of wavelets are described in [43].

7.8 Exercises

Exercise 7.1 Let ¢, be the function defined in (7.7).

(a) Prove (7.5).

(b) Prove that if the set P of trigonometric polynomials is dense in the space of
periodic continuous functions on T with the uniform norm, then P is dense
in the space of all continuous functions on T with the L?-norm.

(c) IsP dense in the space of all continuous functions on [0, 27] with the uniform
norm?
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Exercise 7.2 Suppose that f : T — C is a continuous function, and
N

1 ~ .
S — eznz
N V2 n;N In

is the Nth partial sum of its Fourier series.

(a) Show that Sy = Dy * f, where Dy is the Dirichlet kernel

1 sin[(N+1/2)x]
P e

(b) Let T be the mean of the first N + 1 partial sums,

1

Ty = ——
NTNf1

{50+Sl+...+SN}.

Show that Ty = Fiy x f, where Fiy is the Fejér kernel

1 (sin [(N + 1)1’/2])2
N+1) sin(z/2) ’

(=) = 27 (

(c) Which of the families (Dy) and (Fv) are approximate identities as N — oo?
What can you say about the uniform convergence of the partial sums Sy
and the averaged partial sums Tx to f?

Exercise 7.3 Prove that the sets {e, | n > 1} defined by

en(z) =1/ 2 sinnz,
7r
and {f, | n > 0} defined by

folz) = \/%, fo(z) = \/gcosn;c forn > 1,

are both orthonormal bases of L%([0,7]).

Exercise 7.4 Let T,S € L*(T) be the triangular and square wave, respectively,
defined by

1 if0<z<m,

T(z) = |z|, if|z] <, S(x):{ -1 if -7 <z <0.

(a) Compute the Fourier series of T' and S.
(b) Show that T € HY(T) and T" = S.
(c) Show that S ¢ H'(T).
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Exercise 7.5 Consider f : T? — C defined by

f(x) = Z anein-xa

where x = (21, %2,...,%4), 0 = (N1,N2,...,MN4), and n-X = N1T1 +N2Za+. . . +Ngxq-
Prove that if

Z [n**|an|? < 0o

neZd

for some k > d/2, then f is continuous.

Exercise 7.6 Suppose that f € H'([a,b]) and f(a) = f(b) = 0. Prove the Poincaré

inequality
b _\2 b )
[ @i ar< L2 g a

w2

Exercise 7.7 Solve the following initial-boundary value problem for the heat equa-

tion,
Ut = Ugy,
u(0,t) =0, u(L,t)=0 for ¢t > 0,
u(z,0) = f(z) for0<z < L.

Exercise 7.8 Find sufficient conditions on the coefficients a,, and b,, in the solution
(7.25) of the wave equation so that u(z,t) is a twice continuously differentiable
function of z for all t € R.

Exercise 7.9 Suppose that u(z,t) is a smooth solution of the one-dimensional wave
equation,

Ut — CCUgy = 0.
Prove that
(ut2 + c2ui)t - (202utu$)$ =0.
If w(0,t) = u(1,t) = 0 for all ¢, deduce that

1
/ lug (z,1)|? + c2|ug (x,t)|? dr = constant.
0

Exercise 7.10 Show that

u(z,t) = f(x +ct) + g(x — ct)
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is a solution of the one-dimensional wave equation,
2
Ugt — C Uggy = 0,

for arbitrary functions f and g, This solution is called d’Alembert’s solution.

Exercise 7.11 Let Q = {(r,6) | r < 1} be the unit disc in the plane, where (r,0)
are polar coordinates. The boundary of Q is the unit circle T. Let u(r,6) be a
solution of Laplace’s equation in €2,

1 1
;(T“T)r+ﬁu99 =0 r<l,

and define f,g € L2(T) by f(0) = ue(1,0), g(0) = u,(1,6). Show that g = Hf
where H is the periodic Hilbert transform, defined in Example 8.32.

Exercise 7.12 Show that there is initial data f € C*(T) for which the initial
value problem for Laplace’s equation,

Utt + Ugy = 0;
u(z,0) = f(z),
Ut(-'L', 0) = 07

has no solution with u(-,#) € L?(T) in any interval |t| < &, where § > 0. (The
initial-value problem for Laplace’s equation is therefore ill-posed.)

Exercise 7.13 Use Fourier series to solve the following initial-boundary value prob-
lem for the Schrédinger equation (6.14), that describes a quantum mechanical par-
ticle in a box:

U = —Ugy (7.63)
u(0,t) =u(1,t) =0 for all ¢, (7.64)
u(z,0) = f(x). (7.65)

Derive the following two conservation laws from your Fourier series solution and
directly from the PDE:

d [ d (!
E/ lu(z,t)|* dz = 0, E/ |ug|? dz = 0.
0 0

Exercise 7.14 Consider the logistic map
Tn41 = 4,“/3771(1 - -'L'n):

where z,, € [0, 1], and g = 1. Show that the solutions may be written as z,, = sin?6,,
where ™ € T, and

0n+1 = 20n .
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What can you say about the orbits of the logistic map, the existence of an invariant
measure, and the validity of an ergodic theorem?

Exercise 7.15 Consider the dynamical system on T,
Tpy1 = az, (mod1),

where a = (1 4+ 1/5)/2 is the golden ratio. Show that the orbit with initial value
zo = 1 is not equidistributed on the circle, meaning that it does not satisfy (7.39).

HINT: Show that
<1+\/5>n (1—\/3)n
Un =173 T2

satisfies the difference equation

Upt1 = Up + Un—1
and hence is an integer for every n € N. Then use the fact that

(=

2

) —0 asn— oo.

Exercise 7.16 If {V,, | n € Z} is a family of closed subspaces of L*(R) that satisfies
the axioms of multiresolution analysis, and V11 = V,, ® W,,, prove that

L*(R) = P W

nez

(See Exercise 6.5 for the definition of an infinite direct sum.)

Exercise 7.17 Let B, and V,, be as defined in (7.46) and (7.47). Prove that
ngo B,, is an orthonormal basis of V.
HINT. Prove that the set is orthonormal and count its elements.

Exercise 7.18 Suppose that B = {e,(z)},, is an orthonormal basis for L2([0, 1]).
Prove the following:

(a) For any a € R, the set B, = {en(x —a)} ., is an orthonormal basis for
L*([a,a + 1)).

(b) For any ¢ > 0, the set B® = {\/ce,(cz)},, is an orthonormal basis for
L*([0,c ).

(c) With the convention that functions are extended to a larger domain than
their original domain by setting them equal to 0, prove that B U By is an
orthonormal basis for L%([0,2]).

(d) Prove that |J,c B is an orthonormal basis for L?(R).



