Chapter 9

The Spectrum of Bounded Linear
Operators

In Chapter 7, we used Fourier series to solve various constant coefficient, linear par-
tial differential equations, such as the heat equation. Consider, as an example, the
following initial boundary value problem for a variable coefficient, linear equation

Ut = Ugy — q(T)U 0<z<1,t>0,
u(0,t) =0, w(1,t)=0 t >0,
u(z,0) = f(z) 0<z <1,

where ¢ is a given coefficient function. This equation describes the temperature of
a heat conducting bar with a nonuniform heat loss term given by —g(z)u. What
would it take to express the solution for given initial data f as a series expansion
similar to a Fourier series?

If we use separation of variables and look for a solution of the form

o0

u(e,t) = 3 an(tyun (@),

n=1

where {u, | n € N} is a basis of L?([0, 1]), then we find that the a,, satisfy

da
@ = man
for some constants \,, and the u, satisfy
d*u
- dm2n + qup, = ApUn.

Thus, the u, should be eigenvectors of the linear operator A defined by

d?u
AU = _ﬁ -+ qu,

u(0) =0, w(l)=0.
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216 The Spectrum of Bounded Linear Operators

We therefore want to find a complete set of eigenvectors of A, or, equivalently, to
diagonalize A. The problem of diagonalizing a linear map on an infinite-dimensional
space arises in many other ways, and is part of what is called spectral theory.

Spectral theory provides a powerful way to understand linear operators by de-
composing the space on which they act into invariant subspaces on which their
action is simple. In the finite-dimensional case, the spectrum of a linear operator
consists of its eigenvalues. The action of the operator on the subspace of eigen-
vectors with a given eigenvalue is just multiplication by the eigenvalue. As we will
see, the spectral theory of bounded linear operators on infinite-dimensional spaces
is more involved. For example, an operator may have a continuous spectrum in
addition to, or instead of, a point spectrum of eigenvalues. A particularly simple
and important case is that of compact, self-adjoint operators. Compact operators
may be approximated by finite-dimensional operators, and their spectral theory is
close to that of finite-dimensional operators. We begin with a brief review of the
finite-dimensional case.

9.1 Diagonalization of matrices

We consider an n x n matrix A with complex entries as a bounded linear map
A:C* - C". A complex number A is an eigenvalue of A if there is a nonzero
vector u € C" such that

Au = du. (9.1)

A vector u € C™ such that (9.1) holds is called an eigenvector of A associated with
the eigenvalue .

The matrix A is diagonalizable if there is a basis {u1,...,u,} of C* consisting
of eigenvectors of A, meaning that there are eigenvalues {\1,...,A,} in C, which
need not be distinct, such that

Auk = )\kuk for k = 1, Y (N (9.2)

The set of eigenvalues of A is called the spectrum of A, and is denoted by o(A).
The most useful bases of Hilbert spaces are orthonormal bases. A natural question
is therefore: When does an n X n matrix have an orthonormal basis of eigenvectors?

If {u1,...,un} is an orthonormal basis of C", then the matrix U = (uy, ..., up),
whose columns are the basis vectors, is a unitary matrix such that

Uek = Uk, U*uk = €,

where {e1,...,e,} is the standard basis of C*. If the basis vectors {u1,...,u,} are
eigenvectors of A, as in (9.2), then

U*AUek = )\kek.
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It follows that U* AU is a diagonal matrix with the eigenvalues of A on the diagonal,
so A =UDU* where

M 0 - 0
0 Xy --- 0
D= .. )
0 0 - A\

Conversely, if A = UDU* with U unitary and D diagonal, then the columns of U
form an orthonormal basis of C" consisting of eigenvectors of A. Thus, a matrix A
can be diagonalized by a unitary matrix if and only if C* has an orthonormal basis
consisting of eigenvectors of A.

If A= UDU*, then A* = UDU*. Since any two diagonal matrices commute, it
follows that A commutes with its Hermitian conjugate A*:

A*A=UDU*UDU* =UDDU* =UDDU* =UDU*UDU* = AA*.

Matrices with this property are called normal matrices. For example, Hermitian
matrices A, satisfying A* = A, and unitary matrices U, satisfying U*U = I, are
normal. We have shown that any matrix with an orthonormal basis of eigenvectors
is normal. A standard theorem in linear algebra, which we will not prove here, is
that the converse also holds.

Theorem 9.1 An n X n complex matrix A is normal if and only if C* has an
orthonormal basis consisting of eigenvectors of A.

A normal matrix N can be written as the product of a unitary matrix V', and a
nonnegative, Hermitian matrix A. This follows directly from the diagonal form of
N. If N = UDU* has eigenvalues \; = |\;|€!¥*, we can write D = ®|D|, where ®
is a diagonal matrix with entries e®¢* and |D| a diagonal matrix with entries |\]|.
Then

N=VA, (9.3)
where V = U®U™ is unitary, and A = U|D|U™* is nonnegative, meaning that,
u*Au >0 for all u € C".

It is straightforward to check that VA = AV. Equation (9.3) is called the polar
decomposition of N. It is a matrix analog of the polar decomposition of a complex
number z = re? as the product of a nonnegative number r and a complex number
e? on the unit circle. The converse is also true: if N = VA, with V unitary, A
Hermitian, and VA = AV, then N is normal.

The eigenvalues of a matrix A are the roots of the characteristic polynomial py
of A, given by

pa(N) = det(A — ).
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If pa(A) = 0, then A — AI is singular, so ker(A — AI) # {0} and there is an
associated eigenvector. Since every polynomial has at least one root, it follows that
every matrix has at least one eigenvalue, and each distinct eigenvalue has a nonzero
subspace of eigenvectors.

It is not true that all matrices have a basis of eigenvectors, because the dimension
of the space of eigenvectors associated with a multiple root of the characteristic
polynomial may be strictly less than the algebraic multiplicity of the root. We call
the dimension of the eigenspace associated with a given eigenvalue the geometric
multiplicity of the eigenvalue, or the multiplicity for short.

Example 9.2 The 2 x 2 Jordan block

Al
A=
(5 3)
has one eigenvalue A. The eigenvectors associated with A are scalar multiples of

u = (1,0)7 so its multiplicity is one, and the eigenspace does not include a basis
of C2. The matrix is not normal, since

4, A" = (é _01 )

9.2 The spectrum

A bounded linear operator on an infinite-dimensional Hilbert space need not have
any eigenvalues at all, even if it is self-adjoint (see Example 9.5 below). Thus,
we cannot hope to find, in general, an orthonormal basis of the space consisting
entirely of eigenvectors. It is therefore necessary to define the spectrum of a linear
operator on an infinite-dimensional space in a more general way than as the set of
eigenvalues. We denote the space of bounded linear operators on a Hilbert space H
by B(H).

Definition 9.3 The resolvent set of an operator A € B(H), denoted by p(A), is
the set of complex numbers A such that (A — AI) : H — H is one-to-one and onto.
The spectrum of A, denoted by o(A), is the complement of the resolvent set in C,
meaning that o(A4) = C\ p(4).

If A — A is one-to-one and onto, then the open mapping theorem implies that
(A — XI)~! is bounded. Hence, when A € p(A), both A — Al and (A — X\I)~! are
one-to-one, onto, bounded linear operators.

As in the finite-dimensional case, a complex number A is called an eigenvalue of
A if there is a nonzero vector u € H such that Au = Au. In that case, ker(A—AI) #
{0}, so A — AI is not one-to-one, and A\ € o(A). This is not the only way, however,
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that a complex number can belong to the spectrum. We subdivide the spectrum of
a bounded linear operator as follows.

Definition 9.4 Suppose that A is a bounded linear operator on a Hilbert space H.

(a) The point spectrum of A consists of all A € (A) such that A — AI is not
one-to-one. In this case A is called an eigenvalue of A.

(b) The continuous spectrum of A consists of all A € 6(A) such that A — A\ is
one-to-one but not onto, and ran (A — AI) is dense in H.

(c) The residual spectrum of A consists of all A € o(A) such that A — A\ is
one-to-one but not onto, and ran (A — AI) is not dense in H.

The following example gives a bounded, self-adjoint operator whose spectrum is
purely continuous.

Example 9.5 Let H = L%([0,1]), and define the multiplication operator M : H —
H by

Mf(z) = zf(x).

Then M is bounded with ||[M|| = 1. If M f = Af, then f(z) =0 a.e.,s0 f =01in
L2([0,1]). Thus, M has no eigenvalues. If A ¢ [0,1], then (z — A)~! f(z) € L?([0,1])
for any f € L?([0,1]) because (z — )) is bounded away from zero on [0, 1]. Thus,
C\ [0,1] is in the resolvent set of M. If A € [0,1], then M — AI is not onto, because
c(z—X)~t ¢ L?([0,1]) for ¢ # 0, so the nonzero constant functions ¢ do not belong to
the range of M —AI. The range of M — AI is dense, however. For any f € L*([0,1]),
let

| f(z) if|z—A>1/n,

fnl@) = { 0 iflz—A<1/n
Then f,, — f in L?([0,1]), and f,, € ran (M — XI), since (z — \) ™! f,.(z) € L*([0,1]).
It follows that o(M) = [0,1], and that every A € [0,1] belongs to the continuous

spectrum of M. If M acts on the “delta function” supported at A, which is a
distribution (see Chapter 11) with the property that for every continuous function

f’
f(@)or(z) = f(A)dr(x),

then M§) = AJdy. Thus, in some sense, there are eigenvectors associated with points
in the continuous spectrum of M, but they lie outside the space L%([0,1]) on which
M acts.

If X belongs to the resolvent set p(A) of a linear operator A, then A — AT has an
everywhere defined, bounded inverse. The operator

Ry=0W—-A)"! (9.4)
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is called the resolvent of A at A, or simply the resolvent of A. The resolvent of A is
an operator-valued function defined on the subset p(A) of C.

An operator-valued function F' : Q — B(#), defined on an open subset 2 of the
complex plane C, is said to be analytic at zg € Q if there are operators F,, € B(H)
and a 0 > 0 such that

o

F(z) = (z—20)"Fy,

n=0
where the power series on the right-hand side converges with respect to the op-
erator norm on B(#) in a disc |z — 29| < ¢ for some 6 > 0. We say that F is
analytic or holomorphic in Q if it is analytic at every point in . This definition is a
straightforward generalization of the definition of an analytic complex-valued func-
tion f: Q C C — C as a function with a convergent power series expansion at each
point of 2. The fact that we are dealing with vector-valued, or operator-valued,
functions instead of complex-valued functions makes very little difference.

Proposition 9.6 If A is a bounded linear operator on a Hilbert space, then the
resolvent set p(A) is an open subset of C that contains the exterior disc {A € C |
[A| > ||A]|}. The resolvent Ry is an operator-valued analytic function of A defined
on p(A).

Proof. Suppose that Ao € p(A). Then we may write
M—A=MNI—A)[I—(N—N(NI—-A4)"].

If Ao — Al < [|(Aof — A)~1||7!, then we can invert the operator on the right-hand
side by the Neumann series (see Exercise 5.17). Hence, there is an open disk in the
complex plane with center )\ that is contained in p(A). Moreover, the resolvent Ry
is given by an operator-norm convergent Taylor series in the disc, so it is analytic
in p(A). If |A| > ||A||, then the Neumann series also shows that Ry = A (I — A/)\)
is invertible, so X € p(A). O

Since the spectrum o(A) of A is the complement of the resolvent set, it follows
that the spectrum is a closed subset of C, and

o(4) c{z e Cl|z| < [|All}.

The spectral radius of A, denoted by r(A), is the radius of the smallest disk centered
at zero that contains o (A4),

r(A) = sup{|A\| | A € 6(4)}.
We can refine Proposition 9.6 as follows.

Proposition 9.7 If A is a bounded linear operator, then

BRT nl/n
P(4) = lim (|47, 9.5)
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If A is self-adjoint, then r(A) = ||A4]].

Proof. To prove (9.5), we first show that the limit on the right-hand side exists.
Let

an = log [|A™].

We want to show that (a,/n) converges. Since ||[A™"|| < ||A™|||A"||, we have
a, <nay and

Am+n S am + an.
We write n = pm + q where 0 < g < m. It follows that

a 1
In P+ —ay.
n

n n

If n — oo with m fixed, then p/n — 1/m, so

. a a
limsup — < 2.
n—soo TN m

Taking the limit as m — 0o, we obtain that

a a
limsup — < liminf -2,
n—oo T m—oo M
which implies that (a,/n) converges.
Equation (9.5) implies that the Neumann series

T+A+A2+ . +A +. ..

converges if r(4) < 1 and diverges if 7(A) > 1: if r(A) < 1, then there is an
r(A) < R < 1 and an N such that ||[A"|| < R" for all n > N; while if r(4) > 1,
there is an 1 < R < r(A4) and an N such that [|[A"|| > R™ for all n > N. It follows
that AI — A may be inverted by a Neumann series when |\| > r(A4), so the spectrum
of A is contained inside the disc {A € C | [A\| < 7(A)}, and that the Neumann series
must diverge, so AI — A is not invertible, for some A € C with |A\| = 7(A). For more
details, see Reed and Simon [45], for example.

From Corollary 8.27, if A is self-adjoint, then ||A2|| = ||A||?>. The repeated use of
this result implies that |42 || = ||A||*", and hence (9.5), applied to the subsequence
with n = 2™, implies that r(4) = ||4]|. O

Although the spectral radius of a self-adjoint operator is equal to its norm, the
spectral radius does not provide a norm on the space of all bounded operators. In
particular, r(A) = 0 does not imply that A = 0, as Exercise 5.13 illustrates. If
r(A) =0, then A is called a nilpotent operator.

Proposition 9.8 The spectrum of a bounded operator on a Hilbert space is nonempty.
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Proof. Suppose that A € B(#H). Then the resolvent Ry = (AI — A)~! is an
analytic function on p(A). Therefore, for every z,y € H, the function f : p(4) — C
defined by

f(X) = (z, Rxy)

is analytic in p(A), and limy_,o f(A) = 0. Suppose, for contradiction, that o(A) is
empty. Then f is a bounded entire function, and Liouville’s Theorem implies that
f : C — Cis a constant function, so f = 0. But if f = 0 for every xz,y € H, then
Ry =0 for all A € C, which is impossible. Hence, o(A) is not empty. O

The spectrum of a bounded operator may, however, consist of a single point (see
Exercise 9.7 for an example).

9.3 The spectral theorem for compact, self-adjoint operators

In this section, we analyze the spectrum of a compact, self-adjoint operator. The
spectrum consists entirely of eigenvalues, with the possible exception of zero, which
may belong to the continuous spectrum. We begin by proving some basic properties
of the spectrum of a bounded, self-adjoint operator.

Lemma 9.9 The eigenvalues of a bounded, self-adjoint operator are real, and eigen-
vectors associated with different eigenvalues are orthogonal.

Proof. 1If A:H — H is self-adjoint, and Az = Az with x # 0, then
Mz, z) = (r, Az) = (Az, z) = XMz, ),

so A=\, and A € R If Az = Az and Ay = py, where X and p are real, then
Mz, y) = (Az,y) = (z, Ay) = p(@,y).

It follows that if A # u, then {(x,y) =0 and L y. O

As we will see in the next chapter, self-adjoint operators are a rich source of
orthonormal bases.

A linear subspace M of H is called an invariant subspace of a linear operator
Aon Hif Az € M for all x € M. In that case, the restriction A|p4 of A to M
is a linear operator on M. Suppose that H = M @ N is a direct sum of invariant
subspaces M and A of A. Then every x € H may be written as x = y + 2, with
y € Mand z € N, and

Az = Almy + A|nvz. (9.6)

Thus, the action of A on # is determined by its actions on the invariant subspaces.
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Example 9.10 Consider matrices acting on C? = C™ @ C* whered = m +n. A
d x d matrix A leaves C™ invariant if it has the block form

B D
A=
(o)
where B is an m x m matrix, D is m x n, and C is n x n. The matrix A leaves
both C™ and the complementary space C* invariant if D = 0.

An invariant subspace of a nondiagonalizable operator may have no comple-
mentary invariant subspace. However, the orthogonal complement of an invariant
subspace of a self-adjoint operator is also invariant, as we prove in the following
lemma. Thus, we can decompose the action of a self-adjoint operator on a linear
space into actions on smaller orthogonal invariant subspaces.

Lemma 9.11 If A is a bounded, self-adjoint operator on a Hilbert space H and M
is an invariant subspace of A, then M+ is an invariant subspace of A.

Proof. 1If x € M+ and y € M, then
(y, Az) = (Ay,z) =0
because A = A* and Ay € M. Therefore, Az € M*. O
Next, we show that the whole spectrum — not just the point spectrum — of a

bounded, self-adjoint operator is real, and that the residual spectrum is empty. We
begin with a preliminary proposition.

Proposition 9.12 If X belongs to the residual spectrum of a bounded operator A
on a Hilbert space, then X is an eigenvalue of A*.

Proof. 1If X belongs to the residual spectrum of A € B(H), then ran (A4 — \I)
is not dense in H. By Theorem 6.13, there is a nonzero vector x € H such that
z L ran (A — XI). Theorem 8.17 then implies that = € ker (4* — XI). O

Lemma 9.13 If A is a bounded, self-adjoint operator on a Hilbert space, then the
spectrum of A is real and is contained in the interval [—||A]|, || A4]|]-

Proof. We have shown that r(4) < ||A]|, so we only have to prove that the
spectrum is real. Suppose that A = a + ib € C, where with a,b € R and b # 0. For
any z € ‘H, we have

(A= ADzl]> = {((A—ADz,(A—\)z)
{(A=al)z,(A—al)zx) + ((—ib)x, (—ib)x)
+(Az, (—ib)z) + ((—ib)z, Ax)
(A — al)z|* + b*||2||?

b[||*.

v



224 The Spectrum of Bounded Linear Operators

It follows from this estimate and Proposition 5.30 that A — AI is one-to-one and
has closed range. If ran (A — AI) # #, then X belongs to the residual spectrum
of A, and, by Proposition 9.12, A\ = a — ib is an eigenvalue of A. Thus A has an
eigenvalue that does not belong to R, which contradicts Lemma 9.9. It follows that
A € p(A) if A is not real. O

Corollary 9.14 The residual spectrum of a bounded, self-adjoint operator is empty.

Proof. From Lemma 9.13, the point spectrum and the residual spectrum are
disjoint subsets of R, so the result follows immediately from Proposition 9.12. O

Bounded linear operators on an infinite-dimensional Hilbert space do not always
behave like operators on a finite-dimensional space. We have seen in Example 9.5
that a bounded, self-adjoint operator may have no eigenvalues, while the identity
operator on an infinite-dimensional Hilbert space has a nonzero eigenvalue of infi-
nite multiplicity. The properties of compact operators are much closer to those of
operators on finite-dimensional spaces, and we will study their spectral theory next.

Proposition 9.15 A nonzero eigenvalue of a compact, self-adjoint operator has
finite multiplicity. A countably infinite set of nonzero eigenvalues has zero as an
accumulation point, and no other accumulation points.

Proof. Suppose, for contradiction, that A is a nonzero eigenvalue with infinite
multiplicity. Then there is a sequence (e,) of orthonormal eigenvectors. This se-
quence is bounded, but (Ae,) does not have a convergent subsequence because
Ae,, = \e,, which contradicts the compactness of A.

If A has a countably infinite set {\,} of nonzero eigenvalues, then, since the
eigenvalues are bounded by ||A||, there is a convergent subsequence (A, ). If
An, = A and A # 0, then the orthogonal sequence of eigenvectors (fy, ), where
fre = Aplen, and |len,|| = 1, would be bounded; but (Af,,) has no convergent
subsequence since Af,, = en,- O

To motivate the statement of the spectral theorem for compact, self-adjoint
operators, suppose that ¢ € H is given by

x = chek + 2, (9.7)
k

where {e} is an orthonormal set of eigenvectors of A with corresponding nonzero
eigenvalues {\;}, z € ker A, and ¢, € C. Then Az = ), A\pcrex. Let Pp denote
the one-dimensional orthogonal projection onto the subspace spanned by ey,

Py = (ex, v)ey. (9:8)
From Lemma 9.9, we have z L ey, so ¢, = (e, z) and

k
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If Ay has finite multiplicity mj > 1, meaning that the dimension of the associated
eigenspace Ey C H is greater than one, then we may combine the one-dimensional
projections associated with the same eigenvalues. In doing so, we may represent A
by a sum of the same form as (9.9) in which the \; are distinct, and the Py are
orthogonal projections onto the eigenspaces Ey.

The spectral theorem for compact, self-adjoint operators states that any x € H
can be expanded in the form (9.7), and that A can be expressed as a sum of
orthogonal projections, as in (9.9).

Theorem 9.16 (Spectral theorem for compact, self~adjoint operators) Let
A :H — H be a compact, self-adjoint operator on a Hilbert space H. There is an
orthonormal basis of H consisting of eigenvectors of A. The nonzero eigenvalues of
A form a finite or countably infinite set {Ar} of real numbers, and

A= Z e P, (9.10)
k

where P is the orthogonal projection onto the finite-dimensional eigenspace of
eigenvectors with eigenvalue A\;. If the number of nonzero eigenvalues is countably
infinite, then the series in (9.10) converges to A in the operator norm.

Proof. First we prove that if A is compact and self-adjoint, then A = ||A]| or
A = —||4]| (or both) is an eigenvalue of A. This is the crucial part of the proof. We
use a variational argument to obtain an eigenvector.

There is nothing to prove if A = 0, so we suppose that A # 0. From Lemma 8.26,
we have

Al = sup [{z, Az)].

llzll=1
Hence, there is a sequence (z,) in H with ||z,|| = 1 such that

Al = lim_[(zn, Az,

Since A is self-adjoint, (x,,, Az,) is real for all n, so there is a subsequence of (z,),
which we still denote by (z,,), such that

lim (z,, Az,) = A, (9.11)
n—0o0
where A = ||A]| or A = —||A]|.

The sequence (z,) consists of unit vectors, so it is bounded. The compactness
of A implies that there is a subsequence, which we still denote by (z,), such that
(Az,) converges. We let y = lim,,_, o, Az,. We claim that y is an eigenvector of
A with eigenvalue \. First, y # 0, since otherwise (9.11) would imply that A = 0,
which is not the case since [A| = ||A]| and A # 0. The fact that y is an eigenvector
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follows from the following computation:

IA=ADyl? = lim [[(4~ A Az, |
< JAJP Tim [[(A = AT
= JAJ Tim [l Az]l> + N2lfza> — 2Xzn, Az)]
< AP Y [JAIP el + X2llzall” = 27(en, Aza)]

A2 [\ + A2 — 23?]
= 0.

To complete the proof, we use an orthogonal decomposition of H into invariant
subspaces to apply the result we have just proved to smaller and smaller subspaces
of H. Welet Ny = H and A; = A. There is a normalized eigenvector of Aj,
which we denote by eq, with eigenvalue Ay, where |A1| = ||A1]|. Let M> be the one-
dimensional subspace of N; generated by e;. Then M, is an invariant subspace of
A;. We decompose N7 = Ms® Na, where Ny = M3, Lemma 9.11 implies that N>
is an invariant subspace of A;. We denote the restriction of A; to N3 by As. Then
A, is the difference of two compact operators, so it is compact by Proposition 5.43.
We also have that ||As|| < ||Ay]], since No C M.

An application of the same argument to A implies that A; has a normalized
eigenvector e; with eigenvalue A2, where

o] = [[Ao]| < [l Al = [M].

Moreover, e; L e;. Repeating this procedure, we define A, inductively to be the
restriction of A to \;, = M-, where M., is the space spanned by {ei,...e,_1}, and
en to be an eigenvector of A, with eigenvalue A,. By construction, |A,| = [|Ax||
and (|A,|) is a nonincreasing sequence.

If A,41 =0 for some n, then A has only finitely many nonzero eigenvalues, and
it is given by a finite sum of the form (9.10). If dim A > n, then the orthonormal
set {er | K =1,...n} can be extended to an orthonormal basis of . All other basis
vectors are eigenvectors of A with eigenvalue zero.

If A, # 0 for every n € N, then we obtain an infinite sequence of nonzero
eigenvalues and eigenvectors. From Proposition 9.15, the eigenvalues have finite
multiplicities and

lim A, = 0. (9.12)

n—oo

For any n € N, we have

A= Z APy + Apyy,
=1
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where A, is zero on the subspace spanned by {ey,...,en}, and |[Ant1]] = [Ant1]-
By (9.12), we have

lim
n—oo

A— Z )\k<ek; -)ek
k=1

= nh—{réo |)‘n+1| = 07

meaning that

A= i AP,
k=1

where the sum converges in the operator norm.
If A has an infinite sequence of nonzero eigenvalues, then the range of A is

o |2
ranA = {chek ‘ Z ||)\I;||2 } .

The range is not closed since A, — 0 as n — oo. The closure of the range,
M = ran A, is the closed linear span of the set of eigenvectors {e, | n € N}
with nonzero eigenvalues,

= {chek ‘ > el < oo}.
k=1 k=1
If € ML, then Az = A,z for all n € N, so that

[Az|| < [[An|lllz]| =0 asn — oco.

Therefore, M=+ = ker A consists of eigenvectors of A with eigenvalue zero, and we
can extend {e, | n € N} to an orthonormal basis of 7 consisting of eigenvectors by
adding an orthonormal basis of ker A. O

A similar spectral theorem holds for compact, normal operators, which have or-
thogonal eigenvectors but possibly complex eigenvalues. A generalization also holds
for bounded, self-adjoint or normal operators. In that case, however, the sum in
(9.10) must be replaced by an integral of orthogonal projections with respect to an
appropriate spectral measure that accounts for the possibility of a continuous spec-
trum. We will not discuss such generalizations in this book. Non-normal matrices
on finite-dimensional linear spaces may be reduced to a Jordan canonical form, but
the spectral theory of non-normal operators on infinite-dimensional spaces is more
complicated.

We will discuss unbounded linear operators in the next chapter. The above
theory may be used to study an unbounded operator whose inverse is compact or,
more generally, an unbounded operator whose resolvent is compact, meaning that
(M — A)~! is compact for some X € p(A). For example, a regular Sturm-Liouville
differential operator has a compact, self-adjoint resolvent, which explains why it has
a complete orthonormal set of eigenvectors.
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9.4 Compact operators

Before we can apply the spectral theorem for compact, self-adjoint operators, we
have to check that an operator is compact. In this section, we discuss some ways
to do this, and also give examples of compact operators.

The most direct way to prove that an operator A is compact is to verify the
definition by showing that if E is a bounded subset of H, then the set A(E) = {Az |
x € E} is precompact. In many examples, this can be done by using an appropriate
condition for compactness, such as the Arzela-Ascoli theorem or Rellich’s theorem.
The following theorem characterizes precompact sets in a general, separable Hilbert
space.

Theorem 9.17 Let E be a subset of an infinite-dimensional, separable Hilbert
space H.

(a) If E is precompact, then for every orthonormal set {e, | n € N} and every
€ > 0, there is an N such that

o0

> Kemz)><e forallzeE. (9.13)
n=N+1
(b) If E is bounded and there is an orthonormal basis {e,} of H with the
property that for every € > 0 there is an N such that (9.13) holds, then E
is precompact.

Proof. First, we prove (a). A precompact set is bounded, so it is sufficient to
show that if E is bounded and (9.13) does not hold, then E is not precompact. If
(9.13) does not hold, then there is an € > 0 such that for each N there isan zy € E
with

o0

S Keman)* > e (9.14)

n=N+1

We construct a subsequence of () as follows. Let N3 = 1, and pick N, such that

o0

Z |<6n,$N1>|2 <

n=Nz+1

L]

Given Ny, pick Ngy1 such that

oo

Z |<en7$Nk)|2 <

n=Ngt1+1

(9.15)

[N e

We can always do this because the sum

o0

3 len,zn)? = llan|?

n=1
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converges by Parseval’s identity.
For any N > 1, we define the orthogonal projection Py by

N

Pyz = Z(en, z)e,.

n=1

For k > I, we have

||me _'Z'Nz||2 > ||(I_PNk)($Nk _$N1)||2
>[I = Px) ol = (T = Pr) @
o %) 2

2 2

= > KemandP =, Y len om)l

n=Ng+1 n=Ng+1
2
> [e/2 = (/4]
>

€
Z)
where we have used (9.14), (9.15), and the fact that N > Ny41. It follows that
(zn, ) does not have any convergent subsequences, contradicting the hypothesis that
FE is precompact.

To prove part (b), suppose that {e,, | n € N} is an orthonormal basis with the
stated property, and let (z,) be any sequence in E. We will use a diagonalization
argument to construct a convergent subsequence, thus proving that E is precompact.

Without loss of generality we may assume that ||z|| < 1 for all x € E. We choose
n1 = 1. Then

I(I=Pa)zal|<1 forallmeN.

Since P,,z, is in the finite-dimensional Hilbert subspace spanned by ey, ..., en,
for each n € N, there is subsequence (z1,) of (z,) such that P, z1 converges.
Therefore, we can pick the subsequence such that (see Exercise 1.18)

for k < L.

=

1Py (1,6 = 212)||” <
Next, we choose ns such that
5 1
(I = Pp,) z1,5]|” < 2 for all kK € N.

This is possible because of (9.13). We then pick a subsequence z2 of 1 such
that (P,z2,) is Cauchy and

| Py (2,5 — 2,) || < for all k < 1.

el
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Continuing in this way, we choose n; such that
(T = Po) zi—1all® < % for all k € N,

and then pick a subsequence (1) of (z;_1,) such that (P, 21k) satisfies
1Py (@16 = z0,)II” < L forank <j.

k

The diagonal sequence (z,;) is Cauchy, since

l2mam = 2l = 1Pe(@man = 2l + 10 = P 2mm = 2l < 7
for all m,n > k. O
Example 9.18 Let # = ¢?(N). The Hilbert cube
C={(z1,22,.--,Zn,...) | |zn] < 1/n}
is closed and precompact. Hence C is a compact subset of H.
Example 9.19 The diagonal operator A : £2(N) — (?(N) defined by
A(z1,T2,T3,- -, Ty ---) = (A1T1, AoTo, - oo, An Ty - - -), (9.16)

where A\, € C is compact if and only if A, — 0 as n — co. Any compact, normal
operator on a separable Hilbert space is unitarily equivalent to such a diagonal
operator.

Proposition 5.43 implies that the uniform limit of compact operators is compact.
An operator with finite rank is compact. Therefore, another way to prove that A is
compact is to show that A is the limit of a uniformly convergent sequence of finite-
rank operators. One such class of compact operators is the class of Hilbert-Schmidt
operators.

Definition 9.20 A bounded linear operator A on a separable Hilbert space H is
Hilbert-Schmidt if there is an orthonormal basis {e, | n € N} such that

> Il Aenl? < 0. (9.17)
n=1

If A is a Hilbert-Schmidt operator, then

lAllms = (9.18)

fe's}
> Nl Aenl?
n=1

is called the Hilbert-Schmidt norm of A.
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One can show that the sum in (9.17) is finite in every orthonormal basis if it is
finite in one orthonormal basis, and the norm (9.18) does not depend on the choice
of basis.

Theorem 9.21 A Hilbert-Schmidt operator is compact.

Proof. Suppose that A is Hilbert-Schmidt and {e, | n € N} is an orthonormal
basis. If Py is the orthogonal projection onto the finite-dimensional space spanned
by {e1,...en}, then Py A is a finite-rank operator, and one can check that Py A —
A uniformly as N — oc. d

Example 9.22 The diagonal operator A : ¢2(N) — (?(N) defined in (9.16) is
Hilbert-Schmidt if and only if

[s°)
D Anf? < oo
n=1

We say that A is a trace class operator if

oo
Z |An| < oo.
n=1

A trace class operator is Hilbert-Schmidt, and a Hilbert-Schmidt operator is com-
pact.

Example 9.23 Let 2 C R®. One can show that an integral operator K on L?(),
K1) = [ k@) ) dy (919)
is Hilbert-Schmidt if and only if & € L2(2 x Q), meaning that
/ |k(z,y)|* dedy < .
QxQ
The Hilbert-Schmidt norm of K is

\ 1/2
|Klrs = (/ |k(z, )| dmdy) .
QxQ

If K is a self-adjoint, Hilbert-Schmidt operator then there is an orthonormal basis
{pn | n € N} of L2(2) consisting of eigenvectors of K, such that

/Q k(2,9)0n(¥) dy = Anion(2).
Then

k(z,y) = Z Anon(T)Pn(y),
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where the series converges in L?(Q2 x Q):

2

N
lim k(z,y) — Z Anen(@)en(y)| dzdy = 0.
n=1

N—oo Joxo

For a proof, see, for example, Hochstadt [22].

Another way to characterize compact operators on a Hilbert space is in terms
of weak convergence.

Theorem 9.24 A bounded linear operator on a Hilbert space is compact if and
only if it maps weakly convergent sequences into strongly convergent sequences.

Proof. First, we show that a bounded operator A : H — H on a Hilbert space H
maps weakly convergent sequences into weakly convergent sequences. If z,, — z as
n — oo, then for every z € H we have

(Az,, — Az, 2) = (z, —2,A%2) > 0 as n — oo.

Therefore, Az, — Az as n — oco. Now suppose that A is compact, and z, — z.
Since a weakly convergent sequence is bounded, the sequence (Az,) is contained in
a compact subset of H. Moreover, each strongly convergent subsequence is weakly
convergent, so it converges to the same limit, namely Az. It follows that the whole
sequence converges strongly to Az (see Exercise 1.27).

Conversely, suppose that A maps weakly convergent sequences into strongly
convergent sequences, and E is a bounded set in #H. If (y,) is a sequence in A(E),
then there is a sequence (z,) in E such that y,, = Az,. By Theorem 8.45, the
sequence (z,) has a weakly convergent subsequence (z,, ). The operator A maps
this into a strongly convergent subsequence (y,, ) of (y,). Thus A(E) is compact
for any bounded set E, so A is compact. d

9.5 Functions of operators
The theory of functions of operators is called functional calculus. In this section,
we describe some basic ideas of functional calculus in the special case of compact,

self-adjoint operators.
If ¢ : C — C is a polynomial function of degree d,

d
q(z) = Z cpak,
k=0

with coefficients ¢; € C, then we define an operator-valued polynomial function
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g : B(H) — B(#) in the obvious way as

d
g(A) =) cp Ak, (9.20)
k=0

There are several ways to define more general functions of a linear operator than
polynomials. We have already seen that if A is a bounded operator and the function
f : C — C is analytic at zero, with a Taylor series whose radius of convergence is
strictly greater than ||A||, then we may define f(A) by a norm-convergent power
series. For example e is defined for any bounded operator A, and (I — A)~! is
defined in this way for any operator A with r(A4) < 1.

An alternative approach is to use spectral theory to define a continuous function
of a self-adjoint operator. First suppose that

N
A= "M\P,
n=1

is a finite linear combination of orthogonal projections P,, with orthogonal ranges,
and ¢ is the polynomial function defined in (9.20). Since {P,} is an orthogonal
family of projections, we have

Pt=p, P,P,=0 forn#m,k>1.

n

It follows that 4% = > AEP, and

If A is a compact, self-adjoint operator with the spectral representation

oo
A= MPy, (9.21)
n=1
then one can check that (see Exercise 9.18)
o
q(4) = Z q(An) Pp. (9-22)
n=0

If f:0(A) = Cis a continuous function, then a natural generalization of the
expression in (9.22) for g(A) is

FA) =3 FOn) P (9.23)

This series converges strongly for any continuous f, and uniformly if in addition
f(0) = 0 (see Exercise 9.19). An equivalent way to define f(A) is to choose a
sequence (g,) of polynomials that converges uniformly to f on o(A), and define
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f(A) as the uniform limit of ¢, (A) (see Exercise 9.18). If f is real-valued, then the
operator f(A) is self-adjoint, and if f is complex-valued, then f(A) is normal.

As a consequence of the spectral representation of A in (9.21) and f(A) in (9.23),
we have the following result.

Theorem 9.25 (Spectral mapping) If A is a compact, self-adjoint operator on
a Hilbert space and f : 6(A) — C is continuous, then

Here, o (f(A)) is the spectrum of f(A), and f (o(A)) is the image of the spectrum
of A under f,

fo(A) ={ueC|pu=f(A) for some A € 6(4)}.

A result of this kind is called a spectral mapping theorem. A spectral mapping
theorem holds for bounded operators on a Hilbert space, and many unbounded
operators, but there exist nonnormal, unbounded operators for which it is false (see
Exercise 10.19). Thus, in general, unlike the finite-dimensional case, a knowledge of
the spectrum of an unbounded operator is not sufficient to determine the spectrum
of a function of the operator, and some knowledge of the operator’s structure is also
required.
Consider a linear evolution equation that can be written in the form

x = Az, z(0) = =, (9.24)

where A is a compact, self-adjoint linear operator on a Hilbert space . The solution
is

z(t) = e*txy.

A A

If o is an eigenvector of A with eigenvalue ), then et'zy = e*zy. The so-
lution decays exponentially if ReA < 0, and grows exponentially if ReA > 0.
From the spectral mapping theorem, if the spectrum o(A) is contained in a left-
half plane {\ € C | Re A < w}, then the spectrum of e4? is contained in the disc
{AeC| A < e’}

If {ey | n € N} is an orthonormal basis of eigenvectors of A, then we may write
the solution as

z(t) = Z erte,, zo)en.
n=1
If A\, <w for all n, it follows that
o« oo
le@ll = | D lerten, z0)2 < e, | D [en, z0)|? = e lzo]l-
n=1 n=1
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When w < 0, any solution decays exponentially to 0 as ¢ — 0o. In that case, we say
that the equilibrium solution z(t) = 0 is globally asymptotically stable.

9.6 Perturbation of eigenvalues

Suppose that A(e) is a family of operators on a Hilbert space that depends on a
real or complex parameter €. If we know the spectrum of A(0), then we can use
perturbation theory to obtain information about the spectrum of A(e) for small e.
In this section, we consider the simplest case, when A(e) is a compact, self-adjoint
operator depending on a real parameter €.

Before doing this, we prove a preliminary result of independent interest: the
Fredholm alternative for a compact, self-adjoint perturbation of the identity.

Theorem 9.26 Suppose that A is a compact, self-adjoint operator on a Hilbert
space and A € C is nonzero. Then the equation

(A-X)z=y (9.25)
has a solution if and only if y L 2z for every solution 2z of the homogeneous equation
(A=A)z=0.

The solution space of the homogeneous equation is finite-dimensional.

Proof. If A:H — H is compact and self-adjoint, then there is an orthonormal
basis {e,, | n € N} of H consisting of eigenvectors of A, with Ade,, = Ape, for A, € R.
We expand z and y with respect to this basis as

) %)
xr = E Tn€n, Y= E Ynén,
n=1 n=1

where z,, = (e, z) and y,, = (e,,y). With respect to this basis, equation (9.25) has
the diagonalized form

A =N Zp, =Yn for n € N. (9.26)

If A, # X for all n, then A, — A is bounded away from zero, since A # 0 and there are
no nonzero accumulation points of the eigenvalues of a compact operator. Hence,
equation (9.25) is uniquely solvable for every y € H, with the solution

o i (eny),

>~
S

|
>

If A = A, for some n, then there is a finite-dimensional subspace of eigenvec-
tors with the nonzero eigenvalue A. Suppose the corresponding eigenvectors are
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{€ny,€ng,---,€n, t- Then we can solve (9.26) if and only if
Yng =Yng = --- =Yn, =0,
meaning that y is orthogonal to the kernel of (A — AI). O

Suppose that A(e) is a compact, self-adjoint operator depending on a parameter
€ € R. We assume that A is a real-analytic function of € at € = 0, meaning that it
has a Taylor series expansion

Ae) = Ag + €A1 + €24y + O(€%)

that converges with respect to the operator norm in some interval |¢] < R. The
coefficient operators A,, are given by

. 1 . 1 d»
Ag=A A=A A== A viey, Ap=—=—A4 yeen
0 (0); 1 (6) 6207 2 2 (6) e=0’ ) n! den (6) o
where the dot denotes a derivative with respect to e.
We look for eigenvalues A(e) and eigenvectors z(e) of A(e) that satisfy
[A(e) — A(€)] z(e) = 0. (9.27)

It can be shown that the eigenvalues and eigenvectors of A(e) have convergent Taylor
series expansions

Ae) = Ao + €A + €2X2 + O(€3), (9.28)
z(€) = o + ex1 + €2y + O(€%), (9.29)

where A\g = A\(0), Ay = A(0), and so on. We will not prove the convergence of these
series here, but we will show how to compute the coeflicients.
Setting € = 0 in (9.27), we obtain that

(Ao - )\()I) o = 0. (930)

Thus, A is a nonzero eigenvalue of Ag and z( is an eigenvector. For definiteness,

we assume that Ap is a simple eigenvalue of Ay, meaning that it has multiplicity

one, although eigenvalues of higher multiplicity can be treated in a similar way.
Differentiation of (9.27) with respect to e implies that

(A=ADi+ (A= AT)z=0.
Setting € equal to zero in this equation, we obtain that
(Ao — )\0[) I = )\1.750 — Al.’L‘(). (931)

Since {zo} is a basis of ker (A9 — AoI), Theorem 9.26 implies that this equation is
solvable for z; if and only if the right-hand side is orthogonal to zy. It follows that

(SUO, Alxo)

AL =
[ENR
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Continuing in this way, we differentiate equation (9.27) n times with respect to €
and set € equal to zero in the result, which gives an equation of the form

(A() - )\0.[) Ty = A\pZo + frn-1 (330, ce ey Xp—1, A0, - - -;An—l) . (932)

The Fredholm alternative implies that the right-hand side must be orthogonal to
Zo. This condition determines A, , and we can then solve the equation for x,,. Thus,
we can successively determine the coefficients in the expansions of A(€) and z(e).

The solution of (9.32) for x,, includes an arbitrary multiple of zo. This nonunique-
ness is a consequence of the arbitrariness in the normalization of the eigenvector.
If c(e) = 1+ €cy + €22 + O(€?) is a scalar and x(€) = zo + €x1 + €222 + O(€?) is an
eigenvector, then

c(€)z(€) = zg + € (x1 + c120) + €% (z2 + 11 + cozg) + O(€3)

is also an eigenvector. Each term in the expansion contains an arbitrary multiple
of xXg.

An alternative way to derive the perturbation equations (9.30)-(9.32) is to use
the Taylor series (9.28)—(9.29) in (9.27), expand, and equate coefficients of powers
of € in the result.

Example 9.27 Consider the eigenvalue problem
—u" +V(z,e)u = Iu, (9.33)
where u € L?(R) and
V(z,e) = 2° +e(z* - 43:2)6_%2. (9.34)

In quantum mechanics, this problem corresponds to the determination of the en-
ergy levels of a slightly anharmonic oscillator. See Figure 9.1 for a graph of the
potential for four different values of e. For definiteness, we consider the energy of
the ground state only, that is, the smallest eigenvalue, although the perturbation of
other eigenvalues can be computed in exactly the same way.
The eigenvalue problem is of the form Au = Au, where A = Ag + €A; with

d? d?
—— 4V, Ay=-——

dx? r 0 dx?
From Exercise 6.14, the unperturbed ground state ug and the associated eigenvalue
Ao of Ay are given by

A= +2?, Ay = (zf —42%)e 2.

uo(x) = e /2, Ao =1.
The operator A is unbounded. We will assume that the perturbed operator has
a ground state close to that of the unperturbed operator, and apply the above
expansion without discussing the validity of the method in this case. See the book
by Kato [26] for a comprehensive discussion.
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Fig. 9.1 The perturbed harmonic potential V (z,¢€), defined in (9.34), for €e=-0.3, 0, 0.2, and 0.4.

The perturbed eigenvalue has the expansion A = 1+ e\; + O(€?), where

(ug, (z* — 4m2)e_2w2u0) _ ffooo($4 - 4z'2)€_3w2 dz
(o] [ e dx

e
— 00

AL =

(9.35)

The expression in (9.35) for A; may be evaluated in the following way. First, note
that

= z"e=3" dy R oS z"e=?" dx
[P ede 3D [ e=a? gy

for n > 0. We need to compute this ratio of integrals for n = 2 and n = 4. Let
o0 2
J(a) = / e @ 297 gy, (9.36)

Differentiating this expression n times with respect to a, we obtain that

J™(a) = 2" /00 ghe~T T202 gy

—0o0

Hence, setting a = 0, we have

1= e~ da B ij(”)(o)
[Z e e*de 27 J(0)

e
oo

To evaluate the right-hand side of this equation, we complete the square in the
exponent of the integrand in (9.36) and change the integration variable from z +—
x — a. This gives

J(a) =e* J(0).
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It follows that

oo n . —x2 n a2
f_ooa: e 7 dx 1 d"e

foo e—**dy 2" dan
oo

a=0

In particular, for n = 2,4, we compute

d26a2 ) R d4ea2
F7- (4a® +2) e, dat

= (16a* + 484 + 12) &* .
From these computations it follows that A\; = —7/(24v/3), and

7
A=1———e+ O().
24v/3 ()
If € > 0, corresponding to an oscillator that becomes “softer” for small amplitude
oscillations, then the ground state energy decreases, while if € < 0, corresponding
to an oscillator that becomes “stiffer” for small amplitude oscillations, then the
ground state energy increases.

9.7 References

For additional discussion of the spectra of bounded and compact, normal operators,
see Naylor and Sell [40]. The terminology of the classification of the spectrum is
not entirely uniform (see Reed and Simon [45] for a further discussion). With
the definitions we use here, the spectrum of a bounded operator is the disjoint
union of its point, continuous, and residual spectrums. For an introduction to
complex analysis and a proof of Liouville’s theorem, see [36]. See Kato [26] for the
perturbation theory of spectra.

9.8 Exercises

Exercise 9.1 Prove that p(A*) = p(A), where p(A) is the set {A € C | X € p(A4)}.

Exercise 9.2 If ) is an eigenvalue of A, then X is in the spectrum of A*. What
can you say about the type of spectrum X belongs to?

Exercise 9.3 Suppose that A is a bounded linear operator on a Hilbert space and
A, 1 € p(A). Prove that the resolvent Ry of A satisfies the resolvent equation

Ry—R, = (1— \) RAR,.

Exercise 9.4 Prove that the spectrum of an orthogonal projection P is either {0},
in which case P =0, or {1}, in which case P = I, or else {0,1}.
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Exercise 9.5 Let A be a bounded, nonnegative operator on a complex Hilbert
space. Prove that o(A) C [0, 00).

Exercise 9.6 Let G be a multiplication operator on L?(R) defined by

Gf(x) = g(x)f (=),

where g is continuous and bounded. Prove that G is a bounded linear operator on
L?(R) and that its spectrum is given by

o(G) ={g(z) | z € R}.
Can an operator of this form have eigenvalues?

Exercise 9.7 Let K : L2([0,1]) — L2([0, 1]) be the integral operator defined by

Kf(z) = /0 " ) dy.

(a) Find the adjoint operator K*.

(b) Show that | K|| = 2/=.

(c) Show that the spectral radius of K is equal to zero.
(d) Show that 0 belongs to the continuous spectrum of K.

Exercise 9.8 Define the right shift operator S on £2(Z) by
S(x)k = Tp—1 for all k € Z,
where z = (z)3_, is in £%(Z). Prove the following facts.

(a) The point spectrum of S is empty.

(b) ran (A — S) = (*(Z) for every X € C with |A| > 1.

(c) ran (A — S) = (2(Z) for every A € C with |\ < 1.

(d) The spectrum of S consists of the unit circle {A € C | |A\| = 1} and is purely
continuous.

Exercise 9.9 Define the discrete Laplacian operator A on (*(Z) by
(Az)y = 1 — 2Tf + Tpo, (9.37)

where & = (2)72_ - Show that A =S 4 §* —21. Prove that the spectrum of A
is entirely continuous and consists of the interval [—4,0].

HiNT: Consider z, = e*¢ where —7 < ¢ < 7. Finite difference schemes for
the numerical solution of differential equations may be written in terms of shift
operators, and a study of their spectrum is useful in the stability analysis of finite

difference schemes (see Strikwerder [53]).
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Exercise 9.10 Define the right shift operator S on ¢?(N) by
S(($1,.’L‘2,.’E3,...)) :(0,231,152,...), (938)
and the left shift operator T on ¢2(N) by

T((l’l,mz,.’ﬂg,...)) = (.’L’Q,.’L’g,.’L’4,...). (939)
Prove the following.

(a) The resolvent set of S is the exterior of the unit disc {A € C | |A| > 1}.

(b) Every A € C with |A\| =1 belongs to the continuous spectrum of S.

(c) ran (A — S) is not dense in 2 for every A € C with |\| < 1, meaning that
the interior of the unit disc is contained in the residual spectrum of S.

(d) The resolvent set of T consists of all A € C such that |A| > 1.

(e) The continuous spectrum of 7T is the unit circle.

(f) The point spectrum of T is the interior of the unit disc.

(g) The residual spectrum of T is empty.

Exercise 9.11 A complex number A belongs to the approzimate spectrum of a
bounded linear operator A : H — H on a Hilbert space #H if there is a sequence
(zn) of vectors in H such that ||z,]| = 1 and (A — M)z, — 0 as n — co. Prove
that the approximate spectrum is contained in the spectrum, and contains the point
and continuous spectrum. Give an example to show that a point in the residual
spectrum need not belong to the approximate spectrum.

Exercise 9.12 Let H be a separable Hilbert space with an orthonormal basis
{en}, and A € B(H) such that

Z||Aen||2 < 00.
n

(a) Prove that the Hilbert-Schmidt norm defined in (9.18) is independent of
the basis. That is, show that for any other orthonormal basis {f,} one has

S IALIZ =Dl Aenll®.
(b) Prove that
|Allrs = [|A*||ms-

Exercise 9.13 Suppose that L : R — B(H) and A : R — B(#) are smooth,
operator-valued functions of ¢ € R, where L(t) is self-adjoint and A(t) is skew-
adjoint. If L(¢) satisfies the ODE

L=[L,A4], (9.40)
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show that
L(t) = U*(t)L(O)U (¢),

where U = UA and U(0) = I. Show that U(t) is unitary, and deduce that the
eigenvalues of L(t) are independent of .

An equation that can be written in the form (9.40) for suitable operators L(t)
and A(t) is said to be completely integrable because it possesses a large number of
conserved quantities, namely, the eigenvalues of L. The pair of operators {L, A} is
called a Lax pair for the equation.

Exercise 9.14 Show that the n x n, tridiagonal matrices

b1 ai 0 e 0 0 aq 0 ... 0
ai b2 a9 . 0 —ai 0 as 0
L= 0 a2 b3 . 0 , A= 0 —as 0 0
0 0 0 ... b, 0 0 0 0

form a Lax pair for the Toda lattice equations

dk:ak(ka—bk) fOI‘k=1,...,TL—1,

by =2 (a} —a}_,) fork=1,...,n,

where ag = a, = 0 and ay > 0. Write out the equations for n = 2, and determine
explicitly their conserved quantities.

Exercise 9.15 Show that the KdV equation for u(z,t),
up = buuy — Ugga,

can be written in the form (9.40), where L and A are the following differential
operators acting on smooth functions of z:

L=-0>4+u, A=—-48%+ 3ud, + 30,u.
Exercise 9.16 Prove that (9.20) and (9.22) define the same operator g(A).

Exercise 9.17 Let A be a compact, self-adjoint operator, on an infinite-dimensional
separable Hilbert space, and ¢ : 6(A) — C a continuous function.

(a) Prove that the series in (9.22) converges in norm if and only if ¢(0) = 0.
(b) For an arbitrary value ¢(0), prove that the series in (9.22) converges strongly.

Exercise 9.18 Suppose that A is a compact self-adjoint operator. Let f € C (a(4)),
and consider f(A) defined by (9.23). Prove that

£ (Al = sup{|f(An)| [ n € N}.
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Let (¢n) be a sequence of polynomials of degree N, converging uniformly to f
on o(A). The existence of such a sequence is a consequence of the Weierstrass
approximation theorem. Prove that (gn(A)) converges in norm, and that its limit
equals f(A) as defined in (9.23).

Exercise 9.19 Let A be a compact selfadjoint linear operator. Prove that the
series in (9.23) is convergent in the strong operator topology for any f € C (c(A4)),
and that it converges uniformly if in addition f(0) = 0.

Exercise 9.20 Let A be a self-adjoint compact operator on a Hilbert space H, and
let f:0(A) = C be a continuous function. When is f(A) compact?

Exercise 9.21 Consider the evolution equation z; = Az, where A is a bounded
operator on a Hilbert space such that

Re (z, Az) < 2allz|,

for some a € R By taking the inner product of the evolution equation with z,
derive the energy estimate

lz(@)|| < e**[|z(0)]-
Compare this result with that of the spectral method for self-adjoint and non-self-

adjoint operators A.

Exercise 9.22 Suppose that A is a compact, nonnegative linear operator on a
Hilbert space. Prove that there is a unique compact, nonnegative linear operator
B such that B> = A. Thus, B = A'/? is the square root of A.

Exercise 9.23 Consider the eigenvalue problem
o0
/ e~ 121=Wly(y) dy + exu(z) = Iu(z), —00 < T < 00,
—o0

where € € R. Show that if e = 0, then the spectrum consists purely of eigenvalues,
and A\ = 1 is a simple eigenvalue with eigenfunction u(z) = e~!*/. Show that a
formal perturbation expansion with respect to € as € — 0 gives

1
A= 1+§e2+...,

u(z) = e ® (1+6.’L‘+€2 (m2—z> +>

Show, however, that there are no eigenfunctions u € L?(R) when € # 0. (It is
possible to show that then the spectrum is purely continuous.)



