


Chapter 2

The supremum and infimum

We review the definition of the supremum and and infimum and some of their
properties that we use in defining and analyzing the Riemann integral.

2.1. Definition

First, we define upper and lower bounds.

Definition 2.1. A set A ⊂ R of real numbers is bounded from above if there exists
a real number M ∈ R, called an upper bound of A, such that x ≤ M for every
x ∈ A. Similarly, A is bounded from below if there exists m ∈ R, called a lower
bound of A, such that x ≥ m for every x ∈ A. A set is bounded if it is bounded
both from above and below.

The supremum of a set is its least upper bound and the infimum is its greatest
upper bound.

Definition 2.2. Suppose that A ⊂ R is a set of real numbers. If M ∈ R is an
upper bound of A such that M ≤ M ′ for every upper bound M ′ of A, then M is
called the supremum of A, denoted M = supA. If m ∈ R is a lower bound of A
such that m ≥ m′ for every lower bound m′ of A, then m is called the or infimum
of A, denoted m = inf A.

If A is not bounded from above, then we write supA = ∞, and if A is not
bounded from below, we write inf A = −∞. If A = ∅ is the empty set, then every
real number is both an upper and a lower bound of A, and we write sup∅ = −∞,
inf ∅ = ∞. We will only say the supremum or infimum of a set exists if it is a finite
real number. For an indexed set A = {xk : k ∈ J}, we often write

supA = sup
k∈J

xk, inf A = inf
k∈J

xk.

Proposition 2.3. The supremum or infimum of a set A is unique if it exists.
Moreover, if both exist, then inf A ≤ supA.
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58 2. The supremum and infimum

Proof. Suppose that M , M ′ are suprema of A. Then M ≤ M ′ since M ′ is an
upper bound of A and M is a least upper bound; similarly, M ′ ≤ M , so M = M ′.
If m, m′ are infima of A, then m ≥ m′ since m′ is a lower bound of A and m is a
greatest lower bound; similarly, m′ ≥ m, so m = m′.

If inf A and supA exist, then A is nonempty. Choose x ∈ A, Then

inf A ≤ x ≤ supA

since inf A is a lower bound of A and supA is an upper bound. It follows that
inf A ≤ supA. �

If supA ∈ A, then we also denote it by maxA and call it the maximum of A,
and if inf A ∈ A, then we also denote it by minA and call it the minimum of A.

Example 2.4. Let A = {1/n : n ∈ N}. Then supA = 1 belongs to A, so maxA =
1. On the other hand, inf A = 0 doesn’t belong to A and A has no minimum.

The following alternative characterization of the sup and inf is an immediate
consequence of the definition.

Proposition 2.5. If A ⊂ R, then M = supA if and only if: (a) M is an upper
bound of A; (b) for every M ′ < M there exists x ∈ A such that x > M ′. Similarly,
m = inf A if and only if: (a) m is a lower bound of A; (b) for every m′ > m there
exists x ∈ A such that x < m′.

Proof. Suppose M satisfies the conditions in the proposition. Then M is an upper
bound and (b) implies that if M ′ < M , then M ′ is not an an upper bound, so
M = supA. Conversely, if M = supA, then M is an upper bound, and if M ′ < M
then M ′ is not an upper bound, so there exists x ∈ A such that x > M ′. The proof
for the infimum is analogous. �

We frequently use one of the following arguments: (a) IfM is an upper bound of
A, then M ≥ supA; (b) For every ǫ > 0, there exists x ∈ A such that x > supA−ǫ.
Similarly: (a) If m is an lower bound of A, then m ≤ inf A; (b) For every ǫ > 0,
there exists x ∈ A such that x < inf A+ ǫ.

The completeness of the real numbers ensures the existence of suprema and
infima. In fact, the existence of suprema and infima is one way to define the
completeness of R.

Theorem 2.6. Every nonempty set of real numbers that is bounded from above
has a supremum, and every nonempty set of real numbers that is bounded from
below has an infimum.

This theorem is the basis of many existence results in real analysis. For exam-
ple, once we show that a set is bounded from above, we can assert the existence of
a supremum without having to know its actual value.

2.2. Properties

If A ⊂ R and c ∈ R, then we define

cA = {y ∈ R : y = cx for some x ∈ A}.
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Proposition 2.7. If c ≥ 0, then

sup cA = c supA, inf cA = c inf A.

If c < 0, then

sup cA = c inf A, inf cA = c supA.

Proof. The result is obvious if c = 0. If c > 0, then cx ≤ M if and only if
x ≤ M/c, which shows that M is an upper bound of cA if and only if M/c is an
upper bound of A, so sup cA = c supA. If c < 0, then then cx ≤ M if and only if
x ≥ M/c, so M is an upper bound of cA if and only if M/c is a lower bound of A,
so sup cA = c inf A. The remaining results follow similarly. �

Making a set smaller decreases its supremum and increases its infimum.

Proposition 2.8. Suppose that A, B are subsets of R such that A ⊂ B. If supA
and supB exist, then supA ≤ supB, and if inf A, inf B exist, then inf A ≥ inf B.

Proof. Since supB is an upper bound of B and A ⊂ B, it follows that supB is
an upper bound of A, so supA ≤ supB. The proof for the infimum is similar, or
apply the result for the supremum to −A ⊂ −B. �

Proposition 2.9. Suppose that A, B are nonempty sets of real numbers such that
x ≤ y for all x ∈ A and y ∈ B. Then supA ≤ inf B.

Proof. Fix y ∈ B. Since x ≤ y for all x ∈ A, it follows that y is an upper bound
of A, so y ≥ supA. Hence, supA is a lower bound of B, so supA ≤ inf B. �

If A,B ⊂ R are nonempty, we define

A+B = {z : z = x+ y for some x ∈ A, y ∈ B} ,

A−B = {z : z = x− y for some x ∈ A, y ∈ B}

Proposition 2.10. If A, B are nonempty sets, then

sup(A+B) = supA+ supB, inf(A+B) = inf A+ inf B,

sup(A−B) = supA− inf B, inf(A−B) = inf A− supB.

Proof. The set A+B is bounded from above if and only if A and B are bounded
from above, so sup(A+B) exists if and only if both supA and supB exist. In that
case, if x ∈ A and y ∈ B, then

x+ y ≤ supA+ supB,

so supA+ supB is an upper bound of A+B and therefore

sup(A+B) ≤ supA+ supB.

To get the inequality in the opposite direction, suppose that ǫ > 0. Then there
exists x ∈ A and y ∈ B such that

x > supA−
ǫ

2
, y > supB −

ǫ

2
.

It follows that

x+ y > supA+ supB − ǫ
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for every ǫ > 0, which implies that sup(A+B) ≥ supA+supB. Thus, sup(A+B) =
supA+ supB.

It follows from this result and Proposition 2.7 that

sup(A−B) = supA+ sup(−B) = supA− inf B.

The proof of the results for inf(A + B) and inf(A − B) are similar, or apply the
results for the supremum to −A and −B. �

2.3. Functions

The supremum and infimum of a function are the supremum and infimum of its
range, and results about sets translate immediately to results about functions.

Definition 2.11. If f : A → R is a function, then

sup
A

f = sup {f(x) : x ∈ A} , inf
A

f = inf {f(x) : x ∈ A} .

A function f is bounded from above on A if supA f is finite, bounded from below
on A if infA f is finite, and bounded on A if both are finite.

Inequalities and operations on functions are defined pointwise as usual; for
example, if f, g : A → R, then f ≤ g means that f(x) ≤ g(x) for every x ∈ A, and
f + g : A → R is defined by (f + g)(x) = f(x) + g(x).

Proposition 2.12. Suppose that f, g : A → R and f ≤ g. If g is bounded from
above then

sup
A

f ≤ sup
A

g,

and if f is bounded from below, then

inf
A

f ≤ inf
A

g.

Proof. If f ≤ g and g is bounded from above, then for every x ∈ A

f(x) ≤ g(x) ≤ sup
A

g.

Thus, f is bounded from above by supA g, so supA f ≤ supA g. Similarly, g is
bounded from below by infA f , so infA g ≥ infA f . �

Note that f ≤ g does not imply that supA f ≤ infA g; to get that conclusion,
we need to know that f(x) ≤ g(y) for all x, y ∈ A and use Proposition 2.10.

Example 2.13. Define f, g : [0, 1] → R by f(x) = 2x, g(x) = 2x+ 1. Then f < g
and

sup
[0,1]

f = 2, inf
[0,1]

f = 0, sup
[0,1]

g = 3, inf
[0,1]

g = 1.

Thus, sup[0,1] f > inf [0,1] g.

Like limits, the supremum and infimum do not preserve strict inequalities in
general.
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Example 2.14. Define f : [0, 1] → R by

f(x) =

{

x if 0 ≤ x < 1,

0 if x = 1.

Then f < 1 on [0, 1] but sup[0,1] f = 1.

Next, we consider the supremum and infimum of linear combinations of func-
tions. Scalar multiplication by a positive constant multiplies the inf or sup, while
multiplication by a negative constant switches the inf and sup,

Proposition 2.15. Suppose that f : A → R is a bounded function and c ∈ R. If
c ≥ 0, then

sup
A

cf = c sup
A

f, inf
A

cf = c inf
A

f.

If c < 0, then

sup
A

cf = c inf
A

f, inf
A

cf = c sup
A

f.

Proof. Apply Proposition 2.7 to the set {cf(x) : x ∈ A} = c{f(x) : x ∈ A}. �

For sums of functions, we get an inequality.

Proposition 2.16. If f, g : A → R are bounded functions, then

sup
A

(f + g) ≤ sup
A

f + sup
A

g, inf
A
(f + g) ≥ inf

A
f + inf

A
g.

Proof. Since f(x) ≤ supA f and g(x) ≤ supA g for evry x ∈ [a, b], we have

f(x) + g(x) ≤ sup
A

f + sup
A

g.

Thus, f + g is bounded from above by supA f + supA g, so supA(f + g) ≤ supA f +
supA g. The proof for the infimum is analogous (or apply the result for the supre-
mum to the functions −f , −g). �

We may have strict inequality in Proposition 2.16 because f and g may take
values close to their suprema (or infima) at different points.

Example 2.17. Define f, g : [0, 1] → R by f(x) = x, g(x) = 1− x. Then

sup
[0,1]

f = sup
[0,1]

g = sup
[0,1]

(f + g) = 1,

so sup[0,1](f + g) < sup[0,1] f + sup[0,1] g.

Finally, we prove some inequalities that involve the absolute value.

Proposition 2.18. If f, g : A → R are bounded functions, then
∣

∣

∣

∣

sup
A

f − sup
A

g

∣

∣

∣

∣

≤ sup
A

|f − g|,
∣

∣

∣
inf
A

f − inf
A

g
∣

∣

∣
≤ sup

A

|f − g|.
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Proof. Since f = f − g + g and f − g ≤ |f − g|, we get from Proposition 2.16 and
Proposition 2.12 that

sup
A

f ≤ sup
A

(f − g) + sup
A

g ≤ sup
A

|f − g|+ sup
A

g,

so
sup
A

f − sup
A

g ≤ sup
A

|f − g|.

Exchanging f and g in this inequality, we get

sup
A

g − sup
A

f ≤ sup
A

|f − g|,

which implies that
∣

∣

∣

∣

sup
A

f − sup
A

g

∣

∣

∣

∣

≤ sup
A

|f − g|.

Replacing f by −f and g by −g in this inequality and using the identity sup(−f) =
− inf f , we get

∣

∣

∣
inf
A

f − inf
A

g
∣

∣

∣
≤ sup

A

|f − g|.

�

Proposition 2.19. If f, g : A → R are bounded functions such that

|f(x)− f(y)| ≤ |g(x)− g(y)| for all x, y ∈ A,

then
sup
A

f − inf
A

f ≤ sup
A

g − inf
A

g.

Proof. The condition implies that for all x, y ∈ A, we have

f(x)− f(y) ≤ |g(x) − g(y)| = max [g(x), g(y)]−min [g(x), g(y)] ≤ sup
A

g − inf
A

g,

which implies that

sup{f(x)− f(y) : x, y ∈ A} ≤ sup
A

g − inf
A

g.

From Proposition 2.10,

sup{f(x)− f(y) : x, y ∈ A} = sup
A

f − inf
A

f,

so the result follows. �
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