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A continuous map between topological f : X → Y is said to satisfy the path-lifting
property if for any path p : [0, 1] → Y and any x ∈ f−1(p(0)) there exists a lifting p̃
of the path p with the intitial value x, i.e. there exists a path p̃ such that f ◦ p̃ = p
and p̃(0) = x.

Similarly, a smooth map between Riemannian manifolds f : X → Y is said to sat-
isfy the rectifiable path-lifting property if the above definition holds for the rectifiable
paths p(t).

Suppose that f : X → Y is a local homeomorphism (resp. diffeomorphism)
between topological spaces X and Y (resp. Riemannian manifolds X and Y ).

Lemma 0.1. f satisfies tha path-lifting (resp. rectifiable path-lifting) property if and
only if the following holds: For each continuous (resp. rectifiable) path q : [0, T ] → Y
and each partial lift q̃ : [0, T ) → Y extends continuously to the point t = T .

Proof: The implication ⇒ is clear, we will prove the other implication. We will
use the standard arguments of the covering theory: Let A ⊂ [0, 1] denote the largest
subinterval on which a lift p̃ of the path p (with the initial value x) exists. This subset
is nonempty (since 0 ∈ A). Suppose that A is a half-open interval [0, T ), T ≤ 1. Then,
by our assumption the lift p̃ existens continuously to the point T . Thus A = [0, T ]
is a closed interval, it remains to show that T = 1. Suppose that T < 1. Let U
denote a neighborhood of x := p̃(T ) which maps homeomorphically (by f) onto a
neighborhood V of the point y := p(T ). Then there exists 0 < ǫ < 1 − T such that
p([T, T + ǫ)) ⊂ V and we define the lift p̃ on [T, T + ǫ) by

f−1 ◦ p : [T, T + ǫ) → U.

This contradicts maximality of A.

It is a standard fact of the covering theory that if f is a covering map then f
satisfies the path-lifting property.

Theorem 0.2. Suppose that X and Y are connected, semilocally simply-connected
(e.g. are manifolds or cell-complexes), resp. Riemannian manifolds and f : X → Y is
a local homeomorphism (resp. diffeomorphism) which satisfies the path-lifting (resp.
rectifiable path-lifting) property. Then f is a covering map.
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Proof: Let X̃ denote the universal cover of X and let g : X̃ → Ỹ denote a lift of f .
It suffices to show that g is a homeomorphism (resp. diffeomorphism).

Lemma 0.3. g satisfies the path-lifting (resp. rectifiable path-lifting) property.

Proof: Let q : [0, 1] → Ỹ be a (rectificable) path in Ỹ , p be its projection to X
and x̃ ∈ X̃ be such that g(x̃) = q(0). Let x denote the projection of x̃ to X, then
f(x) = p(0). Thus there exists a lift p̃ : [0, 1] → X of the path p with the initial value
x. Then, since X̃ → X is a covering, the path p lifts to a path q̃ : [0, 1] → X̃ such
that q̃(0) = x̃. it is clear from the construction that q̃ is the required lift of the path
q.

Lemma 0.4. The mapping g is onto.

Proof: Suppose that g is not onto. Then, since Ỹ is connected, there exists a (rec-
tifiable) path p : [0, 1] → Ỹ so that p(0) = g(x̃) ∈ g(X̃) and p(1) /∈ g(X̃). Then the
path p does not admit a lift with the initial value x̃, which is a contradiction.

Thus it suffices to show that g is 1-1. We first consider the easier topological
setting:

Lemma 0.5. In case g satisfies the path-lifting property, the map g is 1-1.

Proof: We imitate the usual arguments of the covering theory. Suppose that x, x′ ∈ X̃
be distinct points such that y = g(x) = g(x′). Let α : [0, 1] → X̃ be a path connecting
x to x′. The composition β := g◦α is a loop in Ỹ . Hence, since Ỹ is simply-connected,
there exists a continuous map

H : [0, 1] × [0, 1] → Ỹ

so that H(1, s) = y = H(t, 0) = H(t, 1) for all s, t ∈ [0, 1] and H(t, 0) = β(t). Our
goal is to show that the homotopy H admits a lift H̃ to X̃, which again satisfies:

x = H̃(t, 0), x′ = H̃(t, 1) for all t ∈ [0, 1] and H(t, 0) = α(t).

This would yield a contradiction since x 6= x′. Let A ⊂ [0, 1]× [0, 1] be a maximal
rectangle on which the lift H̃ exists, this rectangle contains the segment [0, 1] × {0}
(use α as the lift of β). By the same covering theory arguments (as in the proof of
Lemma 0.1), if the maximal rectangle A is closed then it coinsides with [0, 1] × [0, 1]
and we are done. Suppose that A is a half-open rectangle: A = [0, 1] × [0, S).
Let H̃ : A → X̃ denote the required lift of H . Suppose that H does not admit a
continuous extension to a point u := (t, S), for some 0 ≤ t ≤ 1. This means that
there are sequences zi, wi ∈ A convergent to u such that

lim
i

H̃(zi) = a 6= b = lim
i

H̃(wi).

Let γ : [0, 1) → A denote the piecewise-linear path in A which connects z1 to w1, w1

to z2, z2 to w2, etc. Since limi zi = u = limi wi, the path γ extends continuously to
the point 1, γ(1) = u. Thus the composition H ◦ γ : [0, 1] → Ỹ is a continuous path
which has the partial lift

γ̃ := H̃ ◦ γ : [0, 1) → X̃.
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However, since a 6= b, the path γ̃ does not extend continuously to the point 1. This
contradicts the path-lifting property of g.

We now modify the above arguments in the setting of Riemannian manifolds:

Lemma 0.6. In case g satisfies the rectifiable path-lifting property, the map g is 1-1.

Proof: We follow the proof of Lemma 0.5, modifying it when necessary. We will take
α a smooth curve in X̃, then β is smooth as well and hence there exists a smooth
homotopy H . We again argue that the maximal rectangle A is closed. Note that if
the path γ : [0, 1] → [0, 1]× [0, 1] in the proof of Lemma 0.5 was rectifiable, its image
H ◦γ would be rectifiable as well and we would get a contradiction as before. Apriori
however γ has infinite length. Note that instead of the original sequences zi and wi

we can freely choose their subsequences: the limits a and b would be still different.

We therefore choose subsequences (again denoted zi, wi ∈ A) such that

d(zi, u) < 2−i−1, d(wi, u) < 2−i−2, ∀i.

Then
d(zi, wi) + d(wi, zi+1) < 2−i, ∀i,

and hence the curve γ is rectifiable.

This also concludes the proof of Theorem 0.2.
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