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1 Introduction
In his essay [3, pp. 228–230], Gromov gave a proof of Stallings’ theorem on groups with in�nitely many ends
using harmonic functions. The goal of the present paper is to provide the details for Gromov’s arguments.
The main bulk of the paper is devoted to the proof of a compactness theorem for a certain family of harmonic
functions. The corresponding statements are contained in Steps 2 and 4 of Gromov’s argument. The rest of
our proof mostly follows Gromov’s, except for the fact that the construction of a Bass–Serre tree is somewhat
subtle since the level sets for harmonic functions are, in general, disconnected.

Let M be a complete Riemannian manifold of bounded geometry, which has in�nitely many ends. Sup-
pose that there exists a number R such that every point inM belongs to an R-neck, i.e., an R-ball which sep-
arates M into at least three unbounded components. (This property is immediate if M admits a cocompact
isometric group action.)

LetM :=M∪Ends(M) denote the compacti�cation ofM by its space of ends. Given a continuous function
ö : Ends(M) → {0, 1}, let

ℎ = ℎö : M → [0, 1]

denote the continuous extension of ö, so that ℎ|M is harmonic. LetH(M) denote the space of harmonic func-
tions,

H(M) = {ℎ = ℎö, ö : Ends(M) → {0, 1} is nonconstant}.

We give H(M) the topology of uniform convergence on compacts in M. Let E : H(M) → ℝ+ = [0,∞) denote
the energy functional.

De�nition 1.1. Given the manifoldM, de�ne its energy gap e(M) as

e(M) := inf{E(ℎ) : ℎ ∈ H(M)}.

IfM admits an isometric group action G ↷M, then G acts onH(M) preserving the functional E. Therefore E
projects to a lower semi-continuous (see Lemma 4.4) functional E : H(M)/G → ℝ+, where we give H(M)/G
the quotient topology. Our main objective is to prove

Theorem 1.2. (i) e(M) ≥ ì > 0, where ì depends only on R, ë1(M) and the geometry ofM.
(ii) If M admits a cocompact isometric group action, then E : H(M)/G → ℝ+ is proper in the sense that

E−1([0, T]) is compact for every T ∈ ℝ+. In particular, e(M) is attained.
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Sketch of the proof. With every harmonic function ℎ = ℎö ∈ H(M) we associate a �nite set KI ⊂ M of the
centers x of type 1 special R-necksN(x). Roughly speaking, these necks encode the partition of Ends(M) into
the subsets ö−1(0), ö−1(1). For all but one component L ofM\N(x), ö| Ends(L) is constant. We also verify that
the function ö is constant on Ends(M�) for each componentM� of

M \ ⋃
x∈KI int(N(x)).

Every neck N(x) centered at x ∈ KI, “contributes” at least ì > 0 to the energy of ℎ. This establishes the
inequality

e(M) ≥ ì > 0.

If E(ℎ) ≤ E, we also obtain an upper bound on the cardinality ofKI: |KI| ≤ ê1(E).
Suppose that ℎn = ℎön ∈ H(M) is a sequence of functions with E(ℎn) ≤ E. The corresponding sets K(n) =

KI(ön) break into subsets K(n)
i of uniformly bounded diameter, so that the distance between distinct subsets

diverges to in�nity as n → ∞. Using the group G, we normalize the functions ℎn so that K(n)
1 is contained in

a �xed compact subset of M. Then the sequence (ℎn) subconverges to a harmonic function ℎ : M → [0, 1].
Since each neck N(x), x ∈ K(n)

1 , contributes at least ì to the energy of each function ℎn, we conclude that
E(ℎ) ≥ ì > 0. Lastly,weneed to check that ℎ extends to a functionö : Ends(M) → {0, 1} (a priori, this extension
might attain other values in [0, 1] aswell). This follows from the “uniform connectedness” considerations and
uniform estimates for the behavior of the functions ℎn at the points far away fromK(n).

We now sketch our proof of Stallings’ theorem. Let ℎ ∈ H(M) be an energy-minimizing harmonic func-
tion. We then verify that the set {ℎ(x) = 1

2 } is precisely-invariant with respect to the action of G. Choosing t
su�ciently close to 1

2 , we obtain a smooth hypersurface S = {ℎ(x) = t} which is precisely-invariant under G
and separates the ends of M. If this hypersurface were connected, we could use the standard construction
of a dual simplicial tree T whose edges are the “walls”, i.e., the images of S under the elements of G and the
vertices are the components ofM \ G ⋅ S. In the general case, a “wall” can be adjacent to more than two con-
nected component ofM\G ⋅ S. We show however that each wall is adjacent to exactly two “indecomposable”
subsets ofM\G ⋅ S, i.e., a subset which cannot be separated by one wall. These indecomposable sets are the
vertices of T. We then verify that the graph T is actually a tree.

Although it is not needed for the group-theoretic applications, we will also prove

Theorem 1.3 (Finiteness theorem). Suppose that M admits a cocompact isometric group action. Then H(M)
contains only �nitely many G-orbits of functions ℎ ∈ H(M) for which E(ℎ) < e(M) + ì/2.

It was observed by W. Woess that the arguments in this paper generalize directly to harmonic functions on
graphs, once the basic estimates on harmonic functions (see Section 4) are established in this context. In par-
ticular, smoothness of harmonic functions (emphasized by Gromov in [3, pp. 228–230]) becomes irrelevant.
One advantage of this approach is to greatly simplify the discussion of nodal sets and avoid using [1].

We note, lastly, that an alternative, geometric/combinatorial proof of Stallings’ theorem was given by
G. Niblo in [9] using the Sageev complex.

2 Preliminaries
Throughout this paper, we letM be a complete Riemannianmanifold of bounded geometry, i.e., its injectivity
radius is bounded from below by some C1 > 0 and the absolute value of the sectional curvature is bounded
from above by some C2 <∞. We say that a constant C depends only on the geometry ofM if it depends only
on the dimension ofM and the numbers C1 and C2.

Notation 2.1. For a subsetN ⊂M letNc denoteM \ int(N).

Notation 2.2. Given a subsetN ⊂M, letBR(N) denote the collection of points inMwhich arewithin distance
≤ R fromN. Thus, BR(x) is the closed R-ball centered at x.
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Notation 2.3. For subsets S, T ⊂M, de�ne

dist(S, T) := inf{d(x, y) : x ∈ S, y ∈ T}.

We will assume that M has in�nitely many ends. We say that a metric ball N = Br(x) ⊂ M is an r-neck if Nc

has at least three unbounded components.

Assumption 2.4. There exists a number R such that R-necks coverM.

For instance, this assumption holds ifM admits a cocompact isometric group action. We �x R satisfying the
above assumption from now on and will refer to R-necks simply as necks.

Theorem 2.5. Under Assumption 2.4,M is non-amenable, i.e., its Cheeger constant is positive:

ç(M) = inf{
Area(àC)
Vol(C)

: C ⊂M} > 0.

Here the in�mum is taken over all compact subsets C ⊂ M with piecewise-smooth boundary and nonempty
interior.

Proof. See [10].

Let ë1(M) denote the �rst eigenvalue ofM. Then, by Cheeger’s theorem (see [11, p. 91]), we have

ë1(M) ≥ ç2(M)/4.

In particular,
ë1(M) > 0.

Theorem 2.6. LetM be a Riemannian manifold of bounded geometry, so that ë1(M) > 0. Then, every continu-
ous function ö : Ends(M) → [0, 1] admits a continuous extension to a (unique) function

ℎ = ℎö : M → {0, 1}

whose restriction toM is harmonic.

Proof. This theorem was proven by Kaimanovich and Woess in [5, Theorem 5] using probabilistic methods
(they also proved it for functions with values in [0, 1]). At the same time, an analytical proof of this result was
given by Li and Tam [7], see also [6, Chapter 21] for a detailed and more general treatment. In Section 9, we
present a self-contained proof of this theorem provided by Mohan Ramachandran.

Remark 2.7. Note that [7] and [6] use theanalysts notionof an endof aRiemannianmanifold,which is de�ned
as an unbounded connected component of the complement to a bounded set in a Riemannian manifold. A
topologist would call this a neighborhood of an end.

Suppose that ö1, ö2 : Ends(M) → {0, 1} are such that ö1 ≤ ö2. Then, by the maximum principle, ℎö1 ≤ ℎö2 . If
the equality is attained at some point ofM, then ö1 = ö2.

We now restrict to continuous functions ö : Ends(M) → {0, 1}.

Lemma 2.8. Each function ℎ = ℎö has �nite energy

E(ℎ) = ∫
M

|∇ℎ|2.

Proof. The assertion follows immediately from [11, p. 71, Lemma 5.3 (i)].

A subset of Ends(M) is called clopen if it is both open and closed.

De�nition 2.9 (Clusters). A clopen subset of ö−1(i) is called an i-cluster with respect to the function ö. When
i is irrelevant, we refer to an i-cluster as a cluster.
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A domain in M is a connected properly embedded codimension 0 submanifold M� ⊂ M, which has smooth
compact boundary. Then

Ends(M�) ⊂ Ends(M) and M� ⊂M

are continuous embeddings.

De�nition 2.10. A domain M� ⊂ M cobounds an i-cluster (with respect to the function ö) if Ends(M�) is a
cluster.

3 Uniform connectivity
Fix R > 0 and let N ⊂ M be a ä-separated net (ä > 0). In case M admits a cocompact isometric action of a
discrete group G, we assume that N is G-invariant. Pick a subset K ⊂ N of diameter ≤ r and consider its R-
neighborhoodN = BR(K) inM. De�neΦ(K, r) as follows. For each component C ofNc, consider the induced
path-metric on C. Then let Φ(K, r) be the maximum (over all C’s) of the diameters of C ∩ N with respect to
this metric. In other words,Φ(K, r) equals

max
C
sup{x, y ∈ C ∩N : inf

p∈Πxy length(p)},
where Πxy is the set of all paths in C connecting x to y.

We de�ne the uniform connectivity function

õ(r) := sup{Φ(K, r) : K ⊂ N, diam(K) ≤ r}.

Then õ is an increasing function. The following lemma is clear:

Lemma 3.1. Suppose that M admits an isometric cocompact group action preserving N. Then õ(r) is �nite for
each r ∈ ℝ.

In general, õ(r) need not be �nite.

Example 3.2. Let R = 1. Start with the complex plane ℂ with its �at metric. Let Sn denote the double of

ℂ \ (B1(n) ∪ B1(−n))

across its boundary. Smooth out thismetric along the boundary ofB1(n)∪B1(−n) tomake it Riemannian. Then
õ(4) ≥ n for Sn.

Lastly, take the connected sum of the surfaces Sn (n ≥ 3) as follows: Remove from each Sn one copy of the
disk Dn = B1(0) and glue Sn to Sn+1 along the boundaries of Dn, Dn+1. Smooth out the resulting metric. This
in�nite connected sum has in�nite õ(4).

Assumption 3.3. From now on we assume thatM is such that õ(r) is �nite for each r ∈ ℝ.

One can easily see that �niteness of õ is independent of the choice of the net N, number R and is invariant
under quasi-isometries. (We do not need these properties.)

Let K(n) = {xn,1, . . . , xk,n} denote a sequence of subsets of cardinality ≤ k inM. Since [0,∞]k
2
is compact,

after passing to a subsequence, we can assume that for each i, j, there is a limit

lim
n

d(xn,i, xn,j) ∈ [0,∞].

Thus, we obtain the following result.
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Lemma 3.4. After passing to a subsequence in the sequence (K(n)), we can break K(n) as the disjoint union of
nonempty subsets

K(n) =
l

⋃
i=1

K(n)
i

so that
(i) diam(K(n)

i ) ≤ D <∞ for all i = 1, . . . , l, n ∈ ℕ.
(ii) limn→∞ dist(K

(n)
i , K(n)

j ) =∞ for i ̸= j.

When n is su�ciently large, we obtain that for all i ̸= j,

dist(BR(K
(n)
i ), BR(K

(n)
j )) > d := max

m
õ(diam(K(n)

m )). (1)

We now take one of the setsK = K(n) and its partition

K(n) =
l

⋃
i=1

K(n)
i

as in the above lemma. By abuse of notation, we will abbreviateK(n)
i asKi, i = 1, . . . , l.

Consider the covering of M by the sets BR(K1), . . . , BR(Kl) and by the connected components C1, . . . , Cm

of BR(K)c. Then the nerve of this covering is a �nite graph Γwithout loop and bigons.Wewill use the notation
Ki, Cj for the vertices of this graph corresponding to the setsKi, Cj.

We will say that Γ is dual toK.

Lemma 3.5. The graph Γ is a tree provided that (1) holds. In other words, whenever x, y ∈ M are disconnected
by int(BR(K)), there exists i so that x, y are disconnected by int(BR(Ki)).

Proof. Suppose that Γ is not a tree. Then it contains a shortest cycle which we denote by

K1 − C1 − K2 − ⋅ ⋅ ⋅ − Cs − K1.

Let x ∈ C1∩BR(K1),y ∈ Cs∩BR(K1). Then x andy belong to the same connected component ofM\int(BR(K1)).
Therefore, by inequality (1), there exists a path p inM\ int(BR(K1)) disjoint from BR(K \K1) connecting x and
y; see Figure 1. Therefore this path has to be contained in bothC1 andCs. Hence,C1 = Cs, a contradiction.

4 Estimates on harmonic functions onM
Gradient estimate. See [11, p. 17]. There exists a constant C = Cgrad which depends only on the geometry of
M, so that for every positive harmonic function u : M → ℝ we have

|∇u(x)| ≤ Cu(x) for all x ∈M.

Decay estimates for harmonic functions.

Proposition 4.1. There exists a function ñ(å, D, k), å > 0, D > 0, which depends only on the geometry of M, so
that the following holds: Let M� ⊂ M be a domain whose boundary àM is the union of at most k subsets àiM�,
each of diameter ≤ D. Set r := ñ(å, D, k). Let ℎ : M → (0, 1) be a harmonic function which vanishes on Ends(M�).
Then, ℎ(x) ≤ å for every x ∈ T :=M� \ Br(àM

�).

Given the fact that ë1(M) > 0, the proof follows by repeating the arguments of [11, Chapter II, Lemma 5.3 (iii)].
(This lemma establishes uniform exponential decay for harmonic functions which converge to zero at in�n-
ity.) See also [8, Lemmata 1.1, 1.2].

Remark 4.2. The arguments in the proofs of the gradient estimate for harmonic functions and [11, Chapter
II, Lemma 5.3] generalize directly to harmonic functions on graphs.
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Figure 1. Path p.

Corollary 4.3. Suppose thatM0,M1 ⊂M are noncompact disjoint domains, so that, for i = 0, 1, diam(àMi) ≤ D
and ö| Ends(Mi) ≡ i. Let ã denote a shortest geodesic segment connecting àM0 to àM1 and let length(ã) ≤ l.
Then

E(ℎ|B1(ã ∪M0 ∪M1)) ≥ ì(l, D),

where the function ì(l, D) > 0 depends only on the geometry ofM.

Proof. Take å = 1/10. Applying Proposition 4.1 to the functions ℎ|M0 and (1 − ℎ)|M1, we �nd points xi ∈ Mi

such that d(xi, àMi) = ñ = ñ(å, D, 1) and

ℎ(x0) ≤ å, ℎ(x1) ≥ 1 − å.

It follows that d(x0, x1) ≤ 2ñ + l and
|ℎ(x0) − ℎ(x1)| ≥ 1 − 2å.

Let yi ∈ àM�
i denote the end-points of ã. Connect yi to xi by the shortest geodesic segments ái, i = 0, 1. Let

â := á0 ∪ ã ∪ á1. Then the length of â is at most 2ñ + l.
By the mean value theorem, there exists a point y ∈ â so that

|∇ℎ(y)| ≥
1 − 2å
2ñ + l

.

Therefore
E(ℎ|B1(y)) ≥ ì(l, D) = Const

0.64
(2ñ + l)2

,

where Const depends only on the geometry ofM.

Lemma 4.4. The energy function E : H(M) → ℝ+ is lower semi-continuous.

Proof. Let ℎ = ℎö ∈ H(M) be the limit

ℎ = lim
n→∞

ℎn, ℎn ∈ H(M).

Let å > 0. Pick a su�ciently large ball Br(o) ⊂ M, so that each unbounded component Mi (i = 1, . . . , q) of
Br(o)

c cobounds a cluster with respect to ö. Then, since E(ℎ) is �nite (Lemma 2.8), there exists ñ ≥ r, so that,
for each i,

E(ℎ|Mi \ Bñ(o)) ≤ å.
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LetC denote the compact inMwhich is the union of Bñ(o) and the compact components of Br(o)
c. As uni-

form convergence ℎn|C implies uniform convergence of these functions inC1-norm (by the gradient estimate),
we obtain

E(ℎ|C) = lim
n→∞

E(ℎn|C).

Therefore,
E(ℎ) ≤ E(ℎ|C) + qå ≤ lim inf

n→∞
E(ℎn).

Since q is constant and å is arbitrarily small, we obtain

E(ℎ) ≤ lim inf
n→∞

E(ℎn).

5 Geometry of necks
Let R be as in Section 2. Pick N ⊂ M, a ä-separated R-net in M. If M admits an isometric cocompact action
G ↷ M, we assume that this net is G-invariant. For x ∈ N we let N(x) := BR(x) denote the corresponding
neck.

De�nition 5.1. Given a nonconstant function ö : Ends(M) → {0, 1}, we say that a neck N = N(x) is a regular
è-neck (è ∈ {0, 1}) if all but one components M� of Nc satisfy ö| Ends(M�) ≡ è; see Figure 2. A neck which is
not regular, is called special.

De�nition 5.2. There are two types of special necks (see Figure 3):
Type 1. There exists at most one (unbounded) componentM� ofNc which does not cobound a cluster and

there are at least two (unbounded) componentsM0,M1 ofNc so that ö| Ends(Mi) ≡ i, i = 0, 1.
Type 2. There are at least who componentsM1,M2 ofM \ int(N) which do not cobound clusters.

Let K ⊂ N denote the set of centers of special necks and let KI and KII denote the subsets of K consisting of
the centers of type 1 and 2 necks, respectively.

Remark 5.3. Suppose that there exists a special neck N(x) of type 1, so that each component of N(x)c

cobounds a cluster. Then every neckN(y) disjoint fromN(x) is regular.

Lemma 5.4. Suppose that Ni = N(xi) are regular èi-necks, i = 1, 2, which have nonempty intersection. Then
è1 = è2.

Proof. Wewill consider themost interesting case, when bothNc
i contain exactly one complementary compo-

nentM�
i which does not cobound a cluster. Then

M�
2 ∪ (N2 \ N1) ⊂M

�
1.

Suppose that è1 ̸= è2. Let M2 ⊂ N
c
2 be an (unbounded) component. If M2 is not contained in M�

1, then it is
contained in a component C of Nc

2 so that ö| Ends(C) ≡ è2. Therefore ö| Ends(C) ≡ è2 which contradicts our
assumption that è1 ̸= è2.

Hence, we haveM2 ⊂ M
�
1. Similarly, every componentM1 ⊂ N

c
1 is contained inM�

2. But this implies that
all unbounded components of Nc

1 are contained in M�
1. Therefore Nc

1 has only one unbounded component,
i.e.,M�

1, a contradiction.
We leave the remaining cases to the reader.

Lemma 5.5. Suppose that xi is su�ciently close (in the topology of M) to a point î ∈ ö−1(è) ⊂ Ends(M). Then
the neckN(xi) is a regular è-neck.

Proof. Pick a base-point o ∈ M. Let U ⊂ M = M ∪ Ends(M) be an open neighborhood of î so that ö|U ≡ è.
Then (by the de�nition of the topology on M) there exists r0 such that for all r ≥ r0, if C is a component of
M \ Br(o) which intersects U, then Ends(C) ⊂ U.
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Figure 2. Regular neck.
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Figure 3. Type 1 special neck (left) and type 2 special neck (right).

Hence, there exists a neighborhood V ⊂ U ⊂ M of î, so that for each x ∈ V ∩M, one of the unbounded
complementary components C of BR(x) will contain Br0 (o) and the other unbounded components C� will be
such that Ends(C�) ⊂ U. Therefore, ö| Ends(C�) ≡ è. It follows that BR(x) is a regular è-neck.

Corollary 5.6. If ö is nonconstant, then there exists at least one special neck inM.

Proof. Sinceö is nonconstant, the above lemma implies thatM contains at least one regular i-neck for i = 0, 1.
Now the assertion follows from Lemma 5.4 and connectedness ofM.

Corollary 5.7. The subsetK ⊂ N of centers of special necksN(x) is �nite.

Proof. The statement follows from compactness ofM combined with Lemma 5.5.

Lemma 5.8. LetN = N(x) be a type 2 special neck. Then for every componentM� ofNc which does not bound
a cluster,M� ∪N contains a type 1 special neckN(y).

Proof. LetK�
II denote the subset ofKII consisting of points y ∈ N such thatN(y) ⊂M� ∪N. Let k(M�) denote

the cardinality ofK�
II. We prove the lemma using induction on k(M�).

Suppose k(M�) = 1, i.e.,K�
2 consists only of v. IfM� ∪N contains no special necks besidesN(x), thenM�

cobounds a cluster. This is a contradiction. Thus,M� ∪N contains a type 2 special neck.
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Suppose the assertion holds whenever k(M�) ≤ k. Consider M� with k(M�) = k + 1. Let z ∈ K�
2; then

the neck N(z) is special of type 2. At least one of the unbounded components M�� of N(z)c (which does not
cobound a cluster in M) is contained in M� and is disjoint from N(x). Then k(M��) ≤ k. Therefore, by the
induction assumption,M�� ∪N(z) ⊂M� ∪N(x) contains a type 1 special neckN(y).

Lemma 5.9. Every unbounded component of BR(KI)
c cobounds a cluster.

Proof. Suppose the assertion of the lemma is false. Then there exists a componentM� ⊂ BR(KI)
c which con-

tains a type 2 special neck N(x), whose non-cluster complementary component M�� is entirely contained in
M�. Therefore, according to Lemma 5.8, M�� contains a type 1 special neck N(y). However y ∉ KI, a contra-
diction.

6 Compactness theorem
The goal of this section is to prove Theorem 1.2. Let ö : Ends(M) → {0, 1} be a nonconstant continuous
function. Let K = K(ö) ⊂ N be as in the previous section. De�ne ì = ìM := ì(2R, R) > 0, where ì(⋅, ⋅) is the
function de�ned in Corollary 4.3.

Lemma 6.1. For x ∈ KI, letMi(x) denote the components ofN(x)c which cobound i-clusters, i = 0, 1. Then

E(ℎ|M0(x) ∪M1(x) ∪N(x)) ≥ ì.

Proof. The assertion immediately follows from Corollary 4.3.

Corollary 6.2. IfM� is a component ofN(x)c which does not cobound a cluster, then

E(ℎö|M
� ∪N(x)) ≥ ì.

Proof. Since M� does not cobound a cluster, there exists a special neck N(y) contained in M�� := M� ∪N. If
this special neck is of type 1, we are done by Lemma 6.1. IfN(y) is of type 2, then, by Lemma 5.8,M�� contains
a special neck of type 1. Hence, we are again done by Lemma 6.1.

Corollary 6.3. For every ℎ ∈ H(M), we have E(ℎ) ≥ ì. Thus, e(M) ≥ ì > 0.

Lemma 6.4. There exists a function ê1(E) (which depends only on the geometry of M) such that if E(ℎö) ≤ E,
then the cardinality ofKI is at most ê1(E).

Proof. For x ∈ KI letMi(x) denote the components ofN(x)c which cobound i-clusters, i = 0, 1. It is clear that
ifN(x) ∩N(y) = 0, then the four sets

Mi(x), Mi(y), i = 0, 1

are pairwise disjoint. It follows from Lemma 6.1, that

E(ℎ|M0(x) ∪M1(x) ∪N(x)) ≥ ì = ì(2R, R)

for every x ∈ KI. Thus, the cardinality ofKI is at most E/ì.

One can also bound the number of type 2 necks as well, provided that E(ℎö) is su�ciently small:

Proposition 6.5. Suppose that E(ℎ) < E = e(M) + ì/2. There exists a function ê2(E) such that the cardinality of
KII is at most ê2(E).

We do not need this fact and leave it without a proof. The proposition follows from the proof of the �niteness
theorem, see Section 7. Observe, however, that if E(ℎ) is large compared to e(M), then one cannot have a
uniform upper bound on the cardinality ofKII.

We are now ready to prove properness of the function E : H(M)/G → ℝ+, assuming that G is a discrete
subgroup of Isom(M) which acts cocompactly onM.
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M�
2
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(n)
1 )
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(n)
2 )

BR(K
(n)
3 )

Mn,2

Mn,1

Figure 4. ComponentsMn,i, i = 1, 2.

Suppose that ℎn = ℎön ∈ H(M) is a sequence of harmonic functions with uniformly bounded energy
E(ℎn) ≤ E <∞. For each n we de�ne the set

K(n) = KI(ön) ⊂ N

of centers of special necks of type 1. By Lemma 6.4, the cardinality of eachK(n) is at most k ≤ ê1(E). We break
eachK(n) as the union

K(n) =
l

⨆
i=1

K(n)
i

as in Lemma 3.4, so that
diam(K(n)

i ) ≤ D for all n and i

and
lim
n
dist(K(n)

i , K(n)
j ) =∞ for i ̸= j.

Let Γ = Γn denote the dual graph for the above partition ofK(n). Since the number of vertices and edges of Γ is
uniformly bounded, after passing to a subsequence we can assume that Γ does not depend on n.

Applying elements of G and passing to a subsequence, we can assume that a certain point x1n ∈ K
(n)
1 is a

point o ∈ Nwhich does not depend on n. Therefore, without loss of generality, we may assume thatK(n)
1 does

not depend on n either.
Let Mn,1, . . . ,Mn,s denote the unbounded components of BR(K

(n))c which are adjacent to BR(K
(n)
1 ). Let

M�
1, . . . ,M

�
t be the unbounded components of BR(K

(n)
1 )c which are adjacent to BR(K

(n)
1 ). Because Γ is a tree,

it follows that s = t and that distinct components Mn,i lie in distinct components M�
i for every su�ciently

large n, and all i = 1, . . . , t; see Figure 4.
Recall that eachMn,i cobounds a cluster in Ends(M) (with respect to ön). Let èi denote the constant value

of ön on Ends(Mn,i). (After passing to a subsequence, we may assume that these constants are independent
of n.) Note that, sinceK(n)

1 is the set of centers of type 1 special necks, there are i, j so that èi ̸= èj.
Since the functions ℎn take values in (0, 1), by the gradient estimate, the family (ℎn) is equicontinuous.

Therefore, there exists a limit ℎ := limn ℎn, which is again a harmonic function.

Lemma 6.6. For each i = 1, . . . , s,
lim

d(x,o)→∞
ℎ(x) = èi,

where x ∈M�
i .
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Proof. Let å > 0. Pick x ∈M�
i \ Bñ(å,D,k)(àM

�
i ). Then, for su�ciently large n ≥ n0,

x ∈ BR(K
(n))c.

Therefore, by Proposition 4.1, for n ≥ n0,
|ℎn(x) − èi| ≤ å.

Hence, the function ℎ extends to a continuous function ö : Ends(M) → {0, 1}:

ö| Ends(M�
i ) ≡ èi.

Since èi ̸= èj for some i, j, we obtain that ℎ ∈ H(M). Since E is lower semicontinuous, the energy functional
E : H(M)/G → ℝ+ is proper. It is now clear that E attains the minimum e(M) > 0. This concludes the proof of
Theorem 1.2.

7 Finiteness theorem
In this sectionwe prove the �niteness theorem (Theorem 1.3). Suppose that there are in�nitelymanyG-cosets
of functions ℎn ∈ H(M)with E(ℎ) < e(M)+ ì/2. Then, after passing to a subsequence, and using the notation
of the previous section, diam(K(n)) →∞ and ℎ = limn ℎn. As before, we normalize the functions ℎn using the
group G and pass to a subsequence, so that

K(n) =
l

⋃
i=1

K(n)
i ,

where K(n)
1 is independent of n. Let ℎ = limn ℎn. Pick å > 0, so that å < ì/4. As in the proof of Theorem 1.2, we

get a su�ciently large compact subset C ⊂M so that for all n ≥ n0 we have

E(ℎ|M \ C) ≤ å, E(ℎn|M \ C) ≤ å, |E(ℎ|C) − E(ℎn|C)| ≤ å.

On the other hand, (for large n) M \ C contains at least one type 1 special neck N := N(xn), xn ∈ K
(n) \ K(n)

1 .
LetMi(xn), i = 0, 1 denote the components ofNc which cobound i-clusters with respect to ön. Then

Un := N ∪M0(xn) ∪M1(xn)

is disjoint from the compact C. According to Lemma 6.1,

E(ℎn|Un) ≥ ì.

Putting these inequalities together, we obtain

E(ℎ) ≤ E(ℎ|C) + å ≤ E(ℎn) + 2å − ì < e(M),

since E(ℎn) < e(M) + ì/2. However, ℎ ∈ H(M) and e(M) = min{E(ℎ), ℎ ∈ H(M)}, a contradiction.

8 Proof of Stallings’ theorem
The goal of this section is to present the rest of Gromov’s proof of Stallings’ theorem on groups with in�nitely
many ends. The following was proven by Stallings [12] for torsion-free groups, his proof was extended by
Bergman [2] to groups with torsion:

Theorem 8.1 (Stallings, Bergman). Let G be a �nitely-generated group with in�nitely many ends. Then G splits
nontrivially as a graph of groups with �nite edge groups.
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Proof. Our argument is a slightly expanded version of Gromov’s proof in [3, pp. 228–230]. Since G is �nitely-
generated, it admits a cocompact isometric properly discontinuous action G ↷M on a connected Riemann-
ian manifoldM. For instance, if G is k-generated, and F is a Riemann surface of genus k, we have an epimor-
phism

õ : ð1(F) → G.

ThenG acts isometrically and cocompactly on the covering spaceM of F so that ð1(M) = ker(õ). Thus,M has
in�nitelymany ends. ThemanifoldMhas bounded geometry since it covers a compact Riemannianmanifold.

Let H(M) denote the space of harmonic functions ℎ : M → (0, 1) as in the Introduction. According to
Theorem 1.2, there exists a function ℎ ∈ H(M) with minimal energy E(ℎ) = e(M) > 0. Then, for every g ∈ G,
the function g∗ℎ := ℎ ∘ g has the same energy as ℎ and equals ℎg∗(ö). For g ∈ G, de�ne

g+(ℎ) := max(ℎ, g
∗(ℎ)), g−(ℎ) := min(ℎ, g

∗(ℎ)).

Set
Λ = Λ g := {x : ℎ(x) = g∗ℎ(x)} = {x : ℎ(x) = ℎ(g(x))} ⊂M.

Lemma 8.2. E(g+(ℎ)) + E(g−(ℎ)) = 2E(ℎ).

Proof. Without loss of generality, we may assume that ℎ ̸= g∗(ℎ). Then the set Λ has measure zero (see, e.g.,
[4] or [1]). Set

M− := {x ∈M : ℎ(x) > g∗ℎ(x)}, M+ := {x ∈M : ℎ(x) < g∗ℎ(x)}.

We obtain

E(g+(ℎ)) + E(g−(ℎ)) = ∫
M− |∇ℎ(x)|

2 + ∫
M+ |∇g

∗ℎ(x)|2 + ∫
M− |∇g

∗ℎ(x)|2 + ∫
M+ |∇ℎ(x)|

2

= E(ℎ) + E(g∗(ℎ)) = 2E(ℎ).

Note that the functions g+(ℎ), g−(ℎ) have continuous extension toM (since ℎ does and G acts onM by home-
omorphisms). By construction, the restrictions

ö+ := g+(ℎ)| Ends(M), ö− := g−(ℎ)| Ends(M)

take the values 0 and 1 on Ends(M). Let
ℎ± := ℎö±

denote the corresponding harmonic functions onM. Then

E(ℎ±) ≤ E(g±(ℎ)), E(ℎ+) + E(ℎ−) ≤ 2E(ℎ) = 2e(M).

Note that it is, a priori, possible that ö− or ö+ is constant. Set

Gc := {g ∈ G : ö− or ö+ is constant}.

We �rst analyze the set G \ Gc. For g ∉ Gc, both ℎ− and ℎ+ belong toH(M) and, hence,

E(ℎ+) = E(ℎ−) = E(ℎ) = e(M).

Therefore,
E(g+(ℎ)) = E(ℎ+), E(g−(ℎ)) = E(ℎ−).

It follows that g±(ℎ) are both harmonic. Since

g−(ℎ) ≤ g+(ℎ),

the maximum principle implies that either g−(ℎ) = g+(ℎ) or g−(ℎ) < g+(ℎ). Hence, the set Λ g is either empty
or equals the entireM, in which case g∗(ℎ) = ℎ. Therefore, for every g ∈ G \ Gc one of the following holds:
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(i) g∗ℎ = ℎ.
(ii) g∗ℎ(x) < ℎ(x) for all x ∈M.
(iii) g∗ℎ(x) > ℎ(x) for all x ∈M.

Thus, the set
L := ℎ−1(

1
2
)

is precisely-invariant under the elements of G \ Gc: for every g ∈ G \ Gc, either g(L) = L or g(L) ∩ L = 0.
We now consider the elements of Gc. Suppose that g is such that ö− = 0. Then

g∗(ö) ≤ 1 − ö

and, hence,
g∗(ℎ) ≤ 1 − ℎ.

Since these functions are harmonic, in the case of the equality at some x ∈M, by the maximum principle we
obtain g∗(ℎ) = 1 − ℎ. The latter implies that g(L) = L.

If
g∗(ℎ) < 1 − ℎ

then g(L) ∩ L = 0. The same argument applies in the case when ö+ is constant.
To summarize, for every g ∈ G one of the following holds:

g∗ℎ = ℎ, g∗ℎ < ℎ, g∗ℎ > ℎ, g∗ℎ = 1 − ℎ, g∗ℎ < 1 − ℎ, g∗ℎ > 1 − ℎ. (2)

We conclude that L is precisely-invariant under the action of the entire group G. Moreover, if g(L) = L
then either g∗ℎ = ℎ or g∗ℎ = 1 − ℎ. Since L is compact, its stabilizer GL in G is �nite.

By construction, the hypersurface L separatesM into at least two unbounded components.
Since L is compact, there exists t ∈ (0, 1) \ 1

2 su�ciently close to 1
2 , which is a regular value of ℎ, so that

the hypersurface S := ℎ−1(t) is still precisely-invariant under G. Let GS ⊂ GL denote the stabilizer of S in G.
It is now rather standard that G splits nontrivially over a subgroup of GS. We present a proof for the sake

of completeness. (The proof is straightforward under the assumption that S is connected, but requires extra
work in general.) We proceed by constructing a simplicial G-tree T on which T acts without inversions, with
�nite edge-stabilizers and without a global �xed vertex.

Construction of T. Consider the family of functions F = {f = g∗ℎ : g ∈ G}. Each function f ∈ F de�nes
the wallWf = {x : f(x) = t} and the half-spaces

W+f := {x : f(x) > t}, W−f := {x : f(x) < t}

(these walls and half-spaces are not necessarily connected).
Let E denote the set of walls. We say that a wallW separates x, y ∈M if

x ∈ W+f , y ∈ W−f .

Indecomposable subsets ofMo are maximal subsets V of

Mo :=M \ ⋃
f∈F

Wf

consisting of points which cannot be separated from each other by a wall. Note that such sets need not be
connected. Let V denote the set of indecomposable subsets ofMo. We say that a wallW is adjacent to V ∈ V
ifW ∩ cl(V) ̸= 0.

The next lemma follows immediately from inequalities (2), provided that t is su�ciently close to 1
2 :

Lemma 8.3. No wallWf1 separates points of another wallWf2 .
Lemma 8.4. (i) Let V ∈ V andW ∈ E be adjacent to V. Then, for each component C of V, we have C ∩W ̸= 0.
(ii) W ∈ E is adjacent to V ∈ V if and only ifW ⊂ cl(V).
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Proof. (i) Suppose that V ⊂ W+. A generic point x ∈ C is connected to W = Wf by a gradient curve p :
[0, 1] →M of the function f. The curve p crosses each wall at most once. Since V is indecomposable and for
su�ciently small å > 0, p(1 − å) ∈ V, it follows that p does not cross any walls. Therefore the image of p is
contained in the closure of C and p(1) ∈ W ∩ cl(C)

(ii) Lemma 8.3 implies that for x, y ∈ W+ (resp. x, y ∈ W−) which are su�ciently close to W, there is
no wall which separates x from y. Therefore, such points x, y belong to the same indecomposable set V+

(resp.V−) which is adjacent toW andW ⊂ cl(V±). Clearly,V+, V− are the only indecomposable sets which are
adjacent toW.

Hence, each wallW is adjacent to exactly two elements of V (contained inW+,W− respectively). We obtain a
graph Twith the vertex set V and edge set E, where a vertex V is incident to an edgeW if and only if the wall
W is adjacent to the indecomposable set V.

From now on, we abbreviateWfi toWi.

Lemma 8.5. T is a tree.

Proof. By construction, every point ofMbelongs to awall or to an indecomposable set. Hence, connectedness
of T follows from connectedness ofM.

Let
W1 − V1 −W2 − ⋅ ⋅ ⋅ −Wk − Vk −W1

be an embedded cycle in T. This cycle corresponds to a collection of paths pj : [0, 1] → cl(Vj), so that

pj(0) ∈ Wj, pj(1) ∈ Wj+1, j = 1, . . . , k.

The points of pj([0, 1]) are not separated by any wall, j = 1, . . . , k. By Lemma 8.3, the points pj(1), pj+1(0) are
not separated by any wall either. Therefore, the points of

k

⋃
j=1

pj([0, 1])

are not separated byW1. However,

p1((0, 1]) ⊂W
+
1 and pk([0, 1)) ⊂ W

−
1

or vice-versa, a contradiction.

We next note that G acts naturally on T since the sets F, E and V are G-invariant and G preserves adjacency.
If g(Wf) = Wf, then g∗f = f, which implies that g preserves W+f ,W

−
f . Hence, g �xes the end-points of the

edge corresponding to W, which means that G acts on T without inversions. The stabilizer of an edge in T
corresponding to a wallW is �nite, sinceW is compact and G acts onM properly discontinuously.

Suppose thatG ↷ Thas a �xed vertex. Thismeans that the corresponding indecomposable subsetV ⊂M
isG-invariant. SinceGacts cocompactly onM, it follows thatM = Br(V) for some r ∈ ℝ+. The indecomposable
subset V is contained in the half-space W+ for some wall W. Since W is compact and W− is not, the subset
W− is not contained in Br(W). ThusW− \ Br(V) ̸= 0, a contradiction.

Therefore T is a nontrivial G-tree and we obtain a nontrivial graph of groups decomposition of G where
the edge groups are conjugate to subgroups of the �nite group GS.
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9 An existence theorem for harmonic functions
Theorem 9.1. Let ö : Ends(M) → {0, 1} be a continuous function. Then ö admits a harmonic extension toM.

Proof. The following proof is due to Mohan Ramachandran.
Let ÿ denote a smooth extension of ö toM so that dÿ is compactly supported.
We letW1,2

o (M) denote the closure of C∞
c (M) with respect to the norm

‖u‖ := ‖u‖L2 + √E(u).

Consider the a�ne subspace of functions

F := ÿ +W1,2
o (M) ⊂ L2

loc(M).

Then the energy is well-de�ned on F and we set E := inff∈F E(f).
Note that, since F is a�ne, for u, v ∈ F we also have

u + v
2
∈ F,

in particular,
E(

u + v
2

) ≥ E,

and we set
E(u, v) := 2E(

u + v
2

) −
E(u) + E(v)

2
.

The latter equals
E(u, v) = ∫

M

⟨∇u, ∇v⟩

in the case when u, v are smooth. We thus obtain

E(u, v) ≥ 2E −
E(u) + E(v)

2

for all u, v ∈ F. Hence,
E(u − v) = E(u) + E(v) − 2E(u, v) ≤ 2E(u) + 2E(v) − 4E. (3)

Pick a sequence un ∈ F such that
lim
n→∞

E(un) = E.

Then, according to (3),

E(um − um) ≤ 2E(un) + 2E(um) − 4E = 2(E(un) − E) + 2(E(um) − E).

Since ë := ë1(M) > 0, we obtain
ë∫
M

f2 ≤ E(f) (4)

for all f ∈ W1,2
o (M). Therefore, the functions vn := un − ÿ ∈ W

1,2
o (M) satisfy

‖vn − vm‖ ≤ (2 + ë
−1)(E(un) − E + E(um) − E).

Hence, the sequence (vn) is Cauchy inW1,2
o (M). Set

v := lim
n

vn, u := ÿ + v ∈ F.

By semicontinuity of the energy,wehaveE(u) = E. Therefore, u is harmonic and, hence, smooth. Sincedÿ
is compactly supported, the function v is also harmonic away froma compact subsetK ⊂M. By inequality (4),
we have

∫
M

v2 ≤ ë−1E(v) <∞. (5)
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Let r > 0 denote the injectivity radius of M. Pick a base-point o ∈ M. Then (5) implies that there exists a
function ñ : M → ℝ+ which converges to 0 as d(x, o) →∞, so that

∫
Br(x)

v2(x) ≤ ñ(x)

for all x ∈M. By the gradient estimate, there exists C1 <∞ so that

sup
Br(x) v2 ≤ C1 infBr(x) v2

provided that d(x, K) ≥ r. Therefore,

v2(x) ≤
C1

Vol(Br(x))
∫

Br(x)
v2 ≤ C2ñ(x).

Thus
lim

d(x,0)→∞
v(x) = 0.

Therefore the harmonic function u extends to the function ö on Ends(M).
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