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FUNDAMENTAL GROUPS OF LINKS

OF ISOLATED SINGULARITIES

MICHAEL KAPOVICH AND JÁNOS KOLLÁR

Starting with Grothendieck’s proof of the local version of the Lefschetz hyper-
plane theorems [Gro68], it has been understood that there are strong parallels
between the topology of smooth projective varieties and the topology of links of
isolated singularities. This relationship was formulated as one of the guiding prin-
ciples in the monograph [GM88, p. 26]: “Philosophically, any statement about
the projective variety or its embedding really comes from a statement about the
singularity at the point of the cone. Theorems about projective varieties should
be consequences of more general theorems about singularities which are no longer
required to be conical.”

The aim of this note is to prove the following, which we consider to be a strong
exception to this principle.

Theorem 1. For every finitely presented group G there is an isolated, 3-dimensi-
onal, complex singularity

(
0 ∈ XG

)
with link LG such that π1

(
LG

) ∼= G.

By contrast, the fundamental groups of smooth projective varieties are rather
special; see [ABC+96] for a survey. Even the fundamental groups of smooth quasi-
projective varieties are quite restricted [Mor78,KM98a,CS08,DPS09]. This shows
that germs of singularities can also be quite different from quasi-projective varieties.

We think of a complex singularity (0 ∈ X) as a contractible Stein space sitting
in some CN . Then its link is link(X) := X ∩ S2N−1

ε , an intersection of X with a
small (2N − 1)-sphere centered at 0 ∈ X. Thus link(X) is a deformation retract of
X\{0}.

There are at least three natural ways to attach a fundamental group to an
isolated singularity (0 ∈ X). Let p : Y → X be a resolution of the singularity
with simple normal crossing exceptional divisor E ⊂ Y . (That is, the irreducible
components of E are smooth and they intersect transversally.) We may assume
that Y \E ∼= X\{0}. The following 3 groups are all independent of the resolution:

• π1

(
link(X)

)
= π1

(
X\{0}

)
= π1

(
Y \E

)
.

• π1(Y ) = π1(E); we denote it by π1

(
R(X)

)
to emphasize its independence

of Y . These groups were first studied in [Kol93,Tak03].
• π1

(
D(E)

)
where D(E) denotes the dual simplicial complex of E. (That

is, the vertices of D(E) are the irreducible components {Ei : i ∈ I} of E
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and for J ⊂ I we attach a |J |-simplex for every irreducible component of
∩i∈JEi; see Definition 41 for details.) We denote this group by π1

(
DR(X)

)
;

it is actually the main object of our interest.

There are natural surjections between these groups:

π1

(
link(X)

)
= π1

(
Y \E

)
� π1(Y ) = π1

(
E

)
� π1

(
D(E)

)
.

Usually neither of these maps is an isomorphism. The kernel of π1

(
Y \E

)
� π1(Y )

is generated by loops around the irreducible components of E, but the relations
between these loops are not well understood; see [Mum61] for some computations
in the 2-dimensional case.

The kernel of π1(E) � π1

(
D(E)

)
is generated by the images of π1(Ei) → π1(E).

In all our examples the Ei are simply connected; thus π1(E) = π1

(
D(E)

)
. We do

not investigate the difference between these two groups in general.
Our proof of Theorem 1 proceeds in two distinct steps.
Simpson showed in [Sim11, Theorem 12.1] that every finitely presented group G

is the fundamental group of an irreducible, singular, projective variety. He posed
the question if this irreducible variety can be chosen to have normal crossing sin-
gularities only. Our first result shows that a closely related result is true.

Theorem 2. For every finitely presented group G there is a reducible, complex, pro-
jective surface SG with simple normal crossing singularities only such that π1(SG) ∼=
G.

Then we take a cone over SG to get an affine variety C(SG) such that, essentially,
π1

(
R

(
C(SG)

)) ∼= G. (These cones have very non-isolated singularities and there-

fore it is not clear that π1

(
R

(
C(SG)

))
really makes sense for them.) Then we use

the method of [Kol11] to construct a normal singularity (x ∈ XG) whose tangent
cone at x is C(SG). (XG has an isolated singularity only in low dimensions; we get
codimension 5 singularities in general.) In low dimensions we can also assure that
π1

(
R

(
XG

)) ∼= G. For some choices of SG one can control the other two groups as
well, completing the proof of Theorem 1.

It is interesting to study the relationship between the algebro-geometric proper-
ties of a singularity (0 ∈ X) and the fundamental group of link(X). We prove the
following results for rational singularities in Section 7:

• Let (0 ∈ X) be a rational singularity (40). Then π1

(
DR(X)

)
is Q-super-

perfect; that is, Hi

(
π1

(
DR(X)

)
,Q

)
= 0 for i = 1, 2.

• Conversely, for every finitely presented, Q-superperfect group G there is
a 6-dimensional rational singularity (0 ∈ X) such that π1

(
DR(X)

)
=

π1

(
R(X)

)
= π1

(
link(X)

) ∼= G.

• Not every finite group G occurs as π1

(
DR(X)

)
for a 3-dimensional rational

singularity. (We do not know what happens in dimensions 4 and 5.)

3 (Open problems). Theorem 1 and its proof raise many questions; here are just a
few of them.

(3.1) Our examples show that links of isolated singularities are more complicated
than smooth projective varieties. It would be interesting to explore the difference
in greater detail.
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(3.2) Several steps of the proof use general position arguments and it is probably
impractical to follow it to get concrete examples. It would be nice to work out sim-
pler versions in some key examples, for instance for Higman’s group (as in Example
44) and to understand the geometry of the resulting singularities completely.

(3.3) We have been focusing only on the fundamental group of the dual simplicial
complex π1

(
DR(X)

)
associated to an isolated singularity (0 ∈ X). In a subsequent

paper we show that for every finite simplicial complex C there is a normal singularity
(0 ∈ X) such that DR(0 ∈ X) is homotopy equivalent to C.

(3.4) Given an n-dimensional manifold (possibly with boundary) M , our con-
structions give a (2n + 1)-dimensional singularity (0 ∈ X) such that DR(X) is
homotopy-equivalent to M . It is reasonable to expect that there is an (n + 1)-
dimensional singularity (0 ∈ Z) such that DR(Z) is homeomorphic to M .

(3.5) For a complex algebraic variety X, its algebraic fundamental group πalg
1 (X)

is the profinite completion of its topological fundamental group π1(X). There are

examples where the natural map π1(X) → πalg
1 (X) is not injective [Tol93, 92], but

in all such known cases the image of π1(X) → πalg
1 (X) is infinite and very large.

We now have (non-explicit) examples of isolated rational singularities such that

π1(link(X)) is infinite yet πalg
1 (link(X)) is the trivial group; see Corollary 51.

(3.6) All the examples in Theorem 1 can be realized on varieties defined over

Q. Thus they have an algebraic fundamental group πalg
1

(
link(XQ)

)
which is an

extension of the above πalg
1

(
link(X)

)
and of the absolute Galois group Gal

(
Q̄/Q

)
.

We did not investigate this extension; thus we do not have a complete description

of all possible groups πalg
1

(
link(XQ)

)
.

1. Polyhedral complexes

A (convex) Euclidean polyhedron is a subset P of Rn given by a finite collection
of linear inequalities (some of which may be strict and some not). The polyhedron
P is rational if it can be given by linear inequalities with rational coefficients. The
dimension of P is its topological dimension, which is the same as the dimension of
its affine span Span(P ). (Recall that the empty set has dimension −1.) Note that
we allow polyhedra which are unbounded and neither open nor closed. A face of P
is a subset of P which is given by converting some of these non-strict inequalities to
equalities. Define the set Faces(P ) to be the set of faces of P . The interior Int(P )
of P is the topological interior of P in Span(P ). Again, Int(P ) is a Euclidean
polyhedron. We will refer to Int(P ) as an open polyhedron.

An (isometric) morphism of two polyhedra is an isometric map f : P → Q so
that f(P ) is a face of Q. A morphism is rational if it is the restriction of a rational
affine map.

The following definition is a variation on the one given in [Dav08], Definition
A.2.12.

Definition 4. A (Euclidean) polyhedral complex is a small category C whose ob-
jects are convex polyhedra and morphisms are their isometric morphisms satisfying
the following axioms:

(1) For every c1 ∈ Ob(C) and every face c2 of c1, c2 ∈ Ob(C), the inclusion map
ι : c1 → c2 is a morphism of C.
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(2) For every c1, c2 ∈ Ob(C) there exists at most one morphism f = fc2,c1 ∈
Mor(C) so that f(c1) ⊂ c2. Thus, for every c ∈ Ob(C) one defines c≤ = {c′ ∈
Ob(C) : ∃f : c′ → c}.

(3) Given a, b ∈ Ob(C) either a≤ ∩ b≤ = ∅ or there exists c ∈ a≤ ∩ b≤ so that for
every d ∈ a≤ ∩ b≤, there exists a morphism f : d → c.

A polyhedral complex is rational if all its objects and morphisms are rational.

Analogously, one defines spherical, hyperbolic, affine, projective, etc., polyhedral
complexes, but we will not need these concepts. Thus, a polyhedral complex for us
will always mean a Euclidean polyhedral complex.

Given a finite rational polyhedral complex C, by scaling one obtains an integral
polyhedral cell complex C′, where the polyhedra and morphisms are integral.

Example 5. 1. Every simplicial complex Z corresponds canonically to a Euclidean
polyhedral complex Z: Identify each k-simplex in Z with the standard Euclidean
simplex in Rk+1.

2. Conversely, if Z is a polyhedral complex where every face is a simplex, then
Z is a simplicial complex (note Conditions 2 and 3 in Definition 4).

Objects of a polyhedral complex C are called faces of C and the morphisms of
C are called incidence maps of C. A facet of C is a face P of C so that for every
morphism f : P → Q in C, f(P ) = Q. A vertex of C is a zero-dimensional face. The
dimension dim(C) of C is the supremum of dimensions of faces of C. A polyhedral
complex C is called pure if the dimension function is constant on the set of facets
of C; the constant value in this case is the dimension of C. A subcomplex of C is a
full subcategory of C. If c is a face of a complex C, then ResC(c), the residue of c
in C, is the minimal subcomplex of C containing all faces c′ such that there exists
an incidence map c → c′. For instance, if c is a vertex of C, then its residue is the
same as the star of c in C; however, in general these are different concepts.

We generate the equivalence relation ∼ on a polyhedral complex C by declaring
that c ∼ f(c), where c ∈ Ob(C) and f ∈ Mor(C). This equivalence relation also
induces the equivalence relation ∼ on points of faces of C.

If C is a polyhedral complex, its poset Pos(C) is the partially ordered set Ob(C)
with the relation c1 ≤ c2 iff c1 ∼ c0 so that ∃f ∈ Mor(C), f : c0 → c2.

We define the underlying space or amalgamation |C| of a polyhedral complex C
as the topological space which is obtained from the disjoint union


c∈Ob(C) c

by identifying points using the equivalence relation: ∼. We equip |C| with the
quotient topology.

Definition 6. Let B be a subcomplex of a polyhedral complex C. For c ∈ Ob(C)
define the polyhedron

c′ := c

∖ ⋃
b≤c,b∈B

f(b), where f : b → c, f ∈ Mor(C).

For a morphism f ∈ Mor(C), f : c1 → c2, we set f ′ : c′1 → c′2 as the restriction of
f . We define the difference complex C − B as the following polyhedral complex:

Ob(C − B) = {c′ : c ∈ Ob(C)},
Mor(C − B) = {f ′ : c′1 → c′2,where f ∈ Mor(C), f : c1 → c2}.
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Note that C − B need not be a subcomplex of C.
We will be exclusively interested in finite Euclidean polyhedral complexes (i.e.,

complexes of finite cardinality), where the underlying space |C| is connected.

Example 7. For us the most important Euclidean polyhedral complexes are ob-
tained by subdividing (a domain in) RN into convex polyhedra. Let U ⊂ RN be an
open subset and V be a partition of U in convex Euclidean polyhedra so that

(1) For every c1 ∈ V and every face c2 of c1, c2 ∈ V.
(2) For every two polyhedra c1, c2 ∈ V, c1 ∩ c2 ∈ V.
Then V becomes the set of faces of a polyhedral complex (again denoted by V by

abusing the notation), where inclusions of faces are the incidence maps.

Example 8. Let Δm be the closed Euclidean m-simplex. The (simplicial) cell com-
plex of faces of Δm will be denoted C(Δm).

Definition 9. Let C be a pure n-dimensional polyhedral complex. The nerve Nerve(C)
of C is the simplicial complex whose vertices are facets of C (the notation is v = c∗,
where c is a facet of C); distinct vertices v0 = c∗0, . . . , vk = c∗k or Nerve(C) span a
k-simplex if there exists a face c of C and incidence maps c → ci, i = 0, . . . , k. The
simplex σ = [v0, . . . , vk] then is said to be dual to the face c, provided that c is a
maximal face satisfying the above property. We will use the notation σ = c∗.

Example 10. Suppose that C consists of three edges e1, e2, e3 sharing a common
vertex. Then the simplicial complex Nerve(C) is the face-complex C(Δ2) of the 2-
dimensional simplex Δ2: Vertices of Δ2 are e∗i , i = 1, 2, 3; edges of Δ2 correspond
to the (nonempty) intersections of pairs of distinct edges ei, ej; and the 2-face of
Δ2 corresponds to the triple intersection of the edges of C.

Lemma 11. If C is finite, then |C| is homotopy-equivalent to |Nerve(C)|.

Proof. Notice that the image of each face of C in |C| is contractible. Therefore, one
can thicken each facet c of C to an open contractible subset U(c) ⊂ |C| so that

(1) The collection of open sets U(c) (c’s are facets of C) is a covering of |C|.
(2) For every k + 1-tuple of facets c0, . . . , ck, the intersection

U(c0) ∩ · · · ∩ U(ck)

is nonempty iff [c∗0, . . . , c
∗
k] is a simplex in Nerve(C).

(3) Each intersection U(c0) ∩ · · · ∩ U(ck) as above is contractible.
Now, the assertion becomes a standard fact of algebraic topology; see e.g. [Hat02].

�
Note that, in general, a face can have more than one, or no, dual simplices,

except that each facet is dual to the unique vertex.

Definition 12. A polyhedral complex C is simple if
(1) C is pure, dim(C) = n,
(2) For k = 0, . . . , n and every k-face c of C, Nerve(ResC(c)) is isomorphic to

the complex C(Δn−k).

It is easy to see that each face c of a simple n-dimensional complex C is dual to
a unique simplex c∗ in Nerve(C). Moreover, dim(c) + dim(c∗) = n.

Lemma 13. If A is a simple polyhedral complex and B is its subcomplex, then the
complex C := A− B is again simple.
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Proof. It is easy to see that C is purely of the same dimension as A and for each
face c of C, the poset of ResC(c) is isomorphic to the poset ResA(a), where c = a′

(see Definition 6). �

2. Voronoi complexes in RN

In what follows, we will use the notation d for the Euclidean metric on RN .

Definition 14. Let Y ⊂ RN be a finite subset. The Voronoi tessellation V(Y ) of
RN associated with Y is defined by: For each y ∈ Y take the Voronoi cell

V (y) := {x ∈ RN : d(x, y) ≤ d(x, y′), ∀y′ ∈ Y }.
Thus, each cell V (y) is given by the collection of non-strict linear inequalities
d(x, y) ≤ d(x, y′), i.e.,

2(y′ − y) · x ≤ y′ · y′ − y · y.
Then each cell V (y) is a closed (possibly unbounded) polyhedron in RN . Every
V (y) is rational provided that Y ⊂ QN . The union of Voronoi cells is the entire
RN . We thus obtain the polyhedral complex, called the Voronoi complex, V(Y )
using the faces V (y) as in Example 7.

Not every Voronoi complex is simple, but most of them are. In order to make
this precise, we consider ordered finite subsets of RN ; thus, every k-element subset
becomes a point in RkN .

Lemma 15. k-element subsets Y ⊂ RN (resp. Y ⊂ QN ) whose Voronoi complex
V(Y ) is simple are open and dense in RkN (resp. QkN ).

Proof. For a subset Y ⊂ RN , failure of simplicity of V(Y ) means that there exists
an m-element subset W ⊂ Y so that the set of affine hyperplanes

Hyi,yj
= {x|d(yi, x) = d(yj , x)}, yi, yj ∈ W

has intersection of dimension > m−1; equivalently, the points of W lie on an affine
subspace of dimension < m−1. The subset Σm,N ⊂ RmN of such W ’s is closed and
has an empty interior. The lemma follows from the density of rational k-element
subsets. �

Delaunay triangulations. Dually, one defines the Delaunay simplicial complex

D(Y ) = Nerve(V(Y )),

i.e., vertices of this complex are points of Y , vertices y0, . . . , vk span a k-simplex in
D(Y ) iff ∩k

i=0D(yi) �= ∅. We have the canonical affine map η : D(Y ) → RN which
is the identity on Y .

The proof of the following theorem can be found in [For97, Thm. 2.1].

Theorem 16. 1. If V(Y ) is simple, then the map η : |D(Y )| → RN injective.
2. The image of the latter map is the closed convex hull Hull(Y ) of the set Y .

The Euclidean simplicial complex η(D(Y )) is called the Delaunay triangulation of
Hull(Y ) with the vertex set Y .

Voronoi complexes associated with smooth submanifolds in RN . Let
M be a subset of RN and ε > 0. A set Y ⊂ RN is said to be ε-dense in M if every
point x ∈ M is within distance < ε from a point of Y . (Note that Y need not be
contained in M .) By compactness and Lemma 15, for every bounded subset of RN ,
ε > 0, there exists a finite simple rational subset Y ⊂ RN which is ε-dense in M .
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Theorem 17 (S. S. Cairns [Cai61]). Let M be a C2-smooth closed submanifold of
RN . Then there exists εM > 0 so that for every ε ∈ (0, εM ] the following holds.

Let Y be a finite subset of RN which is ε-dense in M . For every face c ∈ V(Y )
define the set cM := c ∩M .

Then each cM is a (topological) cell in M and the collection of cells cM , c ∈ V(Y ),
is a cellulation of M .

Note that for a generic choice of Y the intersections cM are transversal and,
hence,

dim(cM ) = dim(c) + dim(M)−N.

Examination of Cairns’s proof of this theorem shows that it can be repeated
verbatim to prove the following.

Theorem 18. Let S be a compact codimension 0 submanifold of RN with C2-
smooth boundary M . Then for εM > 0 as above, and for every ε ∈ (0, εM ] the
following holds.

Let Y be a finite subset of RN which is ε-dense in S. For every face c ∈ V(Y )
define the set cS := c∩S. Then each cS is a (topological) cell in S and the collection
of cells cS, c ∈ V(Y ), is a regular cellulation VS of S.

Again, for a generic choice of Y , dim(cM ) = dim(c) unless cS = ∅.

We observe that {c ∈ V(Y ) : cS = ∅} is the face set of a subcomplex W(Y ) of
V(Y ). We then let CS := V(Y )−W(Y ).

Clearly, CS is pure, N -dimensional and Nerve(CS) is isomorphic to Nerve(VS).
Therefore, |Nerve(CS)| is homotopy-equivalent to |Nerve(VS)| ∼= S.

By Lemma 15, we can assume that Y is simple, rational and generic; then CS is
again simple, rational and |CS | is still homotopy-equivalent to S.

Corollary 19. Given S ⊂ RN as above, there exists a simple rational polyhedral
complex C = CS so that |C| is homotopy-equivalent to S.

Faces of CS , in general, are not closed polyhedra.

3. Euclidean thickening of simplicial complexes

We are grateful to Frank Quinn for leading us to the following reference.

Theorem 20 (M. Hirsch [Hir62]). Let Z be a finite simplicial complex in a smooth
manifold X. Then there exists a codimension 0 compact submanifold S ⊂ X with
smooth boundary which is homotopy-equivalent to |Z|.

Corollary 21. For every n-dimensional finite simplicial complex Z there exists a
codimension 0 compact submanifold M ⊂ R2n+1 with smooth boundary, homotopy-
equivalent to |Z|.

Proof. We give two proofs of this corollary.
1. By the Whitney embedding theorem in the context of simplicial complexes,

Z embeds in R2n+1. (Start with a generic map f : Z(0) → R2n+1, and then use
the affine extension of f to simplices of Z.) Now, the assertion immediately follows
from Hirsch’s theorem.

2. Below we give a simple and self-contained proof of this corollary communicated
to us by Kevin Walker via Mike Freedman. We will think of Z as a cell complex
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and will construct M by induction on skeleta of Z. Let Bv denote pairwise disjoint
intervals in R, where v ∈ Z(0), and set

S0 := 
vBv.

Then the map Z(0) → S0 sending each v to Bv is a homotopy-equivalence. Suppose
that we constructed a codimension 0 submanifold Mk ⊂ R2k+1 with smooth bound-
ary and a homotopy-equivalence h : Z(k) → Mk. Let fi denote the the attaching
maps ∂Bk+1 → Z of (k + 1)-cells of Z. The maps fi define elements of πk(Mk).
Since the dimension of the manifold Mk is 2k + 1, these homotopy classes can be
realized by smoothly embedded k-sphere si with trivial normal bundle in R2k+1,
see [KM63, §6]. A priori, the spheres si may not be even homotopic to spheres con-
tained in the boundary of Mk. However, we replace Mk with M ′

k ⊂ R2k+3, obtained
from Mk ×B2 ⊂ R2k+3 by “smoothing the corners.” Then si can be chosen in the
boundary of M ′

k and, for the dimension reasons, it bounds a smoothly embedded
(k+1)-disk in R2k+3\M ′

k. Then we attach the handleHi
∼= Dk+1×Dk+2 ⊂ R2k+3 to

M ′
k along si, so that this handle intersects M ′

k only along a tubular neighborhood of
si in ∂M ′. Moreover, we can assume that distinct handles Hi are pairwise disjoint.
We again smooth the corners after the handles are attached. Let Mk+1 ⊂ R2k+1

be the codimension 0 submanifold with smooth boundary resulting from attaching
these handles and smoothing the corners. Then, clearly, the homotopy-equivalence
Z(k) → Mk extends to a homotopy-equivalence Z(k+1) → Mk+1. �

By combining Hirsch’s theorem with Corollary 19 we obtain the following.

Corollary 22. Given a finite n-dimensional simplicial complex Z, there exists a
finite simple (2n+ 1)-dimensional rational Euclidean polyhedral complex C so that
|C| is homotopy-equivalent to |Z|.

We note that the dimension of C in this corollary can be easily reduced toN = 2n.
For instance, by a theorem of Stallings (see [DR93]) Z is homotopy-equivalent to
a finite simplicial complex W which embeds in R2n. One can improve on this
estimate even further as follows. Suppose that Z is a finite simplicial complex
which admits an immersion j : |Z| → RN . Then taking pull-back of an open
regular neighborhood of j(|Z|) via j one obtains an open smooth locally Euclidean
N -dimensional manifold X which is homotopy-equivalent to |Z|.
Definition 23. If Z is a simplicial complex, then a locally Euclidean Riemannian
manifold X is called a Euclidean thickening of Z if there exists an embedding |Z| →
X which is a homotopy-equivalence. We say that X is rational, resp. integral, if
there exists a smooth atlas on X with transition maps that belong to Qn�GL(n,Q),
resp. Zn �GL(n,Z), where n = dim(X).

Note that if X is an n-dimensional locally Euclidean manifold which admits an
isometric immersion in Rn, then X is integral.

Suppose that X is a Euclidean thickening of Z. Applying Hirsch’s theorem
above to the embedding |Z| ⊂ X, we obtain an N -dimensional smooth manifold
with boundary S ⊂ X homotopy-equivalent to |Z|. Even though such X is not
isometric to RN (it is typically incomplete and, moreover, need not embed in RN

isometrically), the arguments in the proof of Cairns’s theorem 17 are local and go
through if we replace RN with X. We thus obtain the following.

Corollary 24. Suppose that Z is a finite simplicial complex and X is an N-
dimensional Euclidean thickening of Z. Then there exists a simple N-dimensional
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Voronoi complex C so that |C| is homotopy-equivalent to Z. Moreover, if X is ra-
tional, resp. integral, the complex C can be taken rational, resp. integral.

4. Complexification of Euclidean polyhedral complexes

Definition 25. Let V denote either the category of varieties (over a fixed field k)
or the category of topological spaces.

Let C be a finite polyhedral complex. AV-complex based on C is a functor Φ from
C to V so that morphisms ci → cj go to closed embeddings φij : Φ(ci) ↪→ Φ(cj).
By abuse of terminology, we will sometimes refer to the image category im(Φ) as a
V-complex based on C.

We call the functor Φ strictly faithful if the following holds.
If xi ∈ Φ(ci), xj ∈ Φ(cj) and φik(xi) = φjk(xj) for some k, then there is an 


and x� ∈ Φ(c�) such that φ�i(x�) = xi and φ�j(x�) = xj .
The relation xi ∼ φij(xi) for every i, j and xi ∈ Xi generates an equivalence

relation on the points of 
i∈IΦ(ci), also denoted by ∼.

In the category of topological spaces, the direct limit limΦ(C) of the diagram
Φ(C) exists and its points are identified with

(

i∈IΦ(ci)

)
/ ∼.

For example, suppose that Φtaut is the tautological functor which identifies each
face of C with the corresponding underlying topological space. Then limΦtaut(C)
is nothing but |C|.

In general, Proposition 3.1 in [Cor92] proves the following.

Lemma 26. Suppose that Φ is strictly faithful and Φ(C) consists of cell complexes
and cellular maps of such complexes. Then π1

(
limΦ(C)

) ∼= π1(|C|) provided that
each Φ(c), c ∈ Ob(C) is 1-connected. �

In the category of varieties direct limits usually do not exist; we deal with this
question in Section 5. Thus for now assume that Φ(C) has a direct limit limΦ(C)
in the category of varieties. There is a natural surjection(


i∈IΦ(ci)
)
/ ∼ → limΦ(C).

If this map is a bijection, we say that limΦ(C) is an algebraic realization of |C|.
Our next goal is to describe two constructions of complexes of varieties based on

polyhedral complexes.
Projectivization. Suppose that C is a Euclidean polyhedral complex.
We first construct a projectivization P = P(C) of the Euclidean polyhedral com-

plex C. We regard each face c of C as a polyhedron in RN . The complex affine span,
Span(c), of c is a linear subspace of CN . Let Pc denote its projective completion
in PN . Note that, technically speaking, different faces c can yield the same space
Pc if their affine spans are the same. To avoid these issues, we set Pc := Pc × {c}.
For every morphism of C, fc2,c1 : c1 → c2, we have a unique linear embedding
Fc2,c1 : Pc1 → Pc2 . Thus, we obtain the functor

P : C → Varieties

which sends each c ∈ Ob(C) to Pc and each morphism fc2,c1 to Fc2,c1 .
We refer to P as a complex of projective spaces based on the complex C.
Observe, however, that im(P) does not (in general) accurately capture the com-

binatorics of the complex C, i.e., the corresponding functor Ψvar = P need not
be strictly faithful. For instance, in complex projective space any two hyperplanes
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intersect but a polyhedral complex usually has disjoint codimension 1 faces. More
generally, any intersection ∩iPci that is not equal to the projective span Pc of some
face c ∈ Ob(C) shows that Ψvar = P is not strictly faithful.

Definition 27 (Parasitic intersections). Let σ := (c1, c2, . . . , ck) be a tuple of faces
incident to a face c. Consider the intersections

Ic,σ := ∩k
i=1Fc,ci(Pci) ⊂ Pc

such that there is no face c0 such that Ic,σ = Fc,c0(Pc0) and c0 is incident to all the
c1, c2, . . . , ck. Then the subspace Ic,σ ⊂ Pc is called a parasitic intersection in Pc.

Note, however, that this collection of parasitic intersections in spaces Pc, c ∈
Ob(C), is not stable under applying morphisms Fc′,c and taking preimages under
these morphisms.

Remark 28. This lack of stability could cause a problem later on, as we will be
blowing up parasitic intersections. After such blow-up, the collection of varieties will
fail to form a complex of varieties. This means that we have to modify our notion
of parasitic intersections in order to ensure stability of images and preimages.

We thus have to saturate the collection of parasitic intersections using the mor-
phisms Fc,c′ . This is done as follows. Let T denote the pushout of the category
im(Ptop), where we regard each Pb, b ∈ Ob(C) as a topological space, so the pushout
exists. Then for each a ∈ Ob(C) we have the (injective) projection map ρa : Pa → T .
For each parasitic intersection Ic,σ ⊂ Pc, we define

Ic,σ,a := ρ−1
a ρc(Ic,σ).

We call such Ic,σ,a a parasitic subspace in Pa. It is immediate that each parasitic
subspace in Pa is a projective space linearly embedded in Pa. With this defini-
tion, the collection of parasitic subspaces Ic,σ,a is stable under taking images and
preimages of the morphisms Fc,c′ .

Note that the maps ρc induce an embedding ρ : |C| → T . Furthermore, convexity
of the polyhedra c ∈ Ob(C) implies that if a, b ∈ Ob(C) and ρa(a) ⊂ ρb(Pb), then
a ≤ b.

Lemma 29. 1. All parasitic subspaces have dimension ≤ N − 2.
2. If c is simple and the intersection Ic,σ contains Pc′ for some face c′ of c, then

Ic,σ is not parasitic.
3. Suppose that the complex C is simple. Then no parasitic subspace Ic,σ,b ⊂ Pb

contains a face a of b.

Proof. (1) is clear.
(2) Without loss of generality we may assume that σ = (c1, . . . , ck) is such that

c1, c2, . . . , ck, c
′ are faces of c. Hence, Ic,σ also contains Pc′ and for each i = 1, . . . , k,

Pci contains the face c′. By convexity of c it follows that c′ ⊂ ci, i = 1, . . . , k.
Simplicity of c then implies that for the face ck+1 := c1 ∩ · · · ∩ ck of c, we have

Span(ck+1) = Span(c1) ∩ · · · ∩ Span(ck).

Thus, Ic,σ = Pck+1
and, hence, Ic,σ is not parasitic.

(3) Let Ic,σ,b = ρ−1
b ρc(Ic,σ) be parasitic in Pb. Assume that a is a face of b

such that a ⊂ Ic,σ,b. Then ρa(a) ⊂ ρc(Ic,σ) ⊂ ρc(Pc) and, hence, a ≤ c. Now the
assertion follows from (2). �
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We next define a certain blow-up BP of P above which it eliminates parasitic
subspaces. In the process of the blow-up, the projective spaces Pc ∈ Ob(imP)
will be replaced with smooth rational varieties BPc so that the linear morphisms
Fc2,c1 ∈ Mor(imP) correspond to embeddings bFc2,c1 : BPc1 → BPc2 . The vari-
eties BP are obtained by a sequence of blow-ups of parasitic subspaces.

Proposition 30. Let C be a simple Euclidean complex. Then there exists a strictly
faithful complex of varieties A : C → BP(C) based on C so that

(1) The direct limit of im(A) = BP(C) exists and is a projective variety X with
simple normal crossing singularities.

(2) X is an algebraic realization of |C|.
(3) π1(X) ∼= π1(|C|).
(4) If C is rational, then X is also defined over Q.

Proof. The complex A is constructed by inductive blow-up of the complex P above.
We proceed by induction on dimension of parasitic intersections. First, for each

face c ∈ C we blow up all parasitic subspaces in Pc which are points. We will use the
notation B0Pc for the resulting smooth rational varieties, c ∈ Faces(C). Observe
that this blow-up is consistent with linear embeddings Fc2,c1 , which, therefore,
extend to embeddings b0Fc2,c1 : B0Pc1 → B0Pc2 . We let B0P denote the functor
C → V arieties,

c 
→ B0Pc, fc2,c1 
→ b0Fc2,c1 .

Observe also that after the zeroth blow-up, all 1-dimensional parasitic subspaces
become pairwise disjoint (as we blew up their intersection points). We, thus, can
now blow up each B0Pc along every 1-dimensional blown-up parasitic subspace
B0Ic,σ. The result is a collection of smooth rational varieties B1Pc, c ∈ C. Again,
the projective embeddings b0Fc2,c1 respect the blow-up, so we also get a collection of
injective morphisms b1Fc2,c1 : B1Pc1 → B1Pc2 . We, therefore, continue inductively
on the dimension of parasitic subspaces. After at most N − 1 steps we obtain
a complex A = BP, whose image im(A) has blown-up projective spaces BPc as
objects and embeddings bFc2,c1 as morphisms. Observe that the subvarieties along
which we do the blow-up have dimension ≤ N − 2. Moreover, we never have to
blow up the entire Pc for any c ∈ Ob(C) (see Lemma 29). Now, by the construction,
the functor A is strictly faithful.

It is easy to see that the conditions of Proposition 33 hold for A; the key is that
the complex C was simple and the normality condition was satisfied by the complex
P. Therefore, the complex variety X which is the direct limit of im(A) exists and
is an algebraic realization of |C|. We check in 34 that the variety X is projective.

By the construction, since the complex C is simple, the varietyX has only normal
crossing singularities. Since each BPc is simply connected, Lemma 26 implies that
π1(X) ∼= π1(|C|). Lastly, if we start with a rational complex C, then all the blow-ups
are defined over Q and so is the direct limit X. �

Note that every face c ∈ C is naturally a subset of (the real points of) Pc. How-
ever, usually there are parasitic subspaces that intersect this image; thus, because
of the corresponding blow-ups, c does not map to BPc. In particular, we do not get
a map of |C| to X(R). It is possible that, by analyzing carefully which blow-ups are
necessary, one could obtain algebraic realizations X ′(C) which come with a natural
map |C| → X ′(C)(R).
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Suppose now that W is a finite, connected, simplicial complex. By Corollary 22,
there exists a rational finite simple polyhedral complex C so that |C| is homotopy-
equivalent to |W |. Thus, we conclude the following.

Theorem 31. There exists a complex projective variety Z = ZC defined over Q

whose only singularities are simple normal crossings, so that π1(Z) ∼= π1(|W |).

5. Direct limits of complexes of varieties

Example 35 below shows that direct limits need not exist in the category of
varieties, not even if all objects are smooth and all morphisms are closed embed-
dings. By analyzing the example, we see that problems arise if some of the images
φik(Xi) ⊂ Xk and φjk(Xj) ⊂ Xk are tangent to each other but not if they are all
transversal. The right condition seems to be the seminormality of the images.

Definition 32. Recall that a complex space X is called normal if for every open
subset U ⊂ X, every bounded meromorphic function is holomorphic.

As a slight weakening, a complex space X is called seminormal if for every open
subset U ⊂ X, every continuous meromorphic function is holomorphic.

The following are some key examples: (x2 = y3) ⊂ C2 and (x3 = y3) ⊂ C2 are
not seminormal (as shown by x/y and x2/y) but (x2 = y2) ⊂ C2 is seminormal.

The key property that we use is the following.
Assume that X is seminormal. Let Y be any variety (or complex analytic space)

and p : Y → X be any algebraic (or complex analytic morphism) that is a homeo-
morphism in the Euclidean topology. Then p is an isomorphism of varieties (or of
complex analytic spaces).

Proposition 33. Let X := {Xi : i ∈ I, φij : Xi → Xj : (i, j) ∈ M} be a complex of
varieties based on a finite polyhedral complex C. Assume that for each k and each
J ⊂ I the subvariety ∪j∈J im(φjk) ⊂ Xk is seminormal. Then

(1) the direct limit X∞ exists,
(2) the points of X∞ are exactly the equivalence classes of points of 
i∈IXi,

and in particular, X∞ is an algebraic realization of |C|, and
(3) ∪j∈J im(φj∞) ⊂ X∞ is seminormal for every J ⊂ I.

Proof. The proof is by induction on |I|.
If there is a unique final object Xj , then X∞ = Xj .
If not, let Xj be a final object. Removing Xj and all maps to Xj , we get a

smaller complex Yj . By induction it has a direct limit Y∞
j .

From Yj take away all the Xk that do not map to Xj and all maps to such an
Xk. Again we get a smaller complex Zj whose direct limit is Z∞

j .
There are maps Z∞

j → Xj and Z∞
j → Y∞

j . We claim that these are both closed
embeddings.

Both maps are clearly injective and their image is seminormal. For the first this
follows from our assumption and in the second case by induction and (3). As we
noted in Definition 32, these imply that these maps are closed embeddings.

Now we claim that X∞ is the universal pushout

Z∞
j → Xj

↓ ↓
Y∞

j → X∞.
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The existence of the pushout as an algebraic space is proved in [Art70, Thm. 3.1]
and as a variety in [Fer03]; see also [Kol08, Cor. 48]. If a limit of a diagram of
seminormal varieties exists, it is automatically seminormal.

Finally we need to check that (3) holds. Let W∞ ⊂ X∞ be the union of the
images of φi∞(Xi) for i ∈ J for some J ⊂ I. Then Wj := W∞ ∩ Xj , W

Z
j :=

W∞∩Z∞
j and WY

j := W∞ ∩Y∞
j are all unions of images of some of the Xi; hence

these are seminormal by induction. Note that Z∞
j ∪ Wj and Z∞

j ∪ WY
j are also

unions of images of some of the Xi, and hence seminormal.
To check seminormality, we may assume that all varieties are affine. Let h be

a continuous meromorphic function on W∞. We claim that the restriction of h to
WZ

j is defined and is holomorphic. Indeed, let π : W̄∞ → W∞ be the normalization

and W̄Z
j ⊂ W̄∞ the reduced preimage of WZ

j . Then h ◦ π is holomorphic and thus
its restriction (h ◦π)|W̄Z

j
is a holomorphic function that is constant on the fibers of

W̄Z
j → WZ

j . Since WZ
j is seminormal, this implies that (h ◦ π)|W̄Z

j
descends to a

holomorphic function on WZ
j . We can then extend this restriction to a holomorphic

function hZ on Z∞
j .

The restriction of h to Wj (resp. WY
j ) is a continuous meromorphic function;

hence it is holomorphic since Wj (resp. WY
j ) is seminormal.

Thus hZ and h|Wj
define a continuous meromorphic function on Z∞

j ∪Wj . It is

thus holomorphic and extends to a holomorphic function hj on Xj . Similarly, hZ

and h|WY
j

extend to a holomorphic function hY
j on Y∞

j .

Finally hj and hY
j agree on Z∞

j ; thus, by the universality of the pushout, they
define a holomorphic function h∞ on X∞. Its restriction to W is h; hence h is also
holomorphic. �

34 (Projectivity). As the examples (36) or [Kol08, Example 15] show, even if theXi

are all projective and the direct limit X∞ exists, the latter need not be projective.
The main difficulty is the following.

Let L∞ be a line bundle on X∞. By pullback we obtain line bundles Li and
isomorphisms Li

∼= φ∗
ijLj with the expected compatibility conditions. L∞ is ample

iff each Li is ample. Conversely, giving line bundles Li and isomorphisms Li
∼= φ∗

ijLj

with the expected compatibility conditions determines a line bundle L∞ on X∞.
The practical difficulty is that we need to specify actual isomorphisms Li

∼= φ∗
ijLj ;

it is not enough to assume that Li and φ∗
ijLj are isomorphic. For line bundles this is

not natural to do since we usually specify them only up to the fiberwise C∗-action.
However, once we work only with subsheaves of a fixed reference sheaf F∞, the

isomorphisms are easy to specify.
More generally, letX = ∪iXi be a scheme with irreducible componentsXi. Let F

be a coherent sheaf on Y . Then specifying a coherent subsheaf G ⊂ F is equivalent
to specifying coherent subsheaves Gi ⊂ F |Xi

such that Gi|Xi∩Xj
= Gj |Xi∩Xj

for
every i, j. Furthermore, by the Nakayama lemma, G is locally free iff every Gi is
locally free.

In our case, we start with each irreducible component identified with a Pn and
then we blow up parasitic subvarieties. Thus each irreducible component Xi comes
with a natural morphism to Pn. For F we choose the pullback of OPn(m) for
some m � 1. These pullbacks are not ample since they are trivial on the fibers of
pi : Xi → Pn.
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In Section 4 we construct the Xi as follows:

(1) Fix a smooth projective variety P with an ample line bundle L (in our case
in fact P ∼= Pn and L ∼= OPn(1)). Set X0

i := P.

(2) If Xj
i is already defined, we pick a smooth subvariety Zj

i ⊂ Xj
i of dimension

j and let πj
i : Xj+1

i → Xj
i denote the blow-up of Zj

i with exceptional divisor

Ej+1
i .

(3) Set Xi := Xn
i with morphisms Πj

i : X
n
i → Xj

i .

Claim 34.4. For all m0 � m1 � · · · � mn > 0, the following line bundle is
ample on Xi:((

Π0
i

)∗
Hm0

)(
−m1

(
Π1

i

)∗
(E1

i )− · · · −mn−1

(
Π1

i

)∗
(En−1

i )−mnE
n
i

)
.

Proof. Let Y be a smooth variety and Z ⊂ Y a smooth subvariety. Let pY : BZY →
Y denote the blow-up with exceptional divisor EY . Let H be an ample invertible
sheaf on X. Then p∗Y H

a(−b·EY ) is ample on BZY for a � b > 0 (cf. [Har77, Prop.
II.7.10]).

Applying this inductively to the blow-ups πj
i : Xj+1

i → Xj
i we get our claim. �

For later use, also note the following. Assume that we have Y1 ⊂ Y smooth and
Z1 := Z ∩ Y1 also smooth. Let EY1

be the exceptional divisor of pY1
: BZ1

Y1 → Y1.
Then there is an identity

(
p∗Y H

a(−b · EY )
)
|BZ1

Y1
= p∗Y1

(
H|Y1

)a(−b · EY1

)
.

(34.5) All the Xi map to P in a compatible manner; hence we have a fixed
reference map Π∞ : X∞ → P. For m0 � 1 we get our reference sheaf F∞ :=(
Π∞)∗

Hm0 .

(34.6) For each i we have Fi := F∞|Xi
=

(
Π0

i

)∗
Hm0 . For fixed m0 � m1 �

· · · � mn > 0 the formula (34.4) defines a subsheaf Gi ⊂ Fi and Gi is an ample
line bundle on Xi. As we noted above, all that remains is to prove that

F∞|Xi∩Xj
⊃ Gi|Xi∩Xj

= Gj |Xi∩Xj
⊂ F∞|Xi∩Xj

∀i, j.

This follows from the compatibility of blow-ups with restrictions noted after the
proof of (34.4). �

The next example shows that direct limits need not exist in the category of
varieties.

Example 35. Start with the polyhedral subcomplex of R2 whose objects are

(0, 0), (x ≤ 0, 0), (x ≥ 0, 0), (x, y ≤ 0), (x, y ≥ 0).

We try to build an algebraic realization with objects

C1
x,C

2
x,y,C

2
x,z,C

3
u,C

3
v (35.1)
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where the maps are

C1
x → C2

x,y : x 
→ (x, 0)

C1
x → C2

x,z : x 
→ (x, 0)

C2
x,y → C3

u : (x, y) 
→ (x, y, 0)

C2
x,z → C3

u : (x, z) 
→ (x, z, z2)

C2
x,y → C3

v : (x, y) 
→ (x, y, 0)

C2
x,z → C3

v : (x, z) 
→ (x+ z, z, z2).

(35.2)

These are all embeddings (even scheme theoretically).
We claim that if X is any algebraic variety and gi∗ : Ci

∗ → X are algebraic
maps from the Ci

∗ in (35.1) to X with the expected compatibility properties, then
g1x : C1

x → X is constant. In an algebraic realization all the maps gi∗ : Ci
∗ → X

should be injective; thus this example is not an algebraic realization. (A careful
analysis of the proof shows that the direct limit does not exist in the category of
varieties, or even in the category of schemes of finite type. The direct limit exists
in the category of schemes but it is not Noetherian.)

So, take a regular function φ on X. We can pull it back to C2
x,y and C2

x,z to get
polynomials ∑

ij

a(i, j)xiyj and
∑
ij

b(i, j)xizj .

Next we compute these 2 ways. First we pull φ back to C3
u. We get a polynomial

f(u1, u2, u3) =
∑
ijk

c(i, j, k)ui
1u

j
2u

k
3 .

Pull it back to C2
x,y and C2

x,z to get that

a(i, j) = c(i, j, 0) and b(i, j) = c(i, j, 0) + c(i, j − 2, 1) + c(i, j − 4, 2) + · · · .
Thus we obtain that

a(i, 0) = b(i, 0) and a(i, 1) = b(i, 1) ∀ i. (35.3)

Next we pull φ back to C3
v. We get a polynomial

g(v1, v2, v3) =
∑
ijk

d(i, j, k)vi1v
j
2v

k
3 .

Pull it back to C2
x,y to get that a(i, j) = d(i, j, 0). The pullback to C2

x,z involves
the binomial coefficients; we are interested in the first 2 terms only:

b(i, 0) = d(i, 0, 0) and b(i, 1) = d(i, 1, 0) + (i+ 1)d(i+ 1, 0, 0).

Thus we obtain that

a(i, 0) = b(i, 0) and a(i, 1) = b(i, 1)− (i+ 1)b(i+ 1, 0) ∀ i. (35.4)

Comparing (35.3) and (35.4) we see that a(i+1, 0) = b(i+1, 0) = 0 for i ≥ 0; that
is, φ is constant on the image of C1

x.
Note that the same argument holds if f , g are power series; thus the problem

is analytically local everywhere along C1
x. In fact, the problem exists already if we

work with C2-functions (that is, if X ⊂ RN and we require C3
u → X ⊂ RN and

C3
v → X ⊂ RN to be at least C2).
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Example 36 (Triangular pillows). Take 2 copies P2
i := P2(xi : yi : zi) of CP

2 and
the triangles Ci := (xiyizi = 0) ⊂ P2

i . Given cx, cy, cz ∈ C∗ define φ(cx, cy, cz) :
C1 → C2 by (0 : y1 : z1) 
→ (0 : y1 : czz1), (x1 : 0 : z1) 
→ (cxx1 : 0 : z1) and
(x1 : y1 : 0) 
→ (x1 : cyy1 : 0) and glue the 2 copies of P2 using φ(cx, cy, cz) to
get the surface S(cx, cy, cz). (Note that the complex of varieties constructed here
violates one of our axioms: Two 2-simplices glued along their boundaries do not
form a polyhedral complex as Part 3 of Definition 4 fails.)

We claim that S(cx, cy, cz) is projective iff the product cxcycz is a root of unity.

To see this, note that Pic0(Ci) ∼= C∗ and Picr(Ci) is a principal homogeneous space
under C∗ for every r ∈ Z. We can identify Pic3(Ci) with C∗ using the restriction
of the ample generator Li of Pic

(
P2
i

) ∼= Z as the base point.

The key observation is that φ(cx, cy, cz)
∗ : Pic3(C2) → Pic3(C1) is the multi-

plication by cxcycz. Thus if cxcycz is an rth root of unity, then Lr
1 and Lr

2 glue
together to an ample line bundle but otherwise S(cx, cy, cz) carries only the trivial
line bundle.

6. Proof of Theorem 1

So far, for every finitely presented group G we have constructed (Theorem 31)
a complex projective variety Z with simple normal crossing singularities such that
π1(Z) ∼= G. Using any such Z, we next construct a singularity. This relies on the
following result which is mostly a combination of [Kol11, Thm. 8 and Prop. 10].

Theorem 37. Let Z be an (n ≥ 2)-dimensional projective variety with simple
normal crossing singularities only and L an ample line bundle on Z. Then for
m � 1 there are germs of normal singularities

(
0 ∈ X = X(Z,L,m)

)
with a

partial resolution

Z ⊂ Y
↓ ↓ π
0 ∈ X

where Y \Z ∼= X\{0}

such that

(1) Z is a Cartier divisor in Y ,
(2) the normal bundle of Z in Y is KZ ⊗ L−m,
(3) if dimZ ≤ 4, then (0 ∈ X) is an isolated singular point,
(4) π1

(
R(X)

) ∼= π1(Z) and

(5) the map π1

(
link(X)

)
� π1

(
R(X)

)
is an isomorphism if the following holds:

Every irreducible component Zi ⊂ Z contains two smooth rational curves
C1

i , C
2
i such that Z is smooth along the Cj

i , (L · C1
i ) = (L · C2

i ) and (KZ ·
C1

i ) = (KZ · C2
i ) + 1.

Proof. The first 3 claims are explicitly stated in [Kol11, Thm. 8]. To see (4)
note that Z is a deformation retract of Y ; hence π1(Y ) ∼= π1(Z). By [Kol11, 8.3]
Y has terminal singularities; hence, by [Kol93,Tak03],

π1

(
R(X)

) ∼= π1

(
R(Y )

) ∼= π1(Y ) ∼= π1(Z).

Alternatively, if dimZ = 2 (which is the only case that we need here), we have
a complete description of the possible singularities of Y . By [Kol11, Claim 5.10]
they are of the form (x1x2 = x3x4) ⊂ C4 with x3 = 0 defining Z. There are 2
local irreducible components of Z given by x1 = x3 = 0 and x2 = x3 = 0. We can
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resolve these singularities by a single blow-up. The exceptional divisor is simply
connected; hence π1

(
R(Y )

) ∼= π1(Y ).
Note also that under any such blow-up the dual simplicial complex changes by

getting a new vertex on the edge connecting the two local irreducible components.
Thus its homeomorphism type is unchanged.

In order to prove (5) note that the kernel of π1

(
link(X)

)
� π1

(
R(X)

)
is gener-

ated by the loops around the irreducible components of Z. We use the curves Cj
i

to show that these loops are trivial in π1

(
link(X)

)
.

Let N be the normal bundle of Z ⊂ Y . From (37.2) and the assumptions in
(37.5) we conclude that

c1(N) ∩ [C1
i ]− c1(N) ∩ [C2

i ] = 1;

hence c1(N) ∩ [C1
i ] and c1(N) ∩ [C2

i ] are relatively prime.

Since Z and Y are both smooth along the Cj
i , the boundary of the normal disc

bundle restricted to Cj
i is a lens space Lj

i with |π1(L
j
i )| = c1(N)∩ [Cj

i ]. Thus, if γi
denotes a small circle in Y around Zi, then the order of γi in π1

(
link(X)

)
divides

both c1(N) ∩ [C1
i ] and c1(N) ∩ [C2

i ]. Hence the γi is trivial in π1

(
link(X)

)
. �

38 (Proof of Theorem 1). In order to apply these results to prove Theorem 1 we
start with the variety Z obtained in Theorem 31. Before we can apply Theorem
37, there are 2 issues to deal with.

First, in order to obtain an isolated singular point, we need a low dimensional
variety Z. This is not a problem since, by (39), we can lower the dimension of Z
to 2 without changing the fundamental group.

Second, we need to make sure that Z satisfies the assumptions in (37.5). It is
easier to check this after some additional blow-ups; these again do not change the
fundamental group.

For each irreducible component Zi ⊂ Z pick 2 points pji ∈ Zi that are smooth

on Z. We first blow up these points to get exceptional divisors Ej
i and then blow

up a hyperplane Hi ⊂ E2
i to get an exceptional divisor Fi. Let C

1
i be a line in E1

i

and C2
i the (birational) transform of a line in E2

i not contained in Hi. We get a

new variety τ : Z̃ → Z with irreducible components Z̃i ⊂ Z̃.
By explicit computation we see that (KZ̃ ·C1

i ) = (KZ̃ ·C2
i ) + 1. Finally we take

L̃ := τ∗Lr

(
−

∑
i

E1
i + 2E2

i + 3Fi

)
.

We see that L̃ is ample for r � 1 and (L̃ ·C1
i ) = (L̃ ·C2

i ). This completes the proof
of Theorem 1. �

The following is a singular version of the Lefschetz hyperplane theorem; see
[GM88, Sec. II.1.2] for a stronger result and references.

Theorem 39. Let X be a projective variety of dimension ≥ 3 with local complete
intersection singularities and H ⊂ X a general hyperplane section. Then π1(H) ∼=
π1(X).

7. Rational singularities and superperfect groups

Definition 40. A quasi-projective variety X has rational singularities if for one
(equivalently every) resolution of singularities p : Y → X and for every algebraic (or
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holomorphic) vector bundle F on X, the natural maps Hi(X,F ) → Hi(Y, p∗F ) are
isomorphisms. That is, for purposes of computing cohomology of vector bundles,
X behaves like a smooth variety. See [KM98b, Sec. 5.1] for details.

Definition 41. Let (0 ∈ X) be a singularity that is not necessarily isolated and
choose a resolution of singularities p : Y → X such that E := p−1(0) is a simple
normal crossing divisor. Let {Ei ⊂ E : i ∈ I} be the irreducible components and
for J ⊂ I set EJ := ∩i∈JEi.

The dual simplicial complex of E has vertices {vi : i ∈ I} indexed by the irre-
ducible components of E. For J ⊂ I we attach a |J |-simplex for every irreducible
component of ∩i∈JEi. Thus D(E) is a simplicial complex of dimension ≤ dimX−1.

The dual simplicial complex of a singularity seems to have been known to several
people but not explicitly studied until recently. The dual graph of a normal surface
singularity has a long history. Higher dimensional versions appear in [Kul77,Per77,
Gor80, 83] but systematic investigations were started only recently; see [Thu07,
Ste08,Pay09,Pay11].

It is proved in [Thu07,Ste08] that the homotopy type of D(E) is independent of
the resolution Y → X. As before, we denote it by DR(0 ∈ X).

A possible argument runs as follows. Let F ⊂ EJ be an irreducible component.
If we blow up F , the dual simplicial complex changes by a barycentric subdivision
of the |J |-simplex corresponding to F . If we blow up a smooth subvariety Z ⊂ F
that is not contained in any smaller EJ′ , then the dual simplicial complex changes
by attaching the cone over the star of the |J |-simplex corresponding to F . Thus in
both cases, the homotopy type of D(E) is unchanged and by [W	lo03] this implies
the general case.

If X has rational singularities, then Hi
(
E,OE

)
= 0 for i > 0 by [Ste83, 2.14].

By Part 1 of Lemma 42 below we conclude that Hi
(
DR(0 ∈ X),Q

)
= 0 for i > 0,

That is, DR(0 ∈ X) is Q-acyclic, as was observed in [ABW09].

Lemma 42. Let X be a simple normal crossing variety over C with irreducible
components {Xi : i ∈ I}. Let T = D(X) be the dual simplicial complex of X. Then

(1) There are natural injections Hr
(
T,C

)
↪→ Hr

(
X,OX

)
for every r.

(2) For J ⊂ I set XJ := ∩i∈JXi and assume that Hr
(
XJ ,OXJ

)
= 0 for every

r > 0 and for every J ⊂ I. Then Hr
(
X,OX

)
= Hr

(
T,C

)
for every r.

Proof. The proof is essentially in [GS75, pp. 68–72]. More explicit versions can be
found in [83, pp. 26–27] and [Ish85,ABW09].

Fix an ordering of I. It is not hard to check that there is an exact complex

0 → CX →
∑
i

CXi
→

∑
i<j

CXij
→ · · ·

where the kth term is
∑

|J|=kCXJ
and CXJ

is the constant sheaf with support XJ .

If i ∈ J , then the map CXJ\i → CXJ
is the natural restriction with a plus (resp.

minus) sign if i is in odd (resp. even) position in the ordering of J .
Thus the cohomology of CX is also the hypercohomology of the rest of the

complex
∑

iCXi
→

∑
i<jCXij

→ · · · . This is computed by a spectral sequence
whose E1 term is ∑

|J|=q

Hp
(
XJ ,C

)
⇒ Hp+q(X, )̧. (42.3)
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The key observation is that this spectral sequence degenerates at E2. The reason
is that Hp

(
XJ ,C

)
carries a Hodge structure of weight p and there are no maps

between Hodge structures of different weights.
Note also that the bottom (that is p = 0) row of (42.3) is

0 →
∑
i

H0
(
Ti,C

)
→

∑
i<j

H0
(
Tij ,C

)
→ · · ·

where Ti ⊂ T denotes the open star of the vertex corresponding to i ∈ I and
TJ = ∩i∈JTi. The homology groups of this complex are exactly the Hj

(
T,C

)
.

Thus we have injections

Hj
(
T,C

)
↪→ Hj

(
X,CX

)
. (42.4)

Similarly, there is an exact complex

0 → OX →
∑
i

OXi
→

∑
i<j

OXij
→ · · ·

which gives a spectral sequence whose E1 term is∑
|J|=q

Hp
(
XJ ,OXJ

)
⇒ Hp+q(X,OX). (42.5)

By Hodge theory, the natural map from the spectral sequence (42.5) to the spectral
sequence (42.3) is a split surjection; hence (42.5) also degenerates at E2 and so

Hj
(
T,C

)
↪→ Hj

(
X,OX

)
(42.6)

is an injection. Under the assumptions of (2) only the bottom row of (42.5) is
nonzero; hence, in this case, Hj

(
T,C

)
= Hj

(
X,OX

)
. �

In order to understand fundamental groups of links of rational singularities we
need the following definition.

Definition 43. Recall that a group G is called perfect if it has trivial abelianization
or, equivalently, if H1(G,Z) = 0. Similarly, G is called superperfect (see [Ber02])

if H̃i(G,Z) = 0 for i ≤ 2. We generalize this notion to homology with coefficients
in other commutative rings R: A group G is R-perfect if H1(G,R) = 0; G is R-

superperfect if H̃i(G,R) = 0 for i ≤ 2. (We will be interested only in the cases
R = Z and R = Q.)

Let W be a cell complex. Recall that by a theorem of Hopf [Hop42] the natural
homomorphism H2(W,R) → H2

(
π1(W ), R

)
is surjective and its kernel (in the case

R = Z) is the image of π2(W ) under the Hurewicz homomorphism.

Therefore, if H̃i(W,R) = 0 for i ≤ 2, then H̃i

(
π1(W ), R

)
= 0 for i ≤ 2.

To see surjectivity in Hopf’s theorem observe the following: For G = π1(|W |) we
let f : W → V = K(G, 1) be the map inducing the isomorphism of fundamental
groups. Then there exists a map of the 2-skeleta h : V (2) → W (2) which is a
homotopy-right inverse to f . Hence, H2(f) : H2(W,R) → H2(V,R) = H2(G,R) is
onto for every commutative ring R.

Example 44. Higman’s groupG = 〈xi|xi[xi, xi+1], i ∈ Z/4Z〉 is perfect and infinite
and contains no proper finite index subgroups [Hig51]. If W is the (2-dimensional)

presentation complex of G, then, clearly, χ(W ) = 1. Thus, H̃i(W,Z) = 0, i ≤ 2. In
particular, G is superperfect by Hopf’s theorem. Moreover, W is K(G, 1); see e.g.

[BG04]. Thus, H̃i(G,Z) = 0 for all i.
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Theorem 45. Let (0 ∈ X) be a rational singularity. Then π1

(
DR(X)

)
is

Q-superperfect and finitely presented. Conversely, for every finitely presented Q-
superperfect group G there is a 6-dimensional rational singularity (0 ∈ X) such
that

π1

(
DR(X)

)
= π1

(
R(X)

)
= π1

(
link(X)

) ∼= G.

Remark 46. (1) The singularities constructed in Theorem 45 are not isolated.
Their singular locus is 1-dimensional. Away from the origin it is the simplest
possible non-isolated singularity, locally given by the equation(

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 = 0
)
⊂ C7.

We do not know if in Theorem 45 one can get isolated singularities or not.
(2) For an arbitrary rational singularity (0 ∈ X), the three groups π1

(
DR(X)

)
,

π1

(
R(X)

)
and π1

(
link(X)

)
need not be isomorphic. For example, if dimX = 2,

then π1

(
DR(X)

)
= π1

(
R(X)

)
= 1 yet π1

(
link(X)

)
can be infinite [Mum61].

As another example, let S be a fake projective plane, that is, Hi(S,Z) ∼=
Hi(CP

2,Z) for every i yet π1(S) is infinite. Such surfaces were classified in [PY07].
Let

(
0 ∈ C(S)

)
denote a cone over S. Then π1

(
DR(C(S))

)
= 1 yet π1

(
R(C(S))

)
=

π1(S) is infinite.

Proof of Theorem 45. The first claim of Theorem 45 follows from the above
cited results of [Ste83] and [Hop42]. In order to see the converse, for every finitely
presented Q-superperfect group G we construct below (Theorem 49) a simple 5-
dimensional, Q-acyclic, Euclidean polyhedral complex C whose fundamental group
is isomorphic to G. Once this is done, as in the proof of Theorem 1, we obtain a
5-dimensional projective variety Z with simple normal crossing singularities such
that

G ∼= π1(Z) ∼= π1

(
DR(X)

) ∼= π1

(
R(X)

) ∼= π1

(
link(X)

)
.

Let T be the dual simplicial complex of Z. Then, by the construction of Z, T ∼=
Nerve(C). Furthermore, for i > 0, 0 = Hi(C,C) ∼= Hi(T,C) ∼= Hi(Z,OZ), the
latter isomorphism follows from Lemma 42. (Note that the vanishing condition in
Part 2 of Lemma 42 holds since intersections ZJ are blown-up projective spaces
BPc, c ∈ Ob(C), by the construction of the variety Z.)

We now apply Theorem 37 and the blow-up method of (38). The proof of
[Kol11, Prop. 9.1] shows that form � 1, the resultingX is a rational singularity. As
we noted, X does not have isolated singularities but they are completely described
by [Kol11, Claim. 5.10]. �

Our next goal is to construct polyhedral complexes C used in the proof of Theo-
rem 45. The following theorem was proven by Kervaire for R = Z, but examination
of the proofs in [Ker69] and [KM63] shows that they also apply to R = Q.

Theorem 47. Every finitely presented R-superperfect group is isomorphic to the
fundamental group of a smooth R-homology k-sphere Mk for every k ≥ 5; here
R = Z or R = Q.

Corollary 48. Let R = Z or R = Q. Then a finitely presented group G is R-
superperfect if and only if there exists a 5-dimensional finite simplicial complex W
so that π1(|W |) ∼= G and |W | is R-acyclic; that is, H̃∗(W,R) = 0.

Proof. One direction of this corollary follows from Hopf’s result above. Suppose
that G is R-superperfect and finitely presented. Take the 5-dimensional homology
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sphere M as in Theorem 47. Since M is smooth, we can assume that it is triangu-
lated. Remove from M the interior of a closed simplex. The result is the desired
simplicial complex W . �

We now estimate the dimension of Euclidean thickening of Z in Corollary 48.
A rough estimate is that Z immerses in R10, since Z is 5-dimensional. One can
do much better as follows. Due to the results of [KM63, §6], the 5-dimensional
manifold M5 constructed in Theorem 47 can be chosen to be almost parallelizable;
i.e., the complement to a point p in M5 is parallelizable. Therefore, M5\{p} admits
an immersion in R5; see [Phi67]. Hence, W admits a 5-dimensional thickening Y ;
see Section 3. If R = Z, then one can do even better and obtain a thickening Y of
W which is an open subset of R5; see [Liv05].

In order to reduce the dimension of X from 6 to 5 in Theorem 45 (and, thus,
obtain isolated singularities) we have to impose further restrictions on the funda-
mental group G. Recall that a finite presentation of a group is called balanced if
it has equal number of generators and relators. A group G is called balanced if it
admits a balanced presentation. Suppose that G is an R-superperfect group which
is the fundamental group of a 2-dimensional R-acyclic cell complex W . Without
loss of generality, W has exactly one vertex; i.e., W is a presentation complex
of G. Then Hi(W,R) ∼= Hi(G,R) = 0, i = 1, 2. In particular, χ(W ) = 1. It
then follows that W has the same number of edges and 2-cells. Hence, G is bal-
anced (with the balanced presentation complex W ). Hausmann and Weinberger in
[HW85] constructed examples of finite superperfect groups which are not balanced;
see [CHRR04] for more examples and a survey. Examples of finite Q-superperfect
groups which are not balanced are easier to construct: Take, for instance, the k-fold
direct product Ap,k = Z/pZ×· · ·×Z/pZ where k ≥ 2. In particular, such groups do
not admit Q-acyclic presentation complexes and they do not occur as π1

(
DR(X)

)
for a 3-dimensional rational singularity.

Suppose that G is balanced and R-superperfect (R = Z or R = Q); then there
exists a smooth 4-dimensional R-homology sphere M4 with the fundamental group
G; see [Ker69]. Moreover, in Kervaire’s construction one can assume that M4 is
almost parallelizable (i.e., it is a 4-dimensional spin-manifold); see [Kap04]. Thus,
for such G there is a 4-dimensional Euclidean thickening of its 2-dimensional (bal-
anced) presentation complex W . More explicitly, in view of Stallings’ theorem
[DR93], we can assume that W embeds in R4. Since W is a balanced presentation
complex of a perfect group, χ(W ) = 0, and, hence, b1(W ) = b2(W ) = 0. Thus we
obtain a Q-acyclic 4-dimensional Euclidean thickening of W .

Note that our methods cannot produce a 5-dimensional variety in Theorem 45
without the balancing condition. Specifically, given a Q-superperfect group G we
would need a 4-dimensional Q-acyclic manifold with the fundamental group G.
However, one can show, repeating the arguments of [HW85], that for all but finitely
many finite groups G constructed in [HW85] such a 4-dimensional manifold does
not exist.

Reducing the thickening dimension to 3 is, of course, very seldom possible since
it amounts to assuming that G is a 3-manifold group, which is quite rare among
finitely presented groups.

By combining these observations with Corollary 22, we conclude the following.

Theorem 49. Let G be an R-superperfect finitely presented group (R = Z or
R = Q). Then there exists a finite simple 5-dimensional Euclidean polyhedral
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complex C so that |C| is R-acyclic and has fundamental group isomorphic to G.
Moreover, if G admits a balanced presentation, then we can take such C to be 4-
dimensional.

Corollary 50. Suppose that G is a finitely presented Q-superperfect group which
admits a balanced presentation. Then in Theorem 45 one can take X which is
5-dimensional and (0 ∈ X) as an isolated singularity.

Corollary 51. There exists 5-dimensional, isolated, rational singularities (0 ∈ X)

so that the group πalg
1 (link(X)) is trivial yet π1(link(X)) is infinite.

Proof. Take Higman’s group G; see Example 44. Then G clearly has balanced
presentation (its presentation has four generators and four relators); the group G is
also superperfect, infinite and has no non-trivial finite quotients. Now, the assertion
follows from Theorem 45 and Corollary 50. �
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fondamentaux des variétés de dimension 4 (French), Comment. Math. Helv. 60 (1985),
no. 1, 139–144, DOI 10.1007/BF02567405. MR787667 (86m:57020)

[Ish85] Shihoko Ishii, On isolated Gorenstein singularities, Math. Ann. 270 (1985), no. 4,
541–554, DOI 10.1007/BF01455303. MR776171 (86j:32024)

[Kap04] Michael Kapovich, Conformally flat metrics on 4-manifolds, J. Differential Geom. 66
(2004), no. 2, 289–301. MR2106126 (2005h:53072)

[Ker69] Michel A. Kervaire, Smooth homology spheres and their fundamental groups, Trans.
Amer. Math. Soc. 144 (1969), 67–72. MR0253347 (40 #6562)

[KM63] Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math.
(2) 77 (1963), 504–537. MR0148075 (26 #5584)

[KM98a] Michael Kapovich and John J. Millson, On representation varieties of Artin groups,
projective arrangements and the fundamental groups of smooth complex algebraic va-

rieties, Inst. Hautes Études Sci. Publ. Math. 88 (1998), 5–95 (1999). MR1733326
(2001d:14024)

[KM98b] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cam-

bridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998.

http://www.ams.org/mathscinet-getitem?mr=2527322
http://www.ams.org/mathscinet-getitem?mr=2527322
http://www.ams.org/mathscinet-getitem?mr=1201430
http://www.ams.org/mathscinet-getitem?mr=1201430
http://www.ams.org/mathscinet-getitem?mr=2044495
http://www.ams.org/mathscinet-getitem?mr=2044495
http://www.ams.org/mathscinet-getitem?mr=690261
http://www.ams.org/mathscinet-getitem?mr=690261
http://www.ams.org/mathscinet-getitem?mr=1730176
http://www.ams.org/mathscinet-getitem?mr=932724
http://www.ams.org/mathscinet-getitem?mr=932724
http://www.ams.org/mathscinet-getitem?mr=576865
http://www.ams.org/mathscinet-getitem?mr=576865
http://www.ams.org/mathscinet-getitem?mr=0476737
http://www.ams.org/mathscinet-getitem?mr=0476737
http://www.ams.org/mathscinet-getitem?mr=0419850
http://www.ams.org/mathscinet-getitem?mr=0419850
http://www.ams.org/mathscinet-getitem?mr=0463157
http://www.ams.org/mathscinet-getitem?mr=0463157
http://www.ams.org/mathscinet-getitem?mr=1867354
http://www.ams.org/mathscinet-getitem?mr=1867354
http://www.ams.org/mathscinet-getitem?mr=0038348
http://www.ams.org/mathscinet-getitem?mr=0038348
http://www.ams.org/mathscinet-getitem?mr=0149492
http://www.ams.org/mathscinet-getitem?mr=0149492
http://www.ams.org/mathscinet-getitem?mr=0006510
http://www.ams.org/mathscinet-getitem?mr=0006510
http://www.ams.org/mathscinet-getitem?mr=787667
http://www.ams.org/mathscinet-getitem?mr=787667
http://www.ams.org/mathscinet-getitem?mr=776171
http://www.ams.org/mathscinet-getitem?mr=776171
http://www.ams.org/mathscinet-getitem?mr=2106126
http://www.ams.org/mathscinet-getitem?mr=2106126
http://www.ams.org/mathscinet-getitem?mr=0253347
http://www.ams.org/mathscinet-getitem?mr=0253347
http://www.ams.org/mathscinet-getitem?mr=0148075
http://www.ams.org/mathscinet-getitem?mr=0148075
http://www.ams.org/mathscinet-getitem?mr=1733326
http://www.ams.org/mathscinet-getitem?mr=1733326


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

952 MICHAEL KAPOVICH AND JÁNOS KOLLÁR
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