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The main purpose of this note is to correct the erroneous proof of polyhedral-
ity of integer norms given in section 2.1 (chapter “Thurston Norm”) of my book
“Hyperbolic Manifolds and Discrete Groups.” About 15 years ago I wrote a rather
intricate correction of the proof (using, among other things, the thick-thin decom-
position of the locally symmetric space of SL(n,Z)). The proof given below is due
to Roman Vershynin, it is much simpler and is totally elementary.

Definition 1. A norm || · || on Rn is called integer if it takes integer values on
integer vectors. A norm on Rn is called polyhedral if its unit ball is a polyhedron.

Theorem 2. Every integer norm on Rn is polyhedral.

Proof. Let ||x||2 denote the standard Euclidean norm on V = Rn; we will use the
same notation for the dual Euclidean norm on V ∗. Let f(x) = ||x|| be a norm on
V ; let B denote the closed unit ball of this norm. Thus, there exists M > 0 such
that

M−1||x||2 ≤ ||x|| ≤M ||x||2.
We will use the notation || · ||∗ for the dual norm of || · || on V ∗ and 〈·, ·〉 for the
pairing between V and V ∗: For α ∈ V ∗,

||α||∗ = max
v∈B
〈α, v〉.

Every point x ∈ ∂B admits a (not necessarily unique) supporting affine hyper-
plane Hx, which is parallel to the kernel of a nonzero linear functional αx ∈ V ∗

such that

〈αx, b〉 ≤ ||αx||∗,∀b ∈ B
with the equality attained at b = x.

Thus, if S ⊂ ∂B is a dense subset then for every v ∈ V

(1) ||v|| = sup
x∈S

〈αx, v〉
||αx||∗

.

If the norm-function f is differentiable at x ∈ ∂B then

αx = dfx.

Since convex functions are differentiable a.e. in V and their set of points of dif-
ferentiability is conical (i.e. with every x ∈ V it contains the ray R+ · x), the set
S ⊂ ∂B of differentiability points of f is dense in ∂B.

Lemma 3. For every x ∈ S, ||αx||2 ≤M .

Proof. For every nonzero vector h ∈ V with unit Euclidean norm,

||x+ h|| − ||x||
||h||2

≤ ||h||
||h||2

≤M.
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Applying this inequality to the vectors th, t ∈ R×, where ||h||2 = 1, and taking the
limit as t→ 0+, we obtain:

αx(h) = dfx(h) ≤M. �

Lemma 4. Suppose now that || · || is an integer norm on Rn. Then for every x ∈ S,
αx is an integer vector.

Proof. Fix x ∈ S. By the definition of the derivative,

||x+ h|| = ||x||+ 〈αx, h〉+ o(||h||2),

as ||h||2 → 0.
Since the closed Euclidean balls of radius

√
n centered at integer points cover

the entire Rn, for every N ∈ N there exists a vector y ∈ Rn such that

Nx+ y ∈ Zn, ||y||2 ≤
√
n.

Therefore, for the vectors h = 1
N y, we have

||x+
1

N
y|| = ||x||+ 1

N
< αx, y〉+ o(

1

N
),

as N →∞. Similarly, for any given integer vector z ∈ Zn,

||x+
1

N
(y + z)|| = ||x||+ 1

N
〈αx, y + z〉+ o(

1

N
),

as N →∞. Hence,

||x+
1

N
(y + z)|| − ||x+

1

N
y|| = 1

N
〈αx, z〉+ o(

1

N
),

and, thus,
||Nx+ (y + z)|| − ||Nx+ y|| = 〈αx, z〉+ o(1),

as N →∞. Observe that, by the choice of y and z and since || ·|| is an integer norm,
the left-hand side of this equation is integer. Hence, taking the limit as N →∞, we
see that left-hand side converges to an integer, while the right-hand side converges
to 〈αx, z〉. Thus, 〈αx, z〉 ∈ Z for each integer vector z ∈ Zn, i.e. αx is an integer
linear functional. �

We now can conclude the proof of the theorem. The linear functionals αx, x ∈ S,
are all integer with the norm bounded by M . Hence, they form a finite set A and
for every v ∈ V ,

||v|| = sup
x∈S

〈αx, v〉
||αx||∗

= max
α∈A

〈α, v〉
||α||∗

.

Hence, the unit ball B of the norm || · || is given by finitely many linear inequalities

〈α, v〉
||α||∗

≤ 1, α ∈ A,

i.e. is a polyhedron. �


