INTEGER NORMS ARE POLYHEDRAL

MICHAEL KAPOVICH

The main purpose of this note is to correct the erroneous proof of polyhedral-
ity of integer norms given in section 2.1 (chapter “Thurston Norm”) of my book
“Hyperbolic Manifolds and Discrete Groups.” About 15 years ago I wrote a rather
intricate correction of the proof (using, among other things, the thick-thin decom-
position of the locally symmetric space of SL(n,Z)). The proof given below is due
to Roman Vershynin, it is much simpler and is totally elementary.

Definition 1. A norm || - || on R™ is called integer if it takes integer values on
integer vectors. A morm on R"™ is called polyhedral if its unit ball is a polyhedron.

Theorem 2. Every integer norm on R™ is polyhedral.

Proof. Let ||z||2 denote the standard Euclidean norm on V' = R"™; we will use the
same notation for the dual Euclidean norm on V*. Let f(z) = ||z|| be a norm on
V; let B denote the closed unit ball of this norm. Thus, there exists M > 0 such
that

MY |zllz < (|2l < Mz
We will use the notation || - ||* for the dual norm of || - || on V* and (-,-) for the
pairing between V and V*: For a € V¥,

*_
llef|* = max{a, v).

Every point @ € OB admits a (not necessarily unique) supporting affine hyper-
plane H,, which is parallel to the kernel of a nonzero linear functional o, € V*
such that

(g, b) < ||ae||", Vb € B
with the equality attained at b = .
Thus, if S C 0B is a dense subset then for every v € V

(az,v)
(1) [lv]| = sup -
zes |log]
If the norm-function f is differentiable at x € 9B then
oy = df.

Since convex functions are differentiable a.e. in V' and their set of points of dif-
ferentiability is conical (i.e. with every & € V it contains the ray Ry - z), the set
S C OB of differentiability points of f is dense in 0B.

Lemma 3. For every x € S, ||ag|ls < M.

Proof. For every nonzero vector h € V with unit Euclidean norm,

la+hl =il _ IRl _
Wl = Al
1
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Applying this inequality to the vectors th,t € R*, where ||h||2 = 1, and taking the
limit as t — 04, we obtain:

ag(h) = dfs(h) <M. 0O

Lemma 4. Suppose now that ||-|| is an integer norm on R™. Then for every x € S,
Q. 1S an integer vector.

Proof. Fix x € S. By the definition of the derivative,
||z + hll = [|2]| + (o, h) + o([[Rl]2),

as ||hl]2 — 0.
Since the closed Euclidean balls of radius y/n centered at integer points cover
the entire R™, for every IV € N there exists a vector y € R™ such that

Nz +yeZ ||yl < Vn.

Therefore, for the vectors h = %y, we have

o+ ull = Nl + 5 < ) + 0l 3)
x4+ —yl|=||z — < Qg, o(=),
NY N TN
as N — oo. Similarly, for any given integer vector z € Z",
1 1 1
o+ 5+ 21 = llell + 3wy + 2) +ol0)
as N — oo. Hence,

1 1 1
Nﬂ” = N<%,Z> +0(N)’

1

lle + w7 ( + 2 = [l +

and, thus,
INz + (y + 2)|| = |INz + yl| = (as,2) +o(1),

as N — oo. Observe that, by the choice of y and z and since ||-|| is an integer norm,
the left-hand side of this equation is integer. Hence, taking the limit as N — oo, we
see that left-hand side converges to an integer, while the right-hand side converges
to {ay,z). Thus, (a,,z) € Z for each integer vector z € Z™, i.e. «, is an integer
linear functional. O

We now can conclude the proof of the theorem. The linear functionals a,,x € S,
are all integer with the norm bounded by M. Hence, they form a finite set A and
for every v € V,

ol = sup {2220) — gy (000
zes |lagl[* aed [|of|
Hence, the unit ball B of the norm || || is given by finitely many linear inequalities
M <l,a€A,
||

i.e. is a polyhedron. (]



