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PATTERSON–SULLIVAN THEORY FOR ANOSOV SUBGROUPS

SUBHADIP DEY AND MICHAEL KAPOVICH

Abstract. We extend several notions and results from the classical Patterson–
Sullivan theory to the setting of Anosov subgroups of higher rank semisimple
Lie groups, working primarily with invariant Finsler metrics on associated
symmetric spaces. In particular, we prove the equality between the Hausdorff
dimensions of flag limit sets, computed with respect to a suitable Gromov
(pre-)metric on the flag manifold, and the Finsler critical exponents of Anosov
subgroups.
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Consider a discrete group Γ of isometries of the n-dimensional hyperbolic space
H

n. The critical exponent δ is a fundamental numerical invariant associated with Γ
which measures the asymptotic growth rates of Γ-orbits inH

n. The relation between
the Hausdorff dimension of the limit set Λ(Γ) of Γ and its critical exponent is now a
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classical result. In an influential paper [47], Sullivan proved the following theorem
extending pioneering work by Patterson [38] on Fuchsian groups:

Theorem ([47, Thm. 8]). Let Γ be a convex-cocompact subgroup of the isometry
group of Hn. Then the critical exponent δ of Γ equals to the Hausdorff dimension
of Λ(Γ).

Later Sullivan generalized this theorem for geometrically finite Kleinian groups
[48]. An important ingredient of Sullivan’s proof of this theorem is the existence
of a finite, non-null Borel measure on Λ(Γ) that changes conformally under the Γ-
action. The construction of such measure goes back to Patterson’s original idea in
[38]. Measures of this type (resp. a class of “well-behaved” measures) are commonly
referred to as Patterson–Sullivan measures (resp. densities). We refer to Nicholls’
book [37] for a self-contained exposition on these results.

Since its introduction, the theory of Patterson and Sullivan has attracted a
lot of attention. Further developments have been made by various people who
analyzed more general classes of discrete groups and their limit sets. We list some
of these developments here. Corlette [11] and Corlette–Iozzi [12] proved the above
theorem for geometrically finite groups of isometries of rank-one symmetric spaces,
and Bishop-Jones [5] extended these results to arbitrary discrete isometry groups
of rank-one symmetric spaces. Yue [51] and Ledrappier [33] studied the case of
Hadamard spaces of negative curvature.

There has been a considerable amount of development to understand the
Patterson–Sullivan theory for discrete subgroups of higher rank semisimple Lie
groups acting on its symmetric space, starting with Bishop–Steger [4] and Burger
[8] in the rank-two case. Later, Albuquerque [1], Quint [42, 43], and Link [34]
considered the case of Zariski-dense discrete subgroups in the isometry groups of
general higher rank symmetric spaces. Link [36] also studied the case of products
of rank-one symmetric spaces. In Appendix B we discuss these papers in relation
to our work in more detail.

In the more abstract setting of Gromov hyperbolic spaces, much of Sullivan’s
work in [47] was generalized by Coornaert [10] to the class of quasiconvex-cocompact
groups. See also work of Paulin [39] on actions of subgroups of Gromov hyperbolic
groups. Recent developments by Das–Simmons–Urbański [13] achieved greater gen-
eralizations of the Patterson–Sullivan theory (e.g., a generalization of Bishop-Jones’
theorem) in the case of “infinite-dimensional” Gromov hyperbolic spaces.

The goal of this paper is to study the Patterson–Sullivan theory for Anosov
subgroups. The notion of Anosov subgroups was first introduced by Labourie [32]
to study PSL(n,R)-Hitchin representations [25] of closed surface groups. This was
further developed by Guichard-Wienhard [23] and Kapovich-Leeb-Porti [29–31].
Notably, Anosov subgroups extend the class of convex-cocompact subgroups of
rank-one semisimple Lie groups to higher rank.

In this paper, we primarily work with some of the Kapovich-Leeb-Porti’s char-
acterizations of Anosov subgroups. We briefly review these characterizations, the
ones which we will need for this paper (namely, τmod-URU, τmod-Morse, and τmod-
RCA), in Subsection 1.6. Since we do not use the original notion of Anosov rep-
resentations as introduced by Labourie [32], and this notion has become classical
at the time of writing the paper, we do not include Labourie’s definition. Readers
who are interested to understand the connection between Labourie’s definition and
Kapovich-Leeb-Porti’s characterizations are encouraged to read [30, Subsec. 5.11].
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For instance, it is shown in [30, Subsec. 5.8] that Anosov and Morse properties
are equivalent. In the same paper [30], the authors show that Morse (or any other
equivalent notion, including RCA) implies the URU property. Finally, in [31], it is
shown that URU implies Morse.

Main results. Let G be a noncompact real semisimple Lie group, X = G/K be
the associated symmetric space and Γ be a τmod-Anosov subgroup of G. We will
be assuming several conditions on G and X; they are labeled as “assumption” in
Section 1. We consider two types of G-invariant (pseudo-)metrics on X, namely,
one is a G-invariant Riemannian metric dRiem of the symmetric space X, and the
other one is a G-invariant Finsler distance dθ̄ which depends on the choice of a
direction θ̄ in the Weyl chamber (see Section 2). The critical exponents of Γ with
respect to these two metrics, denoted by δRiem and δθ̄, respectively, are defined in
the usual fashion, i.e., as the exponents of convergence of an associated Poincaré
series (see Section 2). Using the classical construction of Patterson, we define a
Γ-invariant θ̄-conformal density on the flag limit set of Γ (see Section 3).

Throughout this paper, the Finsler metric dθ̄ is given more emphasis than its
Riemannian counterpart. For example, the construction of the above mentioned
Patterson–Sullivan density is carried out in terms of the Finsler metric. The main
reason for this choice is that Finsler metrics reflect the asymptotic geometry of Γ
better than the Riemannian metric. In fact, an interesting feature of dθ̄ (for suitably
chosen θ̄) is that the orbits of Anosov subgroups inX are Gromov-hyperbolic spaces
when equipped with dθ̄. See Corollary 4.8.

Let σmod be a maximal simplex in the Tits building of X, ι : σmod → σmod be
the opposition involution, τmod be an ι-invariant face of σmod, P be the maximal
parabolic subgroup of G that stabilizes τmod, and Flag(τmod) = G/P be the partial
flag manifold associated to the face τmod. We fix an ι-invariant type1 θ̄ ∈ int(τmod).

Theorem A. Let Γ be a nonelementary τmod-Anosov subgroup of G and δθ̄ be the
Finsler critical exponent for the action of Γ on the symmetric space (X, dθ̄). Then

the Patterson–Sullivan density2 μθ̄ on the flag limit set Λτmod
(Γ) ⊂ Flag(τmod) is

the unique (up to scaling) Γ-invariant θ̄-conformal density. Moreover,

(i) The density μθ̄ is non-atomic and its dimension equals to δθ̄.

(ii) The support of μθ̄ is Λτmod
(Γ) and the action Γ � Λτmod

(Γ) is ergodic with

respect to μθ̄.
(iii) The critical exponent δθ̄ (as well as the Riemannian critical exponent δRiem)

is positive and finite.
(iv) The θ̄-Poincaré series of Γ diverges at the critical exponent δθ̄. In other

words, Γ has θ̄-divergence type.
(v) The δθ̄-dimensional Hausdorff measure on Λτmod

(Γ) with respect to a Gro-
mov (pre-)metric3 is a member of a Γ-invariant conformal density (called
the Hausdorff density). In particular, the Hausdorff dimension of Λτmod

(Γ)
is δθ̄.

While constructions of conformal densities for discrete subgroups of semisimple
Lie groups were done earlier (in the Zariski-dense case) by Albuquerque [1] and

1Most of our main results are still valid without the assumption that θ̄ is ι-invariant; see the
remark after Theorem B.

2See Definition 3.4.
3See Section 5.
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Quint [42],4 most of the results of our Theorem A are not contained in their work,
even in the Zariski-dense setting. Note that the theorem is false in general for
nonelementary discrete subgroups of rank-one Lie groups which are not convex-
cocompact. The proof of the theorem strongly relies on the τmod-Anosov condition.

The fact that μθ̄ is the unique Γ-invariant θ̄-conformal density is proven in Corol-
lary 8.4. The main ingredients in the proof are a generalization of Sullivan’s shadow
lemma proven in Theorem 6.1, and an ergodicity argument (see Theorem 8.1) due
to Sullivan. The proof of part (i) of the theorem is given in Corollaries 6.2 and 7.5.
The second half of part (ii) follows from Theorem 8.3 while the first half follows

from the facts that the support of μθ̄ is a closed Γ-invariant subset of Λτmod
(Γ) and

the action Γ � Λτmod
(Γ) is minimal. The part (iii) is proven in Propositions 2.6 and

3.5. See also the remarks following these propositions where δRiem is analyzed. The
part (iv) follows from Corollary 6.5. The Hausdorff density in part (v) is studied in
Section 9 (cf. Theorem 9.5). The background Gromov (pre-)metric is introduced
in Section 5 where we also prove that the action Γ � Λτmod

(Γ) with respect to this
metric is conformal (see Corollary 5.8).

We should note that some of the results in this paper are proven for more general
classes of discrete subgroups of G with the hope that the results may be useful, for
instance, in the study of relatively Anosov subgroups.5

For a much wider class of (uniformly) τmod-RA
6 subgroups we prove the following

results.

Theorem B. Let Γ < G be a nonelementary τmod-RA subgroup of G, and let δθ̄
be its θ̄-critical exponent. Then δθ̄ ∈ (0,∞]. Let μ be a β-dimensional Γ-invariant
θ̄-conformal density (if exists).

(i) (Shadow Lemma) Fix x, x0 ∈ X. There exists r0 > 0 such that for all
r ≥ r0 and all γ ∈ Γ satisfying dRiem(x, γx0) > r,

μx(S(x : B(γx0, r))) � exp (−βdθ̄(x, γx0))

(Theorem 6.1).
(ii) β ≥ δθ̄ − δcon

θ̄
(Theorem 7.1).

If we further assume that Γ is uniformly τmod-regular, then

(iii) δθ̄ is finite (Proposition 2.6), and
(iv) the density μ cannot have atoms at conical limit points (Corollary 6.2).

Remark. Theorem A, with the exception of the item (v), and Theorem B remain
valid without the assumption that the type θ̄ ∈ int(τmod) is ι-invariant. In Appen-
dix C, we show how to generalize these statements without this assumption.

Some historical remarks. The early work on critical exponent of the Patterson–
Sullivan theory in the higher rank was mostly developed for general (but, typi-
cally, Zariski dense) discrete subgroups of higher rank Lie groups; we discuss this
early work (in relation to our paper) in Appendix B. Since the introduction of
Hitchin representations of surface groups (and proof of their Anosov property by
Labourie) and, more generally, Anosov representations of hyperbolic groups, a sub-
stantial work was done investigating different versions of critical exponent and the

4See Appendix B where we give a brief discussion about these papers.
5Relatively Anosov subgroups defined by Kapovich-Leeb [27] are an extension of the class of

geometrically finite groups into the higher rank.
6See Subsection 1.6 for this definition.
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Patterson–Sullivan theory, and their applications. Below is a brief discussion of this
work.

For certain classes of Anosov subgroups, the Patterson–Sullivan theory was
used by Sambarino in [45, 46] to solve certain counting problems, while in [7]
Bridgemann–Canary–Labourie–Sambarino used related thermodynamic formalism
to construct pressure metrics on spaces of Hitchin representations. Moreover,
Glorieux–Monclair [20] studied the Patterson–Sullivan theory in the case of convex-
cocompact subgroups of the isometry group of H

p,q equipped with the pseudo-
Riemannian metric. In their work [40], Potrie and Sambarino prove some inter-
esting inequalities for critical exponents of Hitchin representations and a beautiful
rigidity theorem characterizing “Fuchsian” representations in the Hitchin compo-
nent, which are reminiscent of the earlier inequalities for critical exponents and
rigidity theorems (going back to the work of R. Bowen) for Kleinian groups, except
that the inequalities are in the opposite direction.

While working on this article, we came to know about two very recent devel-
opments by Pozzetti–Sambarino–Wienhard [41] and Glorieux–Monclair–Tholozan
[21], which are related to our work. Independently, the authors of these articles
proved that the Hausdorff dimension of the limit set of a projective Anosov sub-
group Γ in the real projective space with respect to the Riemannian metric is
bounded above by a certain critical exponent, called the “simple root critical expo-
nent” in the second article. The main result of [41] is stronger than this inequality
for a special class of (1,1,2)-hyperconvex representations, in which case the Haus-
dorff dimension equals to the simple root critical exponent. They went further to
prove that for hyperconvex subgroups Γ having ∂Γ homeomorphic to a sphere, the
limit set of Γ in the projective space is a C1 sphere. As a corollary of these two
results, they obtained an earlier result of Potrie–Sambarino [40] on the entropy of
Hitchin representations. In [21], the authors also aimed to get a lower bound for
the Hausdorff dimension of the limit set of general projective Anosov subgroups Γ.
As it is mentioned in [21], initially, the authors aimed to obtain such a lower bound
with respect to the Riemannian metric; eventually, they proved such a lower bound
for a certain Gromov metric on the limit set. Using our Theorem A and relying
on previously known computations of Busemann functions (see Example 5.10), we
obtain a lower bound for this Hausdorff dimension with respect to the Riemannian
metric (see Theorem 10.1).

After this work was completed, Andrés Sambarino informed us that Ledrappier’s
methods from [33] (in conjunction with results of [7, Sec. 3.2]) can be used to
obtain some of the results of our paper; we refer the reader to [45, 46] for similar
applications of Ledrappier’s work.

Notations

Here we list some commonly used notations.

• B(Y ): Class of Borel subsets of a topological space Y
• B(x, r): (Closed) ball of radius r centered at x
• dθ̄, dRiem: Finsler and Riemannian metrics, respectively, on X (see Sec-
tion 2)

• x̂y, xy: Finsler7 and Riemannian geodesic segments, respectively, connect-
ing x, y ∈ X (see Section 2)

7Note that Finsler geodesic segments connecting two points in X are usually non-unique.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

8692 SUBHADIP DEY AND MICHAEL KAPOVICH

• δθ̄, δRiem: Finsler and Riemannian critical exponents, respectively, of Γ (see
Section 2)

• Dθ̄,ε
x : Gromov premetric (see Definition 5.2)

• Bθ̄
τ : Busemann cocycle (see (3.1))

1. Geometric preliminaries

In this section, we briefly present some background material needed for the paper.

1.1. Symmetric spaces. A symmetric space X is a Riemannian manifold that has
an inversion symmetry or point-reflection with respect to each point x ∈ X: This
is an isometric involution sx : X → X fixing x and sending each tangent vector
at x to its negative. In this paper we only consider symmetric spaces which are
simply-connected and have noncompact type. The latter means that X has no flat
deRham factor and the sectional curvature of X is non-positive. In particular, X is
a Hadamard manifold and, hence, is diffeomorphic to a euclidean space. We refer
to Eberlein’s book [16] for a detailed discussion of symmetric spaces.

Assumption 1. The symmetric space X is simply-connected and of noncompact
type.

A symmetric space X can be written as G/K where G is a semisimple Lie group
whose Lie algebra does not have compact and abelian factors, and K is a maximal
compact subgroup of G. Moreover, this group G can be chosen to have finite center
and be commensurable with the isometry group Isom(X) of X. For example, one
can choose G to be the identity component of Isom(X).

Assumption 2. The semisimple Lie group G has finite center and is commensu-
rable with the isometry group Isom(X) of the symmetric space X.

Each point x ∈ X determines a canonical decomposition of the Lie algebra g of
G called the Cartan decomposition,

g = k+ p,

where k is tangent to the stabilizer of a point x ∈ X = G/K, and p can be
realized as the tangent space of the symmetric space X at x. The dimension of a
maximal abelian subalgebra a ⊂ p is called the rank of X. The exponential map
expx : p → X identifies a with a maximal flat F ⊂ X through x and, hence, the
rank of X can also be defined as the dimension of a maximal totally geodesic flat
subspace in X. A chosen maximal flat Fmod ⊂ X is called the model flat which
we isometrically identify with R

k where k = rank(X). The image in Isom(F ) of
the G-stabilizer of Fmod is isomorphic to R

k
� W , where the first factor acts on

Fmod
∼= R

k by translations while the second factor W , called the Weyl group, is
finite, fixes the origin, and is generated by hyperplane reflections. The closures
of the connected components of the complement of the reflecting hyperplanes (for
hyperplane reflections in W ) in Fmod are called chambers. A chosen chamber is
called the model Weyl chamber ; we denote it by Δ.

1.2. Boundary at infinity. For a symmetric space X, there are multiple notions
of (partial) boundary at infinity. The space of equivalence classes of asymptotic
rays is called the visual boundary of X and denoted ∂∞X. The visual boundary
is naturally identified with the unit tangent sphere T 1

xX at any point x ∈ X. The
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topology it gets from this identification is called the visual topology. Attaching the
visual boundary to X provides a compactification of X.

Another (strictly finer) topology on ∂∞X is given by the G-invariant Tits angle
metric:

∠Tits(ζ, η) = sup
x∈X

∠x(ζ, η),

where ∠x(ζ, η) denotes the angle between the rays emanating from x and asymptotic
to ζ and η. The boundary ∂∞X with this topology is called the Tits boundary
∂TitsX.

The Tits boundary ∂TitsX carries a canonical G-invariant structure of a spherical
simplicial complex called the Tits building of X. This can be understood as follows:
Consider the ideal boundary ∂∞Fmod of Fmod where k = rank(X). This is identified
with the unit sphere a1 of a and thus, we have an action of the Weyl group W �

∂TitsFmod. The pair (∂TitsFmod,W ) is a spherical Coxeter complex which generates
a spherical simplicial complex structure on entire ∂TitsX by the G-action.

Assumption 3. We assume that the Tits building is thick, i.e., every simplex of
codimension one is a face of three maximal simplices.8

We do not have to worry about this assumption when X is an irreducible sym-
metric space. The Tits building of X, in that case, is thick. Nevertheless, we
impose this assumption to avoid situations like in Example 1.1.

Example 1.1. Let X = H
2 × H

2, and G = PSL(2,R) × PSL(2,R) × (Z/2Z),
where the nontrivial element in Z/2Z acts by swapping the factors of X. The
corresponding Tits building of X is not thick.

We denote the intersection of Δ with the unit sphere in Fmod centered at the
origin by σmod. This is a fundamental domain for the action W � ∂TitsFmod where
∂TitsFmod is identified with the unit sphere in Fmod centered at the origin. We call
σmod the model chamber. Any other chamber (i.e., a top-dimensional simplex) in
the Tits building is naturally identified with σmod via a G-equivariant map, called
the type map,

θ : ∂TitsX → σmod.

We reserve the notation τmod for the faces of σmod. An ideal point ζ ∈ ∂TitsX
(resp. a simplex τ ⊂ ∂TitsX) is called of type θ̄ ∈ σmod (resp. of type τmod ⊂ σmod)
if θ(ζ) = θ̄ (resp. θ(τ ) = τmod). For θ̄ ∈ τmod and a simplex τ of type τmod, we
use the notation θ̄(τ ) to denote the unique point in τ of type θ̄. The opposition
involution ι is an automorphism of σmod which is defined as the negative of the
longest element in the Weyl group.

Two simplices τ1, τ2 in the Tits building are called antipodal if there exists a
point-reflection sx swapping these two. Their types are related by θ(τ1) = ιθ(τ2).
In particular, when τ1 has an ι-invariant type τmod, then any antipodal simplex τ2
also has type τmod. In this paper, we only consider types that are ι-invariant.

We now describe an important class of partial boundaries of X which are central
to our study. Consider the action of G on the Tits building. The stabilizer of a
face τmod of σmod is a parabolic subgroup Pτmod

of G and we identify the quotient
G/Pτmod

with the set of all simplices of type τmod in the Tits building. This quotient

8This is a standing assumption on spherical buildings in the papers by Kapovich, Leeb and
Porti we rely upon in our work. See for instance, [30, Lemma 2.4] and its usage elsewhere in that
paper.
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G/Pτmod
is a smooth compact manifold, called the partial flag manifold of type

τmod and is denoted Flag(τmod). The partial compactification of X by attaching
Flag(τmod) is denoted

X̄τmod = X ∪ Flag(τmod)

which is topologized via the topology of flag convergence (see Subsection 1.6). In the
special case when τmod = σmod, the associated parabolic subgroup Pσmod

is minimal
and Flag(σmod) = G/Pσmod

is the full flag manifold, also called the Furstenberg
boundary of X.

A subset A ⊂ Flag(τmod) is called antipodal if any two distinct simplices in A
are antipodal.

1.3. Δ-Valued distances and a generalized triangle inequality. There is a
canonical map dΔ : X ×X → Δ which is defined as follows: For a pair of points
(x, y) in X, there is an element g ∈ G which maps x to the origin in Δ and y to a
point v ∈ Δ. We define dΔ(x, y) = v. Note that the norm ‖dΔ(x, y)‖ (induced by
the euclidean inner product on Fmod

∼= R
k) equals dRiem(x, y) where dRiem denotes

the distance function induced by the Riemannian metric on X.
For a pair (x, y) ∈ X × X, the value dΔ(x, y) is called the Δ-valued distance

between x and y. This is a complete G-congruence invariant for oriented line
segments in X. The Δ-valued distances satisfy generalized triangle inequalities (see
[28]). In the paper we will need the following triangle inequality. For x, y, z ∈ X,

(1.1) ‖dΔ(x, y)− dΔ(x, z)‖ ≤ dRiem(y, z).

1.4. Parallel sets, cones, and diamonds. For a detailed discussion on this sub-
section, we refer to [29, Subsec. 2.4], [30, Subsec. 2.5].

Let τ± be a pair of antipodal simplices in the Tits building of X. The parallel
set P (τ+, τ−) is the union of all maximal flats in X whose ideal boundary contains
τ+ ∪ τ− as a subset. This is a totally geodesic submanifold of X.

For a simplex τ , the star st(τ ) of τ is the union of all chambers in the Tits building
containing τ . The open star ost(τ ) of τ is the union of all the open simplices whose
closures contains τ . For a face τmod of σmod (viewed as a complex), define the open
star ost(τmod) similarly. The boundary ∂st(τmod) is the complement of ost(τmod) in
σmod.

Let τmod be an ι-invariant face of σmod. An ideal point ξ ∈ ∂∞X is called
τmod-regular if its type is contained in ost(τmod). Moreover, given an ι-invariant
compact subset Θ ⊂ ost(τmod), an ideal point ξ ∈ ∂∞X is called Θ-regular if its
type is contained in Θ. A nondegenerate geodesic segment (or line or ray) in X is
called τmod-regular (resp. Θ-regular) if the ideal endpoints of its line extension are
τmod-regular (resp. Θ-regular).

For a simplex τ in the Tits building and a point x ∈ X, the τmod-cone V (x, st(τ ))
with apex x is the union of all rays emanating from x asymptotic to a point ξ ∈ st(τ ).
For a τmod-regular geodesic segment xy ⊂ X, the τmod-diamond ♦τmod

(x, y) is the
intersection of the opposite cones V (x, st(τ+)) and V (y, st(τ−)) containing it. The
points x and y are called the endpoints of ♦τmod

(x, y). The cones and parallel sets
can be interpreted as limits of diamonds where, respectively, one or both endpoints
diverge to infinity. All of these are convex subsets of X (see [29, Prop. 2.14],
[30, Prop. 2.10]). In particular, the cones are nested: For every y ∈ V (x, st(τ )),
V (y, st(τ )) ⊂ V (x, st(τ )).
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Let Θ be an ι-invariant compact subset of ost(τmod). In a similar way as above,
the Θ-cone V (x, ostΘ(τ )) with apex x is the union of all rays emanating from x
asymptotic to a point ξ ∈ st(τ ) of type Θ. Note that V (x, ostΘ(τ )) is strictly
contained inside V (x, st(τ )).

1.5. Morse embeddings. The Morse property in higher rank was introduced by
Kapovich-Leeb-Porti in [29].

Recall that a quasigeodesic in X is a quasiisometric embedding φ : I → X of an
interval I ⊂ R. We say that φ is τmod-regular quasigeodesic if for all sufficiently
separated points t1, t2 ∈ I, the segment φ(t1)φ(t2) is τmod-regular. We say that φ
is a τmod-Morse quasigeodesic if it is τmod-regular and for all sufficiently separated
points t1, t2 ∈ I, the image φ([t1, t2]) is uniformly close to ♦τmod

(φ(t1), φ(t2)).
Let Z be a geodesic Gromov-hyperbolic metric space (cf. Definition 4.2).

Definition 1.2 (Morse embeddings). A quasiisometric map φ : Z → X is called a
τmod-Morse embedding if the image of every geodesic is a τmod-Morse quasigeodesic
with uniformly controlled coarse-geometric quantifiers: There exist a constant D >
0 and an ι-invariant compact subset Θ ⊂ ost(τmod) such that if z1z2 is a geodesic

segment in Z of length ≥ D, then φ(z1)φ(z2) is a Θ-regular geodesic in X and the
image φ([z1, z2]) is D-close to ♦τmod

(φ(z1), φ(z2)).

1.6. Discrete subgroups of G and their limit sets. We consider discrete sub-
groups with various levels of regularity and their flag limit sets. Most of these
notions first appear in the work of Benoist [2]; our discussion follows [29] and [30].

We first recall the notion of regular sequences in X. Let τmod be an ι-invariant
face of σmod. Let V (0, ∂st(τmod)) denote the union of all rays in Δ emanating
from 0 asymptotic to points ξ ∈ ∂st(τmod). A sequence (xn) on X diverging to
infinity is τmod-regular if for all x ∈ X, the sequence (dΔ(x, xn))n∈N

in Δ diverges
away from V (0, ∂st(τmod)). Furthermore, a τmod-regular sequence (xn) is called
uniformly τmod-regular if the sequence (dΔ(x, xn))n∈N

in Δ diverges away from
V (0, ∂st(τmod)) at a linear rate,

lim inf
n→∞

d (dΔ(x, xn), V (0, ∂st(τmod)))

d(0, dΔ(x, xn))
> 0,

where d denotes the euclidean distance on Δ. Accordingly, a sequence (gn) in G is
τmod-regular (resp. uniformly τmod-regular) if for some (equivalently, every) x ∈ X,
the sequence (gn(x)) is τmod-regular (resp. uniformly τmod-regular).

Recall from Subsection 1.2 that we have identified Flag(τmod) with the set of all
simplices of type τmod in the Tits building of X. Also, recall the notion of the stars
st(τ ), and cones V (x, st(τ )) from Subsection 1.4.

Definition 1.3 (Shadows). For x ∈ X and A ⊂ X, the shadow of A in Flag(τmod)
from x is

(1.2) S(x : A) = {τ ∈ Flag(τmod) | A ∩ V (x, st(τ )) �= ∅}.

Remark 1.4. The notion of shadows is used in [31, Subsec. 3.8] to produce a
topology, called the shadow topology, in Flag(τmod). This topology is generated by
the following basic subsets:

S(x : B(y, r)), where x, y ∈ X, and r > 0.
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Moreover, the shadow topology coincides with the standard topology (i.e., the un-
derlying topological space of a K-invariant Riemannian metric) on Flag(τmod). See
[31, Lem. 3.82].

Let (gn) be a τmod-regular sequence in G. A sequence (τn) in Flag(τmod) is
called a shadow sequence of (gn) if there exists x ∈ X such that, for every n ∈ N,
τn = S(x : {gnx}). A τmod-regular sequence (gn) is said to be τmod-flag-convergent
to τ ∈ Flag(τmod) if a(ny) shadow sequence (τn) of (gn) converges to τ . This notion
of flag-convergence is the same as the one originally introduced in [31], where the
shadow topology was not yet defined.

The notion of flag-convergence leads to the definition of flag limit sets of discrete
subgroups Γ < G.

Definition 1.5 (Limit sets). The τmod-flag limit set of a discrete subgroup Γ of G,
denoted by Λτmod

(Γ), is the subset of Flag(τmod) which consists of all limit simplices
of τmod-flag-convergent sequences on Γ.

Remark 1.6. The flag limit set Λτmod
is Γ-invariant.

More generally, one defines τmod-flag-limit sets of a subset Z ⊂ X as the accumu-
lation subset of Z in Flag(τmod) with respect to the topology of flag-convergence.

Now, we review definitions of several classes of discrete subgroups of G with
various levels of regularities:

R: A discrete subgroup Γ < G is τmod-regular if for all x ∈ X and all sequences of
distinct elements (γn) in Γ, the sequence (γnx) is τmod-regular. For τmod-
regular subgroups Γ, the flag limit set Λτmod

(Γ) provides a compactification
of the orbit Γx ⊂ X, i.e., Γx � Λτmod

(Γ) is compact.
RA: A τmod-regular subgroup Γ is τmod-RA (regular antipodal) if its limit set

Λτmod
(Γ) is antipodal, i.e., every two distinct elements of Λτmod

(Γ) are an-
tipodal to each other. For τmod-RA subgroups Γ, the action Γ � Λτmod

(Γ)
is a convergence action9 (see [29, Prop. 5.38]). A τmod-RA subgroup Γ is
called nonelementary if Λτmod

(Γ) consists of at least three (hence infinitely
many) points; otherwise Γ is called elementary. If Γ is nonelementary then
the action Γ � Λτmod

(Γ) is minimal, i.e., every orbit of Γ is dense, and
Λτmod

(Γ) is perfect.10

RC: For a τmod-regular subgroup Γ, a limit simplex τ ∈ Λτmod
(Γ) is a conical limit

point if there exist x ∈ X, c > 0 and a sequence (γn) of pairwise distinct
isometries on Γ such that

dRiem(γnx, V (x, st(τ ))) ≤ c,

where dRiem denotes the Riemannian distance on X. The set of all conical
limit simplices is denoted by Λcon

τmod
(Γ). A subgroup Γ < G is called τmod-RC

if Λτmod
(Γ) = Λcon

τmod
(Γ).

RCA: A subgroup Γ is τmod-RCA if it is both τmod-RA and τmod-RC.

9Recall that an action Γ � Z is called a convergence action if the induced action Γ � Z(3) is
properly discontinuous. Here Z(3) denotes the space of all triples of pairwise distinct points in Z.
The action Γ � Z is called uniform convergence action if, in addition, Γ � Z(3) is a cocompact
action.

10This follows from a general result for convergence actions by Gehring–Martin [19] and Tukia
[49]. See also [29, Subsec. 3.2] or [30, Subsec. 3.3].



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PATTERSON–SULLIVAN THEORY FOR ANOSOV SUBGROUPS 8697

U: A finitely generated subgroup Γ < G (equipped with the word metric) is said
to be undistorted if one (equivalently, every) orbit map Γ → Γx ⊂ X is a
quasiisometric embedding.

UR: A discrete subgroup Γ < G is uniformly τmod-regular if for all x ∈ X and all
sequences of distinct elements (γn) in Γ, the sequence (γnx) is uniformly
τmod-regular.

URU: A subgroup Γ < G is said to be τmod-URU if it is both τmod-uniformly
regular and undistorted.

Morse: A discrete finitely generated subgroup (equipped with a word metric) Γ <
G is called τmod-Morse if it is word-hyperbolic and, for an(y) x ∈ X, the
orbit map Γ → Γx is a τmod-Morse embedding. See Subsection 1.5.

In [30, Equiv. Thm. 1.1] and [31], the properties Morse, RCA and URU are
proven to be equivalent to the Anosov property defined by Labourie [32] and
Guichard-Wienhard [23].

Theorem 1.7 ([30, Equiv. Thm. 1.1]). The following classes of nonelementary
discrete subgroups of G are equal:

(i) τmod-RCA,
(ii) τmod-Morse,
(iii) Pτmod

-Anosov,
(iv) τmod-URU.

In the sequel, any discrete subgroup that satisfies any of equivalent conditions
in the theorem will be called a τmod-Anosov subgroup.

1.7. Illustrating examples. In this paper, we consider the following two classes
of examples.

Example 1.8 (Product of rank-one symmetric spaces). Let X be a product of k
rank-one symmetric spaces (Xi, di),

X = X1 × · · · ×Xk.

The rank of X is k. Let G be a semisimple Lie group commensurable with the
isometry group of X. (For example, we may take G = Isom(X1)×· · ·× Isom(Xk).)
Assumption 3 on page 8693 amounts to the requirement that G preserves the factors
of the direct product decomposition of X.

The model maximal flat Fmod can be viewed as the product of some chosen
geodesic lines (coordinate axes), one for each deRham factor. The Weyl group
W is generated by reflections along the coordinate hyperplanes and the longest
element in it is the reflection about the origin. The model Weyl chamber Δ can be
realized as the nonnegative orthant. Here is a formula for the Δ-valued distances:
For (x1, . . . , xk), (y1, . . . , yk) ∈ X1 × · · · ×Xk,

(1.3) dΔ((x1, . . . , xk), (y1, . . . , yk)) = (d1(x1, y1), . . . , dk(xk, yk)) ∈ R
k
≥0.

It follows that the opposition involution ι acts on Δ trivially.
Recall that the Tits boundary of a product of two symmetric spaces is the simpli-

cial join of their individual Tits buildings and, for rank-one symmetric spaces, the
Tits boundary is discrete. These two facts imply that the (p− 1)-simplices in the
Tits building of X for 1 ≤ p ≤ k can be parametrized by p-tuples (ξr1 , . . . , ξrp) ∈
∂∞Xr1 × · · · × ∂∞Xrp , 1 ≤ r1 < · · · < rp ≤ k,

(ξr1 , . . . , ξrp) ↔ τ = span{ξr1 , . . . , ξrk}.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

8698 SUBHADIP DEY AND MICHAEL KAPOVICH

We say that such a simplex τ has type τmod = (r1, . . . , rp). The incidence structure
can be understood as follows: Two simplices have a common q-face if and only if
they have q equal coordinates.

The star st(τ ) of τ = (ξr1 , . . . , ξrp) is the minimal subcomplex of the Tits building
containing all chambers (ζ1, . . . , ζk) satisfying ζri = ξri , for all i ∈ {1, . . . , p}.

Since the opposition involution ι fixes each chamber point-wise, every face τmod

of σmod and every type is ι-invariant. Every two chambers (resp. faces of the same
type) in ∂TitsX are antipodal to each other unless they have a common face (resp.
sub-face).

Example 1.9 (X = SL(k + 1,R)/SO(k + 1,R)). We take G = SL(k + 1,R),
K = SL(k + 1,R); the symmetric space X = G/K is identified with the set of all
positive definite, symmetric matrices in SL(k + 1,R). In this case rank(X) = k
and X is irreducible. The standard choice of a model flat Fmod is the subset of
all diagonal matrices a = diag(a1, . . . , ak+1) ∈ SL(k + 1,R) with positive diagonal
entries. We identify the model flat with a via the logarithm map

log : a = diag(a1, . . . , ak+1) �→ (log a1, . . . , log ak+1),

where a is viewed as the hyperplane in R
k+1 consisting of all points with zero sum

of coordinates.
The Weyl group W = Symk+1 acts on a by permuting the coordinates. The

standard choice for the model Weyl chamber Δ = a+ consists of all the points in a

with decreasing coordinate entries. The Cartan projection11 ρ : SL(k+ 1,R) → a+

can be written as g �→ log a where a is associated to g via the singular value
decomposition g = uav, u, v ∈ SO(k+1,R). The logarithm of i-th singular value of
g will be denoted by σi(g). The opposition involution ι maps (σ1, . . . , σk+1) ∈ a+

to (−σk+1, . . . ,−σ1).
The Tits building of X can be identified with the incidence geometry of flags in

R
k+1. The Furstenberg boundary consists of full flags

V1 ⊂ · · · ⊂ Vk+1 = R
k+1, dim(Vi) = i.

The partial flags are

V : Vr1 ⊂ · · · ⊂ Vrp ⊂ Vrp+1
= R

k+1, dim(Vri) = ri,

1 ≤ r1 < · · · < rp < rp+1 = k + 1, which are elements of Flag(τmod) where τmod =
(r1, . . . , rp). The opposition involution maps τmod to ιτmod = (k + 1 − rp, . . . , k +
1− r1). It follows that τmod is ι-invariant if and only if ri+ rp+1−i = k+1, for each
i = 1, . . . , p. The partial flag manifold Flag(τmod) consisting of all partial flags
V of type τmod = (r1, . . . , rp) naturally embeds into the product of Grassmannians
Grr1(R

k+1)× · · · ×Grrp(R
k+1).

Suppose that τmod = (r1, . . . , rp) is ι-invariant. A pair V ± ∈ Flag(τmod) is
antipodal if and only if V +

ri + V −
rp+1−i

= R
k+1 for each i = 1, . . . , p.

2. Critical exponent

On a symmetric space X = G/K, we consider two natural (pseudo-)metrics. Let
dRiem(·, ·) denote the distance function on X of the (fixed) G-invariant Riemannian
metric on X. Throughout the paper, we fix an ι-invariant face τmod of σmod, and
fix an ι-invariant type θ̄ in the interior of τmod.

11Or the Δ-valued distance in the sense that dΔ(x, gx) = ρ(g).
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Let dθ̄ denote the polyhedral Finsler (pseudo-)metric12 on X:

(2.1) dθ̄(x, y) = 〈dΔ(x, y)|θ̄〉.
The inner product above is the euclidean inner product on Fmod coming from the
Riemannian metric on X. Since θ̄ is in the unit sphere of Fmod, and since the
diameter of a Weyl chamber for the spherical metric is at most π/2,13 we have

(2.2) 0 ≤ dθ̄(x, y) ≤ dRiem(x, y).

Remark 2.1. The distance function dθ̄ depends on the choice of θ̄ ∈ τmod.

The metric space (X, dRiem) is a complete Riemannian manifold and, in partic-
ular, it is geodesic: Any two points in X can be connected by a geodesic segment.
The (pseudo-)metric space (X, dθ̄) is also a geodesic space. The geodesics in (X, dθ̄)
are called Finsler geodesics. All the Riemannian geodesics are also Finsler, however,
the converse is generally false: There are non-Riemannian Finsler geodesics when
rank(X) ≥ 2. The precise description of all Finsler geodesics is given in [26, Subsec.
5.1.3]. We merely use this description as a definition of Finsler geodesics.

Definition 2.2 (Finsler geodesics). Let I ⊂ R. A path � : I → X is called a
Finsler geodesic if there exists a pair of antipodal flags τ± ∈ Flag(τmod) such that
�(I) ⊂ P (τ+, τ−) and

�(t2) ∈ V (�(t1), st(τ+)), ∀t1 ≤ t2.

Moreover, given an ι-invariant compact subset Θ ⊂ ost(τmod), a Finsler geodesic
� : I → X is called a Θ-Finsler geodesic if, in addition to the above, it satisfies the
following stronger condition:

�(t2) ∈ V (�(t1), ostΘ(τ+)), ∀t1 ≤ t2.

Remark 2.3. Finsler geodesics give alternative description of diamonds, namely,
the τmod-diamond ♦τmod

(x, y) is the union of all Finsler geodesics connecting the
endpoints x and y. See [26, Subsec. 5.1.3].

Notation. In this paper, we use the notation xy to denote the Riemannian geodesic
segment connecting a pair of points x, y ∈ X. To denote a Finsler geodesic segment
connecting x and y, we use the notation x̂y.

Below we let ∗ be either “Riem” or θ̄. Let Γ < G be a subgroup, and x, x0 ∈ X.
Define the orbital counting function N∗(r, x, x0) : [0,∞) → [0,∞],

N∗(r) = N∗(r, x, x0) = card{γ ∈ Γ | d∗(x, γx0) < r}.
Using N∗(r), following [1] and [43], we define the critical exponent δ∗ of Γ by

(2.3) δ∗ = lim sup
r→∞

logN∗(r)

r
∈ [0,∞].

The critical exponents δθ̄ and δRiem will be called the θ̄-critical exponent and Rie-
mannian critical exponent, respectively.

12Our definition is same as the one in [26, Subsec. 5.1.2]. It is remarked in the second paragraph

of [26, p. 2571] that dθ̄(x, y) = −bθ̄ ◦ dΔ(x, y), where bθ̄ = −〈·|θ̄〉 is the Busemann function on

the flat Fτmod ⊃ Δ, with the gradient θ̄ and normalized at the origin.
13This follows from the fact that the action W � a is essential, i.e., W does not fix any proper

subspace of a.
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Remark 2.4. The discussion in [1] and [43] is mostly limited to the case when θ̄ is
regular, i.e., belongs to the interior of σmod.

The critical exponent is independent of the chosen points x and x0. The proof
is standard: Consider the Poincaré series

(2.4) g∗s (x, x0) =
∑
γ∈Γ

exp(−sd∗(x, γx0)).

It is a well-known fact that g∗s (x, x0) converges if s > δ∗(x, x0) and diverges if
s < δ∗(x, x0) where δ∗(x, x0) denotes the right side of (2.3). Using the triangle
inequality, we obtain

exp (−sd∗(x, x0)) g
∗
s (x0, x0) ≤ g∗s (x, x0) ≤ exp (sd∗(x, x0)) g

∗
s (x0, x0).

Hence, convergence or divergence of g∗s (x, x0) is independent of the choice of x and
so is δ∗(x, x0). For a similar reason, it is also independent of the choice of x0.

Definition 2.5. A discrete subgroup Γ of G is of θ̄-convergence type if the θ̄-
Poincaré series gθ̄s(x, x0) converges at the critical exponent δθ̄. Otherwise, we say
that Γ has θ̄-divergence type.

Since the action Γ � X is properly discontinuous, δRiem is bounded above by
the volume entropy of X which is finite.14 For the θ̄-critical exponent, (2.2) implies
the following lower bound,

(2.5) δRiem ≤ δθ̄.

Finiteness of δθ̄ is more subtle because, in general, dθ̄ is only a pseudo-metric and
therefore, the orbital counting function Nθ̄ may take infinity as a value. However,
if the angular radius of the model Weyl chamber σmod with respect to θ̄ is < π/2,
then dθ̄ is a metric equivalent to dRiem and, consequently, δθ̄ is finite in this case.
In particular, when G is simple, then diameter of σmod is < π/2 and therefore, δθ̄
is finite.

The following finiteness result holds in the general pseudo-metric case.

Proposition 2.6. For a uniformly τmod-regular subgroup Γ < G, the θ̄-critical
exponent δθ̄ is finite.

Proof. When Γ is uniformly τmod-regular, the distance functions dRiem and dθ̄ re-
stricted to an orbit Γx are coarsely equivalent: There exist L ≥ 1, A ≥ 0 such that,
for all x1, x2 ∈ Γx,

(2.6) L−1dRiem(x1, x2)−A ≤ dθ̄(x1, x2) ≤ dRiem(x1, x2).

The right side of this inequality comes from (2.2). From this we get δRiem ≤ δθ̄ ≤
LδRiem. Since δRiem is finite, δθ̄ is also finite. �

Remark 2.7.

(1) It is clear from the proof of Proposition 2.6 that when Γ is uniformly τmod-
regular, then δθ̄ is positive if and only if δRiem is positive.

(2) As Anosov subgroups are uniformly regular (see Theorem 1.7), Proposition
2.6 applies to the class of Anosov subgroups.

14Finiteness of the volume entropy of a symmetric space follows, for instance, from the fact that
X has curvature bounded below combined with the Bishop–Günter volume comparison theorem,
see e.g. [6, Sec. 11.10, Cor. 4].
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Before closing this section, we compute Finsler distances dθ̄ in two examples.

Example 2.8 (Product of rank-one symmetric spaces). We continue with the dis-
cussion from Example 1.8. Let τmod = (r1, . . . , rp) be a face of the model chamber,
let θ̄ = (1/

√
p, . . . , 1/

√
p) be its barycenter, and let dθ̄ be the corresponding metric

on X. Using the formula for dΔ from (1.3), we get

(2.7) dθ̄(x, y) =
1
√
p

p∑
j=1

drj (xrj , yrj ).

Example 2.9 (X = SL(k + 1,R)/SO(k + 1,R)). We continue with the discussion
from Example 1.9. The Riemannian metric on X is given by the restriction of the
Killing form B of g = sl(k + 1,R) to p,

(2.8) B(P,Q) = 2(k + 1) tr(PQ), P,Q ∈ g.

Note that the inner product B on a (which we identify with Fmod) can be written
as

(2.9) 〈(σ1, . . . , σk+1)|(σ′
1, . . . , σ

′
k+1)〉 = 2(k + 1)

k+1∑
i=1

σiσ
′
i.

Let τmod = (r1, . . . , rp) be an ι-invariant face of the model chamber σmod and let
Δτmod

be the corresponding face of the model euclidean Weyl chamber Δ,

Δτmod
=
{
σ ∈ a+ | σ = (σ1, . . . , σ1︸ ︷︷ ︸

r1-times

, . . . , σi, . . . , σi︸ ︷︷ ︸
(ri−ri−1)-times

, . . . , σp+1 . . . , σp+1︸ ︷︷ ︸
(k+1−rp)-times

)
}
.

For notational convenience we denote σ in the above expression simply by the (p+
1)-vector (σ1, . . . , σp+1) (by identifying the repeated entries). With this convention,
the opposition involution acts by

ι(σ1, . . . , σp+1) = (−σp+1, . . . ,−σ1).

We identify τmod with the unit sphere (w.r.t. the metric in (2.9)) in Δτmod
centered

at the origin, i.e., τmod consists of all elements (σ1, . . . , σp+1) ∈ Δτmod
satisfying

2(k + 1)
∑p+1

i=1 (ri − ri−1)σ
2
i = 1. An element θ̄ = (σ1, . . . , σp+1) ∈ τmod lies in the

interior of τmod if and only if σ1 > · · · > σp+1. Moreover, θ̄ is ι-invariant if and
only if σi + σp+2−i = 0 for all i = 1, . . . , p+ 1.

The Finsler distance dθ̄ can be calculated explicitly in terms of the above for-
mulas. In the special case15 when τmod = (1, k) and

θ̄ = (1/2
√
k + 1, 0,−1/2

√
k + 1),

the unique ι-invariant type in the interior of τmod, we have a simple formula for the
Finsler distance: For all g ∈ SL(k + 1,R),

(2.10) dθ̄(x0, gx0) =
√
k + 1 (σ1(g)− σk+1(g)) ,

where the point x0 is the identity matrix.

15We will only focus on this case from now on.
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3. θ̄-Conformal densities

Recall that Busemann functions define the notion of “distance from infinity.” For
τ ∈ Flag(τmod), let bθ̄τ : X → R denote the Busemann function based at the ideal

point θ̄(τ ) ∈ ∂∞X normalized at x0, i.e., b
θ̄
τ (x0) = 0. Using Busemann functions,

one defines the Busemann cocycle as

(3.1) Bθ̄
τ (x, y) = bθ̄τ (x)− bθ̄τ (y).

Bθ̄
τ satisfies the cocycle condition: For each triple x, y, z ∈ X,

(3.2) Bθ̄
τ (x, y) + Bθ̄

τ (y, z) = Bθ̄
τ (x, z).

These functions are related to the Finsler distance functions by

(3.3) Bθ̄
τ (x, y) = lim

n→∞
(dθ̄(x, zn)− dθ̄(y, zn))

whenever (zn) is a sequence in X flag-converging to τ , cf. [26, Prop. 5.43]. Note
that

−dθ̄(x, y) ≤ Bθ̄
τ (x, y) ≤ dθ̄(x, y).

Remark 3.1. As usual, the Busemann functions and cocycles depend on the choice
of θ̄. Also, note that these functions can take negative values. However, |Bθ̄

τ (x, y)|
satisfy the triangle inequality and, hence, are pseudo-metrics on X.

We define our notion of “conformal densities” on Flag(τmod) using these Buse-
mann cocycles.

For a topological space S, we let M+(S) denote the set of Borel probability
measures on S. Recall that a group H of self-homeomorphisms of S acts on M+(S)
by pull-back: For every B ∈ B(S), h ∈ H,

μ �→ h∗μ, h∗μ(B) = μ(h−1(B)).

Definition 3.2 (θ̄-Conformal density). Let Γ < G be a discrete subgroup and let
A ⊂ X be a nonempty Γ-invariant subset. By a Γ-invariant θ̄-conformal A-density
μ of dimension β ∈ [0,∞) on Flag(τmod), we mean a Γ-equivariant map

μ : A → M+(Flag(τmod)), a �→ μa,

satisfying the following properties:

(i) For each a ∈ A, supp(μa) ⊂ Λτmod
(Γ).

(ii) Γ-invariance: μ is Γ-invariant, i.e., γ∗μa = μγa for each γ ∈ Γ and each
a ∈ A.

(iii) θ̄-conformality: For every pair a, b ∈ A, μa � μb, i.e., μa is absolutely
continuous with respect to μb, and the Radon–Nikodym derivative dμa/dμa

can be expressed as

(3.4)
dμa

dμb
(τ ) = exp

(
−βBθ̄

τ (a, b)
)
, ∀τ ∈ Flag(τmod).

Remark 3.3.

(1) In the literature, the item (i) in Definition 3.2 is not required to define
Γ-invariant conformal densities. Nevertheless, the uniqueness of such con-
formal densities for τmod-Anosov subgroups, which we establish later in
the paper (see Corollary 8.4), is possibly false unless we impose this extra
condition.
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(2) Though we define θ̄-conformal densities for general discrete subgroups of G,
for the purpose of this paper we restrict our discussion only to τmod-regular
subgroups.

A θ̄-conformal X-density is simply called a θ̄-conformal density. Note that θ̄-
conformal X-densities and θ̄-conformal A-densities are in a one-to-one correspon-
dence:

(3.5) {θ̄-conformal X-densities} ←→ {θ̄-conformal A-densities}.
From an X-density μ, define an A-density by restricting the family. On the other
hand, given an A-density μ, extend it to an X-density {μx}x∈X by

dμx(B) =

∫
B

exp
(
−βBθ̄

τ (x, a)
)
dμa(τ ), B ∈ B(Flag(τmod)),

where μa is a density in the family μ. Note that this extension is unique because μx

and μa are absolutely continuous with respect to each other. To check Γ-invariance,
note that

γ∗μx(B) =

∫
γ−1B

dμx

dμa
(τ )dμa(τ ) =

∫
B

exp
(
−βBθ̄

γ−1τ (x, a)
)
dμa(γ

−1τ )

=

∫
B

exp
(
−βBθ̄

τ (γx, γa)
)
dμγa(τ ) =

∫
B

dμγx

dμγa
(τ )dμγa(τ ) = μγx(B),

for every B ∈ B(Flag(τmod)). The other two defining properties are also satisfied.

3.1. The Patterson-Sullivan construction. For every τmod-regular group Γ
with finite θ̄-critical exponent δθ̄, we follow the Patterson–Sullivan construction
to construct a θ̄-conformal density. This construction is standard and already ap-
peared in the work of Albuquerque and Quint, although only in the setting of
Zariski dense subgroups Γ < G and regular vectors θ̄; we present it here for the
sake of completeness. We let Γ < G be a τmod-regular subgroup and let Z denote
the Γ-orbit of a point x0 ∈ X. The union

Z̄ = Z ∪ Λτmod
(Γ) ⊂ X̄τmod ,

equipped with the topology of flag-convergence, is a compactification of Z.
For s > δθ̄, the θ̄-critical exponent of Γ, we define a family of positive measures

μθ̄
s = {μθ̄

x,s}x∈X on Z̄ by

(3.6) μθ̄
x,s =

1

gθ̄s(x0, x0)

∑
γ∈Γ

exp (−sdθ̄(x, γx0))D(γx0),

where D(γx0) denotes the Dirac point mass of weight one at γx0. Note that μθ̄
x,s is

a probability measure when x ∈ Z. Also, note that Λτmod
(Γ) is a null set for these

measures. For γ ∈ Γ a straightforward computation shows that

(3.7) γ∗μθ̄
x,s = μθ̄

γx,s.

Moreover, it is easy to see that μθ̄
s is an absolutely continuous family of measures.

Using (3.6) we compute the Radon–Nikodym derivatives dμθ̄
x,s/dμ

θ̄
x0,s,

(3.8) ψθ̄
x,x0,s(z) =

dμθ̄
x,s

dμθ̄
x0,s

(z),
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where for s ≥ 0,

ψθ̄
x,x0,s(z) := exp (−s (dθ̄(z, x)− dθ̄(z, x0))) .

The formula for ψθ̄
x,x0,s above only makes sense when z ∈ Z. Since Λτmod

(Γ) is a

null set, we extend ψθ̄
x,x0,s continuously to Λτmod

(Γ) by setting

ψθ̄
x,x0,s(τ ) = exp

(
−sBθ̄

τ (x, x0)
)
.

The continuity of this function can be verified using properties of dθ̄ (e.g., see
[26, Sec. 5.1.2] and (3.3)).

Next we prove that ψθ̄
x,x0,s → ψθ̄

x,x0,δθ̄
uniformly as s → δθ̄. For S ≥ s, s′ > δθ̄

and z ∈ Z,

|ψθ̄
x,x0,s′(z)− ψθ̄

x,x0,s(z)|
= | exp (−s′ (dθ̄(z, x)− dθ̄(z, x0)))− exp (−s (dθ̄(z, x)− dθ̄(z, x0))) |
= exp (−s (dθ̄(z, x)− dθ̄(z, x0))) | exp ((s− s′) (dθ̄(z, x)− dθ̄(z, x0)))− 1|
≤ exp (SdRiem(x, x0)) | exp ((s− s′) (dθ̄(z, x)− dθ̄(z, x0)))− 1|.

Switching s and s′ in the above, we also get

|ψθ̄
x,x0,s′(z)− ψθ̄

x,x0,s(z)|
≤ exp (SdRiem(x, x0)) | exp ((s′ − s) (dθ̄(z, x)− dθ̄(z, x0)))− 1|.

Combining the above two inequalities, we get

|ψθ̄
x,x0,s′(z)− ψθ̄

x,x0,s(z)|
≤ exp (SdRiem(x, x0)) (exp (|s′ − s| · |dθ̄(z, x)− dθ̄(z, x0)|)− 1)

≤ exp (SdRiem(x, x0)) (exp (|s′ − s|dRiem(x, x0))− 1) .

Since Z is dense in Z̄, the above yields

‖ψθ̄
x,x0,s′ − ψθ̄

x,x0,s‖∞ ≤ exp (SdRiem(x, x0)) (exp (|s′ − s|dRiem(x, x0))− 1) .

Therefore, ψθ̄
x,x0,s → ψθ̄

x,x0,δθ̄
uniformly as s → δθ̄.

Now we construct a θ̄-conformal density as a limit of the family of densities
{μθ̄

s}s>δθ̄ . We first assume that Γ has θ̄-divergence type.16 Then, as s decreases

to δθ̄, the family μθ̄
s = {μθ̄

x,s}x∈X weakly accumulates to a density μθ̄ supported

on some subset of Λτmod
(Γ). By (3.7) we have the Γ-invariance of μθ̄, namely, for

γ ∈ Γ,

(3.9) γ∗μθ̄
x = μθ̄

γx.

Moreover, since μθ̄
x is obtained as a weak limit of the measures μθ̄

x,s and the deriva-

tives ψθ̄
x,x0,s = dμθ̄

x,s/dμ
θ̄
x0,s converge uniformly to ψθ̄

x,x0,δθ̄
, it follows that the

Radon-Nikodym derivative dμθ̄
x/dμ

θ̄
x0

exists and equals to the limit

lim
s→δθ̄

dμθ̄
x,s

dμθ̄
x0,s

= ψθ̄
x,x0,δθ̄

,

16This will be the case for Anosov subgroups. See Corollary 6.5.
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or more explicitly,

(3.10)
dμθ̄

x

dμθ̄
x0

(τ ) = exp
(
−δθ̄Bθ̄

τ (x, x0)
)
.

Note that in general weak limits are not unique. In Corollary 8.4 we will prove that
for Anosov subgroups Γ we get a unique density in this limiting process.

When Γ has θ̄-convergence type, we change weights of the Dirac masses by a
small amount ([38, Lem. 3.1], see also [37, Sec. 3.1]) in the definition (3.6) to force
the Poincaré series to diverge. Define

μθ̄
x,s =

1

ḡθ̄s (x0, x0)

∑
γ∈Γ

exp (−sdθ̄(x, γx0))h (dθ̄(x, γx0))D(γx0),

where h : R+ → R+ is a subexponential function such that the following modified
Poincaré series

ḡθ̄s(x, x0) =
∑
γ∈Γ

exp (−sdθ̄(x, γx0))h (dθ̄(γx, x0))

diverges at s = δθ̄. In this case also, a limit density μθ̄ has the properties (3.9) and
(3.10).

Definition 3.4 (Patterson-Sullivan density). Let Γ be a τmod-regular subgroup of
G such that δθ̄(Γ) < 0, and let θ̄ ∈ τmod be an ι-invariant interior point. Any

weak limit μθ̄ appearing from the construction above is called a Patterson-Sullivan
density of type θ̄.

3.2. Positivity of the θ̄-critical exponent. The existence of a θ̄-conformal den-
sity implies that the θ̄-critical exponent of Γ is positive.

Proposition 3.5. Suppose that Γ is a nonelementary τmod-regular antipodal sub-
group and δθ̄ is finite. Then, δθ̄ is also positive.

Proof. Suppose to the contrary that δθ̄ = 0. Let μθ̄ be a Patterson–Sullivan density
constructed above. It follows from the Γ-invariance and θ̄-conformality that for all
γ ∈ Γ,

(3.11) μθ̄
x(γA) = μθ̄

γ−1x(A) = μθ̄
x(A), ∀A ∈ B(Λτmod

(Γ)).

We use the convergence action property of a τmod-RA subgroup (see Subsection
1.6).

We first show that μθ̄ is atom-free. For if τ ∈ Λτmod
(Γ) were an atom, then, since

Γτ is an infinite orbit, Λτmod
(Γ) would have infinite μθ̄

x-mass by (3.11).
Moreover, using the converge action Γ � Λτmod

(Γ), we have an infinite sequence
γn ∈ Γ and points τ± ∈ Λτmod

(Γ) such that on Λτmod
(Γ)− {τ−},

γn|Λτmod
(Γ)−{τ−} → constτ+

uniformly on compact sets.
Now, pick a compact set A ⊂ Λτmod

(Γ) not containing τ± such that μθ̄
x(A) ≥

(2/3)μθ̄
x(Λτmod

(Γ)) (this is possible because μθ̄ is atom-free). Pick a large enough n
so that γn(A) ∩ A = ∅. Then,

μθ̄
x(Λτmod

(Γ)) ≥ μθ̄
x(A ∪ γnA) = μθ̄

x(A) + μθ̄
x(γnA) = 2μθ̄

x(A) ≥ 4

3
μθ̄
x(Λτmod

(Γ))

yields a contradiction. �
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Remark 3.6. As a corollary to Proposition 3.5, the Riemannian critical exponent
δRiem of a nonelementary uniformly τmod-regular antipodal subgroup is also non-
zero. See the remark after Proposition 2.6.

Since Anosov subgroups are uniformly regular and antipodal, we have the fol-
lowing result.

Corollary 3.7. Let Γ be a nonelementary τmod-Anosov subgroup of G. Then,

0 < δRiem ≤ δθ̄ < ∞.

4. Hyperbolicity of Morse image

In this section we prove that the image of a τmod-Morse map is Gromov-
hyperbolic with respect to the Finsler pseudo-metric dθ̄. As a corollary, we prove
that each orbit of an Anosov subgroup is also Gromov-hyperbolic with respect to
dθ̄.

We first recall two notions of hyperbolicity. We shall use the symbol δ to denote
the hyperbolicity constant in this and the next sections only. We hope that the
reader will not confuse this δ with the critical exponent.

Definition 4.1 (Rips hyperbolic). Let (Z, d) be a geodesic metric space. Then,
(Z, d) is called δ(≥ 0)-hyperbolic in the sense of Rips (or Rips hyperbolic) if every
geodesic triangle � is δ-thin, i.e., each side of � lies in the δ-neighborhood of the
union of the other two sides.

Definition 4.2 (Gromov hyperbolic). Let (Z, d) be a metric space. For any three
points z, z1, z2 ∈ Z, the Gromov product is defined as

〈z1|z2〉z =
1

2
[d(z, z1) + d(z2, z)− d(z1, z2)].

Then (Z, d) is called δ(≥ 0)-hyperbolic in the sense of Gromov (or Gromov hyper-
bolic) if the Gromov product satisfies the following ultrametric inequality: For all
z, z1, z2, z3 ∈ Z,

〈z1|z2〉z ≥ min{〈z1|z3〉z, 〈z2|z3〉z} − δ.

It should be noted that Gromov’s definition applies to all metric spaces whereas
Rips’ definition works only for geodesic metric spaces. Moreover, Gromov hyperbol-
icity is not quasiisometric invariant whereas Rips hyperbolicity is (as a consequence
of Morse lemma, cf. [15, Cor. 11.43])). For geodesic metric spaces, these two no-
tions of hyperbolicity are equivalent (e.g., see [15, Lemma 11.27]).

Let (Z ′, d′) be Rips hyperbolic and f : (Z ′, d′) → (X, dRiem) be a τmod-Morse
map. We denote the image f(Z ′) by Z. Recall that the dθ̄ is coarsely equivalent
to dRiem on Z.17 Therefore, since f is a quasiisometric embedding with respect
to dRiem, it is also a quasiisometric embedding with respect to dθ̄. Moreover, the
image of a geodesic (of length bounded below by a constant) in Z ′ stays within a
uniformly bounded Riemannian distance, say λ0 ≥ 0, from a τmod-regular Finsler
geodesic connecting the images of the endpoints. This is a consequence of the Morse
property [31, Thm. 1.1], see also [26, Prop. 12.2]. A consequence of this is that Z
is λ0-quasiconvex in (X, dθ̄).

17This is also true for any finite Riemannian tubular neighborhood of Z.
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For λ ≥ λ0, let Y = Yλ be the Riemannian λ-neighborhood of Z in X. From
the discussion above, it is clear that any two points z1, z2 ∈ Z (with dRiem(z1, z2)
sufficiently large) can be connected by a Finsler geodesic ẑ1z2 in Y .

Proposition 4.3. Let c and c′ be two Finsler geodesics in Y connecting two points
z1, z2. Then they are uniformly Hausdorff close. Here the Hausdorff distance is
induced by either dRiem or dθ̄.

Proof. Since dRiem or dθ̄ are comparable on Y , it is enough to prove the proposition
for the Riemannian metric dRiem.

Let c̄ and c̄′ be the respective nearest point projections of c and c′ to Z. Applying
the coarse inverse of f , c̄ and c̄′ map to uniform quasigeodesics c̃ and c̃′, respectively,
in Z ′. Since Z ′ is Rips hyperbolic, c̃ and c̃′ are uniformly close. Applying f to c̃
and c̃′, we see that c̄ and c̄′ are uniformly close. Hence c and c′ are also uniformly
close. �

Next we observe that geodesic triangles in (Y, dθ̄) with vertices on Z are uniformly
thin.

Proposition 4.4. There exists δ ≥ 0 such that every Finsler geodesic triangle
� = �(z1, z2, z3) in Y is δ-thin both in Riemannian and Finsler sense.

Proof. Since Z ′ is Rips hyperbolic, geodesic triangles in Z ′ are δ′-thin, for some δ′ ≥
0. We map � to a uniformly quasigeodesic triangle �′ ⊂ Z ′ via the coarse inverse
map Y → Z ′ of the map f . Since Z ′ is Rips-hyperbolic, the Morse quasigeodesic
triangle �′ is uniformly thin. Therefore, � is also uniformly thin as well. �

Imitating the proof of [15, Lem. 11.27], we prove that (Z, dθ̄) is Gromov-
hyperbolic.

Theorem 4.5 (Hyperbolicity of Morse maps). Let Z ⊂ X be the image of a τmod-
Morse map f : (Z ′, d′) → (X, dRiem). Then (Z, dθ̄) is Gromov-hyperbolic.

Proof. Let δ be as in Proposition 4.4. Then the following holds.

Lemma 4.6. Let z, z1, z2 ∈ Z, and let ẑ1z2 be any Finsler geodesic in Y connecting
z1 and z2. Then,

〈z1|z2〉z ≤ dθ̄(z, ẑ1z2) ≤ 〈z1|z2〉z + 2δ.

Proof. The proof is exactly same as [15, Lem. 11.22]. Note that the proof uses
δ-thinness of a triangle with vertices z, z1, z2. �

Let z, z1, z2, z3 be any four points in Z, and let � be a Finsler geodesic triangle
in Y with the vertices z1, z2, z3. Let m be a point on the side ẑ1z2 nearest to z. By
Proposition 4.4, since � is δ-thin, dθ̄(m, ẑ2z3∪ẑ1z3) ≤ δ. Without loss of generality,
assume that there is a point n on z2, z3 which is δ-close to m. Then, using Lemma
4.6, we get

〈z2|z3〉z ≤ dθ̄(z, ẑ2z3) ≤ dθ̄(z, ẑ1z2) + δ,

and

dθ̄(z, ẑ1z2) ≤ 〈z1|z2〉z + 2δ.

The theorem follows from this. �
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Quasiisometry of hyperbolic metric spaces extends to a homeomorphism of their
Gromov boundaries. At the same time, it is proven in [31, Thm. 1.4] that each
τmod-Morse map

f : Z ′ → Z = f(Z ′) ⊂ X

extends continuously (with respect to the topology of flag-convergence) to a home-
omorphism

∂∞f : ∂∞Z ′ → Λ ⊂ Flag(τmod).

Thus, we obtain

Corollary 4.7. The Gromov boundary ∂∞Z of (Z, dθ̄) is naturally identified with
the flag-limit set Λ ⊂ Flag(τmod) of Z: A sequence (zn) in Z converges to a point
in ∂∞Z if and only if (zn) flag-converges to some τ ∈ Λ.

For a τmod-Anosov subgroup Γ we know that the orbit map Γ → Γx0 is a τmod-
Morse embedding (see Subsection 1.6). Then, using Theorem 4.5 we obtain:

Corollary 4.8 (Hyperbolicity of Anosov orbits). For x0 ∈ X, let Z = Γx0 where
Γ is a τmod-Anosov subgroup. Then (Z, dθ̄) is Gromov hyperbolic. The Gromov
boundary of (Z, dθ̄) is naturally identified with the τmod-limit set Λτmod

(Γ).

5. Gromov distance at infinity

For a pair of antipodal simplices τ± ∈ Flag(τmod), the Gromov product with
respect to a base point x ∈ X is defined as

(5.1) 〈τ+|τ−〉θ̄x =
1

2

(
Bθ̄
τ+(x, z) + Bθ̄

τ−(x, z)
)
,

where z is some point on the parallel set P (τ+, τ−) spanned by τ±.

The definition Busemann cocycles Bθ̄
τ given in (3.1) is free of choice of any par-

ticular normalization for the Busemann functions. We use this observation in the
proof of Lemma 5.1 which shows that the Gromov products do not depend on the
chosen z ∈ P (τ+, τ−).

Lemma 5.1. For z1, z2 ∈ P (τ+, τ−), one has bθ̄τ+(z1)+bθ̄τ−(z1) = bθ̄τ+(z2)+bθ̄τ−(z2).

Proof. Let z be the midpoint of z1z2 and let sz : X → X be the point reflection
about z. Assuming that Busemann functions are normalized at z, sz transforms
bθ̄τ+(z1) + bθ̄τ−(z1) into bθ̄τ−(z2) + bθ̄τ+(z2). Hence the quantities are equal. �

Using the Gromov product, we define a premetric18 on Flag(τmod).

Definition 5.2 (Gromov premetric). Given fixed x ∈ X, ε > 0, define the Gromov

premetric Dθ̄,ε
x on Flag(τmod) as

Dθ̄,ε
x (τ1, τ2) =

{
exp
(
−ε〈τ1|τ2〉θ̄x

)
, if τ1, τ2 are antipodal,

0, otherwise.

Remark 5.3. A pair of points τ± ∈ Flag(τmod) is antipodal if and only if

Dθ̄,ε
x (τ+, τ−) �= 0.

Lemma 5.4. Dθ̄,ε
x is a continuous function.

18A premetric on X is a symmetric, continuous function d : X × X → [0,∞) such that
d(x, x) = 0 for all x ∈ X.
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Proof. The claim follows from [3, Lem. 3.8]. �

Definition 5.5 (Conformal maps). Let (Z, d) be a premetric space. A self-homeo-
morphism f : (Z, d) → (Z, d) is called K-quasiconformal if, for every z ∈ Z,
lim supr→0 Hf (z, r) ≤ K, where

Hf (z, r) :=
sup{d(f(y), f(z)) | d(y, z) ≤ r}
inf{d(f(y), f(z)) | d(y, z) ≥ r} .

The map f is called conformal if it is 1-quasiconformal.

Lemma 5.6. Let γ ∈ G and Λ ⊂ Flag(τmod) be a γ-invariant antipodal subset.

Then the map γ : Λ → Λ is conformal with respect to the premetric Dθ̄,ε
x .

Proof. Given distinct points τ± ∈ Λ,

Dθ̄,ε
x (γτ+, γτ−) = exp

(
−ε〈γτ+|γτ−〉θ̄x

)
= exp

(
− ε

2

(
Bθ̄
γτ+(x, z) + Bθ̄

γτ−(x, z)
))

= exp
(
− ε

2

(
Bθ̄
τ+(γ

−1x, γ−1z) + Bθ̄
τ−(γ

−1x, γ−1z)
))

= exp
(
− ε

2

(
Bθ̄
τ+(γ

−1x, x) + Bθ̄
τ−(γ

−1x, x)
))

Dθ̄,ε
x (τ+, τ−),

where the last equality follows from the cocycle condition (3.2). Moreover, the

continuity of Busemann functions bθ̄τ as a function of τ implies that

lim
τ−→τ+

Bθ̄
τ−(γ

−1x, x) = Bθ̄
τ+(γ

−1x, x).

Therefore,

(5.2) lim
τ−→τ+

Dθ̄,ε
x (γτ+, γτ−)

Dθ̄,ε
x (τ+, τ−)

= E(γ, τ+) := exp
(
−εBθ̄

τ+(γ
−1x, x)

)
.

From this, it can be checked that lim supr→0 Hγ(τ+, r) = 1. �

The premetric Dθ̄,ε
x is not a metric in general since:

(i) Pairs of distinct non-antipodal points have zero distance.
(ii) The triangle inequality may fail.

However, as we shall see below, for all sufficiently small ε > 0, Dθ̄,ε
x is bilipschitz

equivalent to an actual distance function when restricted to “nice” antipodal subsets
Λ ⊂ Flag(τmod).

Theorem 5.7. Let Z ⊂ X be the image of a τmod-Morse map f : (Z ′, d′) → (X, d),
and let Λ ⊂ Flag(τmod) be the flag limit set of Z. There exists ε0 > 0 such that,

for all 0 < ε ≤ ε0 and all x ∈ Z, the premetric Dθ̄,ε
x is 2-bilipschitz equivalent to

a metric on Λ. Moreover, the topology induced by Dθ̄,ε
x on Λ coincides with the

subspace topology of Λ ⊂ Flag(τmod).

Proof. The idea of the proof of the first part is due to Gromov [22]: We show
that the Gromov product defined in (5.1) restricted to Λ satisfies an ultrametric
inequality (see (5.7)).

Let Y ⊂ X be a Riemannian λ-neighborhood of Z. We assume that λ here is so
large such that x ∈ Y and the image of any complete geodesic l in Z ′ lies within
distance λ from the parallel set spanned by the images of the ideal endpoints of l
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under f̄ : ∂∞Z ′ → Flag(τmod). Note that λ satisfying the last condition exists as a
consequence of the Morse property.

Observe that (Y, dθ̄) is a Gromov δ-hyperbolic19 metric space for some δ ≥ 0.
This follows from the Gromov hyperbolicity of (Z, dθ̄) (cf. Theorem 4.5) and the
fact that Z and Y are (Hausdorff) λ-close to each other.

We recall from Väisälä [50, Sec. 5] that there are multiple ways to define Gromov
products on Λ viewed as the Gromov boundary of (Z, dθ̄) and, hence, of (Y, dθ̄).

For a distinct pair τ± ∈ Λ, define using the Gromov product 〈·|·〉θ̄x on (Y, dθ̄) the
following two products:

〈τ+|τ−〉infx = inf

{
lim inf
i,j→∞

〈y+i |y−j 〉θ̄x | (y±n ) ⊂ Y, y±n → τ±

}
and

〈τ+|τ−〉supx = sup

{
lim sup
i,j→∞

〈y+i |y−j 〉θ̄x | (y±n ) ⊂ Y, y±n → τ±

}
.

Then the difference of the above two quantities is uniformly bounded (see [50,
Lemma 5.6]), namely, for all distinct pairs τ± ∈ Λ,

(5.3) 0 ≤ 〈τ+|τ−〉supx − 〈τ+|τ−〉infx ≤ 2δ.

Finally, 〈·|·〉infx satisfies the ultrametric inequality (see [50, 5.12]), i.e., for distinct
triples τ1, τ2, τ3 ∈ Λ,

(5.4) 〈τ1|τ2〉infx ≥ min
{
〈τ1|τ3〉infx , 〈τ2|τ3〉infx

}
− δ.

By (5.3), 〈·|·〉supx also satisfies the ultrametric inequality but with a different con-
stant, 5δ.

Next we compare Väisälä’s Gromov products with ours (see (5.1)). Let τ± ∈ Λ
be a pair of antipodal points and let P = P (τ+, τ−). Note that our assumption
on largeness of λ implies that there exist uniformly τmod-regular sequences (y+n )
and (y−n ) on Y ∩ P such that y±n → τ± as n → ∞. Let p ∈ P (τ+, τ−). Then, the
additivity of Finsler distances dθ̄ on τmod-cones (cf. [26, Lem. 5.10]) yields, for

large n, 〈y+n |y−n 〉θ̄p = 0. By definition,

〈y+n |y−n 〉θ̄x = 〈y+n |y−n 〉θ̄p +
1

2

[(
dθ̄(x, y

+
n )− dθ̄(p, y

+
n )
)
+
(
dθ̄(y

−
n , x)− dθ̄(y

−
n , p)

)]
,

and for large n,

(5.5) 〈y+n |y−n 〉θ̄x =
1

2

[(
dθ̄(x, y

+
n )− dθ̄(p, y

+
n )
)
+
(
dθ̄(y

−
n , x)− dθ̄(y

−
n , p)

)]
.

The limit, as n → ∞, of the right side of this equation equals 〈τ+|τ−〉θ̄x (cf. (3.3)).
Therefore,

(5.6) 〈τ+|τ−〉infx ≤ 〈τ+, τ−〉θ̄x ≤ 〈τ+|τ−〉supx .

Hence, by (5.3) and (5.4), 〈·|·〉θ̄x satisfies the ultrametric inequality with constant
5δ, i.e., for pairwise distinct points τ1, τ2, τ3 ∈ Λ,

(5.7) 〈τ1|τ2〉θ̄x ≥ min
{
〈τ1|τ3〉θ̄x, 〈τ2|τ3〉

θ̄
x

}
− 5δ.

19Since there is a possibility of confusion, we would like to remind our reader that this δ is not
a critical exponent.
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Applying [50, Prop. 5.16], we get that, for all 0 < ε ≤ ε0, D
θ̄,ε
x is 2-bilipschitz

equivalent to an actual metric20 on Λ. Here the constant ε0 depends only on δ.
This completes the proof of the first part of the theorem.

For the second part, note that the inequality (5.6) implies that Dθ̄,ε
x induces

the standard topology on Λ as the Gromov boundary of (Y, dθ̄) (see [50, 5.29]).
Since, as we noted earlier, this topology is the same as the subspace topology of
the flag-manifold Flag(τmod), the second claim of the theorem follows as well. �
Corollary 5.8 (Conformal metric on Anosov limit set). Let Γ be a τmod-Anosov
subgroup, x ∈ X. Then there exists ε0 > 0 such that the following holds: Let
0 < ε ≤ ε0. Then, for all z ∈ Γx, the premetric Dθ̄,ε

x is bilipschitz equivalent to an
actual metric on Λτmod

(Γ).

Moreover, the action Γ � Λτmod
(Γ) is conformal with respect to Dθ̄,ε

z .

Proof. Since by Theorem 1.7 Anosov subgroups satisfy the Morse property, corol-
lary follows from Theorem 5.7 combined with Lemma 5.6. �
Example 5.9 (Product of rank-one symmetric spaces). We continue with Exam-
ple 2.8. Let τ = (ξr1 , . . . , ξrp) be a simplex in the Tits building of type τmod =

(r1, . . . , rp) and θ̄ = (1/
√
p, . . . , 1/

√
p) ∈ τmod. We compute the Busemann cocycle

and Gromov distance associated with τmod and type θ̄.
Let x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ X. Then

Bθ̄
τ (x, y) = lim

t→∞
(dRiem(�(t), x)− t) ,

where �(t) is a geodesic ray emanating from y and asymptotic to θ̄(τ ). A direct
computation yields

Bθ̄
τ (x, y) =

1
√
p

p∑
j=1

(
bξrj (xrj )− bξrj (yrj )

)
=

1
√
p

p∑
j=1

Bξrj

(
xrj , yrj

)
.

Hence the Gromov product can be written as

〈τ+|τ−〉θ̄x =
1
√
p

p∑
j=1

〈ξ+rj |ξ
−
rj 〉xrj

, ∀τ± = (ξ±r1 , . . . , ξ
±
rp) ∈ Flag(τmod),

and, finally the Gromov predistance is

(5.8) D
θ̄, 1√

p
x (τ+, τ−) =

p∏
j=1

D
θ̄, 1p
xrj

(
ξ+rj , ξ

−
rj

)
.

Example 5.10 (X = SL(k + 1,R)/SO(k + 1,R)). In this case the computations
of Busemann functions (see [24]) are explicitly known, and therefore, the Gromov
distance can also be computed explicitly. We only give a formula for the Gromov
distance in the special case when τmod = (1, k) that corresponds to the partial flags
{line ⊂ hyperplane} of Rk+1.

We continue with the notations from Example 2.9. The unique ι-invariant type
is

θ̄ =

(
1

2
√
k + 1

, 0,− 1

2
√
k + 1

)
.

20This metric can be constructed as follows: Let 0 < ε ≤ ε0. On Λ, define distθ̄,εx (τ, τ ′) =

inf
∑k

i=1 D
θ̄,ε
x (τi−1, τi), where the infimum is taken over all finite sequences τ = τ0, τ1, . . . ,

τk = τ ′ on Λ. See [50, 5.13].
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After equipping R
k+1 with the inner product induced by the choice of x ∈ X, the

Gromov product (with respect to x = Ik+1, the identity matrix) can be written as

〈(l1, h1) | (l2, h2)〉θ̄x = −
√
k + 1

2
log (sin∠(l1, h2) · sin∠(l2, h1)) ,

where ∠(l, h) denotes the angle between the line l and the hyperplane h.21

Thus, the Gromov predistance formula is

(5.9) D
θ̄, 1√

k+1
x ((l1, h1), (l2, h2)) =

√
sin∠(l1, h2)

√
sin∠(l2, h1).

6. Shadow lemma

In this section we prove a generalization Sullivan’s shadow lemma in higher
rank. The proof we present here is inspired by that of Albuquerque’s [1, Thm.
3.3] who treated the case of full flag manifold and Quint [43] who treated general
flag-manifolds but only in the case of regular vectors θ̄.

Recall the notion of shadow from Definition 1.3. We mainly consider shadows of
closed balls (with respect to the Riemannian metric) of non-zero radii in X from a
fixed base point x ∈ X. The topology generated by these shadows is the topology
of flag convergence. See Remark 1.4.

The main result in this section is the following.

Theorem 6.1 (Shadow lemma). Let Γ be a nonelementary τmod-RA subgroup,
x ∈ X, and μ a Γ-invariant θ̄-conformal density of dimension β. There exists
r0 > 0 such that for all r ≥ r0 and all γ ∈ Γ satisfying dRiem(x, γx0) > r,

μx(S(x : B(γx0, r))) � exp (−βdθ̄(x, γx0)) .

Here the notation � means that the ratio of the two sides is bounded above and
below by positive constants.

It is worth emphasizing that this version of the Shadow lemma is valid for all
τmod-RA subgroups of G which is a much larger class than τmod-Anosov subgroups.
For instance, the relatively τmod-Morse subgroups of G, a higher rank generalization
of the rank-one geometrically finite groups, are also τmod-RA.

Before presenting the proof, we note two consequences of this theorem.

Corollary 6.2. Let Γ be a nonelementary uniformly τmod-RA subgroup. Then any
θ̄-conformal density μ does not have conical limit points as atoms.

Proof. We observe that any conical limit point τ ∈ Λτmod
(Γ) lies in infinitely many

shadows S(x,B(γx0, r)) for sufficiently large r > 0 (depending on τ ). If τ is an
atom, then (by Theorem 6.1) the Poincaré series

(6.1) gθ̄β(x, x0) =
∑
γ∈Γ

exp (−βdθ̄(x, γx0))

diverges for every β ≥ 0. Hence δθ̄ must be infinite. But this contradicts Proposition
2.6. �

21This formula can be extracted directly from the formula of the Gromov products in Beyrer’s
paper [3] by applying it to our special case. Note that the determinant of the matrix in the claim
of [3, Appendix] is simply the sine of the angle between the line and hyperplane here. Careful
readers may notice some discrepancy between the normalizing constant in our formula and the
one in Beyrer’s work. This has happened due to our choice of the Riemannian metric in X, which
was obtained from the Killing form of g. In Beyrer’s paper, the quantity λ (which is θ̄ in our
paper) is not a unit vector of this metric. Also, compare with [24].
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The second application of shadow lemma will be given for the following class of
subgroups.

Definition 6.3 (Uniformly conical). A τmod-RA subgroup is called uniformly coni-
cal if for a given pair of points x, x0 ∈ X, there is a constant r > 0 such that for each
conical limit point τ ∈ Λτmod

(Γ), there exists a sequence (γk) on Γ flag-converging
to τ satisfying dRiem(γkx0, V (x, st(τ ))) < r, ∀k ∈ N.

We observe that Anosov subgroups satisfy the uniform conicality condition:

Proposition 6.4. Anosov subgroups are uniformly conical.

Proof. This follows from the fact that the orbit map Γ → Γx0 ⊂ X is a Morse
embedding. Let τ ∈ Λτmod

(Γ) be any point and ξ ∈ ∂∞Γ be the preimage of τ
under the boundary map. Let (γk), γ1 = 1Γ be a geodesic sequence in Γ asymptotic
to ξ. Then the sequence (γkx0) is a Morse quasigeodesic in X that is uniformly
close to V (x, st(τ )) (by definition of a Morse embedding). �

Corollary 6.5. Let Γ be a nonelementary uniformly conical τmod-RA subgroup
and μ be a θ̄-conformal density of dimension β. If the conical limit set Λcon

τmod
(Γ) is

non-null, then the Poincaré series gθ̄β(x, x0) (see (6.1)) diverges.

For τmod-Anosov subgroups Γ, Theorem 1.7 implies that Λcon
τmod

(Γ) = Λτmod
(Γ).

Hence the above result applies to all Anosov subgroups with Λcon
τmod

(Γ) replaced by
Λτmod

(Γ) in the statement.

Proof of Corollary 6.5. Writing the elements of Γ in a sequence (γn), define

SN =
∑
n≥N

exp(−βdθ̄(x, γnx0)).

Convergence of the series (6.1) asserts that limN→∞ SN = 0. Since Γ is uniformly
conical, there exists r > 0 such that for all N ∈ N,

Λcon
τmod

(Γ) ⊂
⋃

n≥N

S(x : B(γnx0, r)).

Applying Theorem 6.1, we get

μx(Λτmod
(Γ)) ≤

∑
n≥N

μx (S(x : B(γnx0, r))) ≤ const · SN

and, the bound above approaches to zero as N → ∞. Hence we must have
μx(Λ

con
τmod

(Γ)) = 0. �

The proof of shadow lemma occupies the rest of the section.

Proof of Theorem 6.1. In this proof, we equip Flag(τmod) with a Gx-invariant Rie-
mannian metric. We use the notation L(τ ) to denote the set of all τ ′ ∈ Flag(τmod)
which are not antipodal to τ . The complement of L(τ ) in Flag(τmod) is denoted by
C(τ ). Note that L(τ ) is closed and hence, compact.

Moreover, if τn → τ0, then the sets L(τn) Hausdorff-converge to L(τ0) as n → ∞.
This can be seen as follows. First, we note that gL(τ ) = L(gτ ) for all g ∈ G and
τ ∈ Flag(τmod). This is a consequence of the fact that the action G � Flag(τmod)
preserves antipodality, i.e., τ, τ ′ ∈ Flag(τmod) are antipodal if and only if gτ and
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gτ ′ are antipodal, g ∈ G. Now, choose a sequence kn ∈ Gx
∼= K such that kn → 1G

and knτ0 = τn. Since Flag(τmod) is compact and each L(τn), n ≥ 0, is closed,

L(τn) = knL(τ0)
Hausdorff−−−−−−→ L(τ0).

Lemma 6.6. For every ε > 0, there exists δ > 0 such that, for every τ0 ∈
Flag(τmod) and every τ ∈ B(τ0, δ),

Nε/2(L(τ )) ⊂ Nε(L(τ0)).

Proof. We equip the set

Y = {L(τ ) : τ ∈ Flag(τmod)}

with the Hausdorff distance dH. Then, as we noted above, the function f :
Flag(τmod) → Y , τ �→ L(τ ), is continuous and, hence, uniformly continuous.
Therefore, for every ε > 0, there exists δ > 0 such that d(τ, τ0) < δ implies
dH(L(τ ), L(τ0)) < ε/2, which then implies L(τ ) ⊂ Nε/2(L(τ0)). The lemma follows
from this. �

Let m = μx(Λτmod
(Γ)) denote the total mass of μx, and l = sup{μx(τ ) | τ ∈

Λτmod
(Γ)}. Since μx is a regular measure and Λτmod

(Γ) is compact, l is realized,
i.e., if μx has an atomic part, then it has a largest atom. Moreover, since Γ is
nonelementary, supp(μx) is not singleton. In fact, if τ is an atom, then the every
point in the orbit Γτ (which has infinite number of points) is an atom. In particular,
l < m.

Lemma 6.7. Given l < q < m, there exists an ε0 > 0 such that for all τ ∈ Λτmod
(Γ)

and all B ∈ B(Flag(τmod)) contained in Nε0(L(τ )), μx(B) ≤ q.

Proof. If this were false, then we would get a sequence (Bn) of Borel sets, a sequence
(εn) of positive numbers converging to zero, and a sequence (τn) on Λτmod

(Γ) con-
verging to a point τ0 such that for every n ∈ N,

Bn ⊂ Nεn(L(τn)), μx(Bn) > q.

To get a contradiction, we will show that μx(τ0) ≥ q. Let U be an open neigh-
borhood of L(τ0). As L(τ0) is compact, there exists ε > 0 such that Nε(L(τ0)) ⊂ U .
Let δ > 0 be a number that corresponds to this ε as in Lemma 6.6. Choose n so
large such that τn ∈ B(τ0, δ) and εn ≤ ε/2. By Lemma 6.6, we get Nεn(L(τn)) ⊂
Nε(L(τ0)) and, consequently, Bn ⊂ U . This shows that every open set U containing
L(τ0) has mass μx(U) > q. In particular, μx(L(τ0)) ≥ q.

Finally, as a consequence of the fact that Γ is τmod-antipodal, we have that
Λτmod

(Γ) ∩ L(τ0) = τ0. Since the support of μx is contained in Λτmod
(Γ) (see

Definition 3.2),

μx(L(τ0)) = μx(Λτmod
(Γ) ∩ L(τ0)) = μx(τ0).

The last sentence in the previous paragraph implies that μx(τ0) ≥ q. Hence, l ≥ q.
This is a contradiction. �

Lemma 6.8. Given ε > 0 there exists r1 > 0 such that for all r ≥ r1, the
complement of S(x : B(x0, r)) in Flag(τmod) is contained in Nε(L(τ )), for some
τ ∈ S(x0 : {x}).
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Proof. For r > 0 and τ0 ∈ Flag(τmod), τ
′ ∈ C(τ0), consider

U(τ0, x0, r) = {τ ′ ∈ Flag(τmod) | P (τ0, τ
′) ∩B(x0, r) �= ∅}.

This is an analogue of shadows (1.2) as viewed from the infinity. It is easy to verify
that ⋃

r≥0

U(τ0, x0, r) = C(τ0).

Moreover, for g ∈ G, these shadows from infinity transform as gU(τ0, x0, r) =
U(gτ0, gx0, r).

If k ∈ K = Gx0
, the stabilizer of x0, then kU(τ0, x0, r) = U(kτ0, x0, r). Since K

is compact, there exists M ≥ 1 such that the action k � Flag(τmod) is M -Lipschitz
for all k ∈ K. Let r1 > 0 be such that U(τ0, x0, r1/2)

c ⊂ Nε/M (L(τ0)). Here and
below, for A ⊂ Flag(τmod), A

c = Flag(τmod)−A. Then, for any τ ∈ Flag(τmod),

(6.2) U(τ, x0, r/2)
c ⊂ Nε(L(τ )), ∀r ≥ r1.

For x ∈ X, let τ ∈ Flag(τmod) be a simplex such that x ∈ V (x0, st(τ )). Then
there exists a parameterized geodesic ray xt starting from x0, passing through x
and asymptotic to some ξ ∈ st(τ ).

Claim. For all r > 0, S(x : B(x0, 2r)) ⊃ U(τ, x0, r).

Proof of claim. Pick τ ′ ∈ U(τ, x0, r) and let x̄0 ∈ P (τ, τ ′) denote the nearest point
projection of x0. In addition to the ray xt, we define another parameterized geodesic
ray x̄t, starting at x̄0 and asymptotic to ξ. Due to the convexity of the Riemannian
distance function on X, the distance dRiem(xt, x̄t) monotonically decreases with t.
Moreover, the cones V (x̄t, st(τ

′)) are nested as t decreases. Then,

dRiem(x0, V (xt, st(τ
′))) ≤ dRiem(x0, V (x̄t, st(τ

′))) + dRiem(xt, x̄t)

≤ dRiem(x0, V (x̄0, st(τ
′))) + r ≤ dRiem(x0, x̄0) + r ≤ 2r.

Therefore, τ ′ ∈ S(x : B(x0, 2r)). �

Using (6.2) it follows from the above claim that whenever r ≥ r1, the complement
of the shadow S(x : B(x0, r)) is contained in Nε(L(τ )) for some τ satisfying x ∈
V (x0, st(τ )). �

Lemma 6.9. For all r > 0 and all τ ∈ S(x : B(x0, r)),

|dθ̄(x, x0)− Bθ̄
τ (x, x0)| ≤ 2r.

Proof. We recall that dθ̄ can alternatively be defined as

dθ̄(y, z) = max
τ∈Flag(τmod)

Bθ̄
τ (y, z),

where the maximum above occurs at any point in S(y : {z}) (see [26, Sec. 5.1.2]).
Fix some τ0 ∈ S(x, {x0}). Then, for any τ ∈ S(x : B(x0, r)),

|dθ̄(x, x0)− Bθ̄
τ (x, x0)| = |bθ̄τ0(x0)− bθ̄τ (x0)|

= |bθ̄τ0(x0)− bθ̄τ0(k
−1x0)|

≤ dRiem(x0, k
−1x0) = dRiem(x0, kx0),

where k ∈ K, stabilizer of x, any element satisfying τ = kτ0. In the above we chose
the normalizations of the Busemann functions at x.
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Let y ∈ V (x, st(τ )) ∩ B(x0, r). Then y ∈ V (x, σ) for some chamber σ in st(τ ).
We identify V (x, σ) with the model Weyl chamber Δ. Let k1 ∈ K such that
k1x0 ∈ V (x, σ). Then, k1τ0 = τ , and k1x0 = dΔ(x, x0) via the identification above.
Moreover, since the map

X → Δ, z �→ dΔ(x, z)

is 1-Lipschitz (by the triangle inequality for Δ-distances (1.1)) and dΔ(x, y) = y,
we obtain

dRiem(y, k1x0) ≤ dRiem(y, x0) ≤ r

and, in particular, dRiem(x0, k1x0) ≤ 2r. �

Using the above lemmata, we now complete the proof of Theorem 6.1. We first
fix some auxiliary quantities. Let q ∈ (l,m) and ε0 be corresponding constant as
given in Lemma 6.7. Let δ be a constant given by Lemma 6.6 which corresponds
to ε = ε0. By Λ we denote the δ-neighborhood of Λτmod

and let

V =
⋃
τ∈Λ

V (x, st(τ )) ⊂ X.

Since Γ is discrete, the elements of Γ which send x0 outside V form a finite set Φ.
Let

r0 = max{r1, dRiem(x, γx0) | γ ∈ Φ},
where r1 is a constant that corresponds to ε0/2 as in Lemma 6.8.

For every γ ∈ Γ satisfying dRiem(x, γx0) > r ≥ r0, we assign an element τγ ∈
S(x : {γx0}) ∩ Λ (the intersection is nonempty by above). Using Lemma 6.6, for
every such τγ there exists τ0 ∈ Λτmod

so that

Nε0/2(L(τγ)) ⊂ Nε0(L(τ0)).

By Lemmata 6.7 and 6.8, μx(S(γ
−1x : B(x0, r))) ≥ m − q and by properties of

conformal measures,

μx(S(x : B(γx0, r))) = μγ−1x(S(γ
−1x : B(x0, r)))

=

∫
S(γ−1x:B(x0,r))

exp
(
−βBθ̄

τ (γ
−1x, x)

)
dμx

� exp (−βdθ̄(x, γx0)) ,

where in the last step we have additionally used Lemma 6.9. This completes the
proof. �

7. Dimension of a θ̄-conformal density

In this section, we establish a lower bound for the dimension of a θ̄-conformal
density. For Anosov subgroups, we prove that the dimension equals the θ̄-critical
exponent (see Corollary 7.5).

Theorem 7.1. Suppose that Γ is a nonelementary τmod-RA subgroup. Let μ be a
Γ-invariant θ̄-conformal density of dimension β. Then β has the following lower
bound:

(7.1) β ≥ δθ̄ − δconθ̄ .

The proof of this theorem is given at the end of this section. The number δcon
θ̄

above quantifies the maximal exponential growth rate of the orbit Γx0 in a conical
direction. The precise definition is given below.
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Definition 7.2 (Critical exponent in conical directions). Suppose that Γ is a τmod-
regular subgroup. For τ ∈ Λτmod

(Γ), define

Ncon
θ̄ (r, c, x, x0, τ ) = card{γ ∈ Γ | dθ̄(x, γx0) < r, dRiem(γx0, V (x, st(τ ))) < c}

and

(7.2) δconθ̄ (Γ) = sup
τ∈Λτmod

(Γ)

(
lim
c→∞

(
lim sup
r→∞

logNcon
θ̄

(r, c, x, x0, τ )

r

))
.

Note that it is sufficient to take the supremum in the definition of δcon
θ̄

(Γ) over
the conical limit set Λcon

τmod
(Γ). For rank-one symmetric spaces, and, more gener-

ally, for σmod-regular subgroups, this number is zero. This can be seen as follows.
Let Γ be a σmod-regular discrete subgroup, and σ ∈ Flag(σmod) be a limit point.
Consider a Riemannian tubular neighborhood T of V (x, st(σ)) = V (x, σ). Then
the (Riemannian) volume of Tr := {y ∈ T | dθ̄(x, y) < r} grows at most polyno-
mially (of degree equal to the rank of X) with respect to r. Hence the number
Ncon

θ̄
(r, c, x, x0, σ) also grows at most polynomially with r. Therefore, the limit in

the innermost bracket of (7.2) is zero.
Below we see that for τmod-Anosov subgroups also, δcon

θ̄
(Γ) = 0. It should be

noted that, however, for general discrete subgroups, δcon
θ̄

could be ∞.

Proposition 7.3. Suppose that Γ is a nonelementary τmod-Anosov subgroup. Then
the function N(r) = Ncon

θ̄
(r, c, x, x0, τ ) grows linearly with r. In particular, δcon

θ̄
(Γ)

= 0.

Proof. Without loss of generality, we can assume that x = x0.
22

Lemma 7.4. Fix c > 0. For any τ ∈ Λτmod
(Γ), the set

{γx0 | γ ∈ Γ, dRiem(γx0, V (x, st(τ ))) < c}
is within a uniformly bounded distance from a uniform τmod-Morse quasiray α em-
anating from x0 and asymptotic to τ .

Proof. Pick an arbitrary point τ ∈ Λτmod
(Γ). Denote the preimage of τ in ∂∞Γ

under the boundary homeomorphism ∂∞Γ → Λτmod
(Γ) by ζ. Since Γ is discrete,

we can arrange the elements of {γ ∈ Γ | dRiem(γx0, V (x, st(τ ))) < c} in a sequence
(γn). The sequence xn = γnx0 converges conically to τ . Let α : Z≥0 → X be
the image (under the orbit map Γ → Γx) of a parametrized geodesic ray Z≥0 → Γ
starting at 1Γ and asymptotic to ζ. Then α is a uniform τmod-Morse quasiray
starting at x0 and asymptotic to τ . Hence α is uniformly close to V (x0, st(τ )).
Since both sequences (xn) and (α(n)) are uniformly close to V (x0, st(τ )), it is
enough23 to understand the simpler case when α(n), xn ∈ V (x0, st(τ )), for all
n ∈ N.

We claim that the sequence (xn) is uniformly close to α. Otherwise, after extrac-
tion, (xn) would diverge away from α. Since α is a Morse quasiray, α eventually
enters each cone V (xn, st(τ )), but further and further away from the tip xn as n
grows. Since the separation between two successive points on α (being a quasi-
geodesic) is uniformly bounded, we could find arbitrarily large m’s such that α(m)

22Note that the number δcon
θ̄

(Γ) does not depend on x and x0 as we have seen in the case of

δθ̄ in Section 2.
23For instance, we can consider the nearest point projections of the sequences α(n) and xn

to V (x0, st(τ)). The new sequences would be uniformly close to the old ones. Note that the
projection sequence of α(n) is also a uniform τmod-Morse quasiray.
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is uniformly close to the boundary of a cone V (xn, st(τ )) and is arbitrarily far
away from its tip xn. But this would contradict the uniform τmod-regularity of the
group Γ. �

We continue with the notations from the proof of the lemma. Since any τmod-
Anosov subgroup Γ < G is uniformly τmod-regular (cf. Theorem 1.7), we may
work with the Riemannian metric dRiem in place of the dθ̄. Moreover, we may
assume that the sequence (xn) is sufficiently spaced. Let x̄n denote the nearest-
point projection of xn to the image of α. Lemma 7.4 implies that d(xn, x̄n) is
uniformly bounded. Since xn’s are sufficiently spaced, x̄n’s are also sufficiently
spaced which guarantees that dRiem(x̄n, x0) ≥ const · n, for all large n, which in
turn implies that dRiem(xn, x0) ≥ const · n. The proposition follows from this. �

As a corollary of the above results, we obtain that any Γ-invariant θ̄-conformal
density must have dimension δθ̄ when Γ is τmod-Anosov. The Patterson–Sullivan
densities constructed in Section 3 also had this dimension.

Corollary 7.5. Suppose that Γ is a nonelementary τmod-Anosov subgroup. Let μ
be a Γ-invariant θ̄-conformal density of dimension β. Then β = δθ̄.

Proof. Recall that Γ-invariant θ̄-conformal densities are, by definition (see Defini-
tion 3.2), supported in the limit set Λτmod

(Γ). Since for τmod-Anosov subgroups24

Λτmod
(Γ) = Λcon

τmod
(Γ), by Corollary 6.5, we know that the Poincaré series gθ̄β(x, x0)

diverges and, consequently, β ≤ δθ̄. The reverse inequality is obtained by a combi-
nation of Theorem 7.1 and Proposition 7.3. �

To close this section, we prove Theorem 7.1.

Proof of Theorem 7.1. We fix some r ≥ r0 where r0 is given by Theorem 6.1.
We first assume that the stabilizer of x0 in Γ is trivial in which case the function

Nθ̄(R, x, x0) counts the number of orbit points (in Γx0) within the R-ball in (X, dθ̄)
centered at x.

We place a Riemannian ball of radius r at each point in the orbit. In this proof,
we reserve the word ball to specify these balls. Let

c = min
1Γ �=γ∈Γ

{dRiem(x0, γx0)} .

There exists a number N ∈ N that depends only on r, c, and X such that any
ball intersects at most N other balls (including itself). Note that the shadows
in Flag(τmod) (from x) of two distinct balls are disjoint unless they intersect some
common τmod-cone with tip at x. Also note that, at large distances from x, the balls
do not intersect the boundaries of the τmod-cones because of the τmod-regularity of
the orbit.

Let nR denote the maximal number of balls inBθ̄(x,R) that intersect a particular
τmod-cone V (x, st(τ )). It follows from the definition of δcon

θ̄
(Γ) that

(7.3) lim sup
R→∞

log nR

R
≤ δconθ̄ (Γ).

24For τmod-Anosov subgroups Γ, Λτmod (Γ) = Λcon
τmod

(Γ) is a consequence of the fact that

τmod-Anosov subgroups are also τmod-RCA, see Theorem 1.7.
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On the other hand, for each τ ∈ Λτmod
(Γ), the maximal number of balls in Bθ̄(x,R)

whose shadows intersect τ is nR. Therefore,

(7.4)
Nθ̄(R, x, x0)

N · nR
s(R) ≤ m = total mass of μx,

where s(R) is any lower bound for the measures of the shadows of balls in Bθ̄(x,R).
We note that the shadow lemma (Theorem 6.1) produces such a positive lower
bound,25 namely, we may take s(R) = const · e−βR. Then (7.4) yields

Nθ̄(R, x, x0) ≤
mN · nR

const
eβR.

Together with (7.3), the above results in (7.1).
In the general case when Γx0

is non-trivial, Γx0
= K ∩Γ is still at most finite. In

this case, Nθ̄(R, x, x0) will be a constant multiple of the number of Γ-orbit points
of x0 within the R-ball in (X, dθ̄) centered at x. So, we only need to change the
constant term in the above inequality. �

8. Uniqueness of θ̄-conformal density

Recall that an action of a group H on a measure space (S, σ) is said to be ergodic
if each H-invariant measurable set B ⊂ S is either null or co-null. In [47], Sullivan
proved that for a discrete group Γ of Möbius transformations of the Poincare ball
B
3, a Γ-invariant θ̄-conformal density μ of non-zero dimension is unique (here and

henceforth, by “unique” we mean unique up to a constant factor) in the class of all
θ̄-conformal densities of same dimension if and only if the action Γ on the limit set
Λ(Γ) is ergodic with respect to any μx ∈ μ. See also [37, Thm. 4.2.1]. Generalizing
this statement in our setting, we obtain the following result. The proof is essentially
same of Sullivan’s theorem, hence we omit the details.

Theorem 8.1. Suppose that Γ is a nonelementary τmod-RA subgroup. A Γ-in-
variant θ̄-conformal density μ of dimension β > 0 is unique in the class of all
Γ-invariant θ̄-conformal densities of dimension β if and only if the action Γ �

Λτmod
(Γ) is ergodic with respect to any μx ∈ μ.

It is then natural to ask

Question 8.2. For which τmod-regular subgroups Γ, the action Γ � Λτmod
(Γ) is

ergodic with respect to a conformal measure?

In this section we prove that the Anosov property is a sufficient condition:

Theorem 8.3 (Anosov implies ergodic). Suppose that Γ is a nonelementary τmod-
Anosov subgroup and μ be a Γ-invariant θ̄-conformal density. Then the action
Γ � Λτmod

(Γ) is ergodic with respect to any μx ∈ μ.

As a corollary, we obtain that when Γ is τmod-Anosov, then, up to a constant
factor, there is exactly one Γ-invariant θ̄-conformal density, namely, the Patterson–
Sullivan density.

Corollary 8.4 (Existence and uniqueness of θ̄-conformal density). Suppose that
Γ is a nonelementary τmod-Anosov subgroup. Then, up to a constant factor, there
exists a unique Γ-invariant θ̄-conformal density μ, namely, the Patterson–Sullivan
density of type θ̄.

25We may need to disregard a finite number of balls from the picture.
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Proof. First of all, by Proposition 3.5, any such density must have a positive di-
mension. Secondly, by Corollary 7.5 this dimension equals to the critical exponent
δθ̄. Then the uniqueness follows from the combination of Theorems 8.1 and 8.3. �

Now we return to the proof of Theorem 8.3.

Proof of Theorem 8.3. Let μ be a Γ-invariant θ̄-conformal density. Note that the
dimension β of μ must be positive (by Proposition 3.5 and Corollary 7.5).

Let B be a Γ-invariant Borel subset of Λτmod
(Γ). We need to prove that if B is

not a null set, then it is co-null. From now on, we assume that B is not a null set,
i.e., μx(B) > 0.

We need the following lemmata.

Lemma 8.5. There exists r1 > 0 such that for every r ≥ r1 and every γ ∈ Γ, the
shadow S(x,B(γx0, r)) intersects Λτmod

(Γ).

Proof. The proof simply follows from the Morse property of the Anosov subgroup
Γ. �

We assume that the r1 in the lemma also satisfies the “uniform conicality” prop-
erty for Γ (cf. Proposition 6.4).

Lemma 8.6. Let r ≥ max{r0, r1} where r0 is as in Theorem 6.1. For μx-a.e. τ ∈
B and every sequence (γn) on Γ, γn → τ , satisfying τ ∈ Sn := S(x : B(γnx0, r)),
we have

(8.1) lim
n→∞

μx(Sn ∩B)

μx(Sn)
= 1.

Assuming this lemma for a moment, we complete the proof of the theorem. The
proof of this lemma is given at the end of this section. Note that Lemma 8.5 is
used to ensure that the ratios in Lemma 8.6 are not degenerate.

Let τ ∈ B be a density point, i.e., τ satisfies (8.1). Such point exists by Lemma
8.6 because B has positive mass. Note that Γ-invariance of B and μ implies that

μx(S(γ
−1
n x : B(x0, r)) ∩B)

μx(S(γ
−1
n x : B(x0, r)))

=
μγnx(Sn ∩B)

μγnx(Sn)

= 1− μγnx(Sn −B)

μγnx(Sn)

= 1−

∫
Sn−B

exp
(
−βBθ̄

τ (γnx, x)
)
dμx∫

Sn
exp
(
−βBθ̄

τ (γnx, x)
)
dμx

≥ 1− const · μx(Sn −B)

μx(Sn)
,

where the inequality follows by Lemma 6.9. Together with (8.1), we get

(8.2) lim
n→∞

μx(S(γ
−1
n x : B(x0, r)) ∩B)

μx(S(γ
−1
n x : B(x0, r)))

= 1.

Note that by Corollary 6.2, μ is atom-free. Therefore, for every ε > 0 there
exists r > r1 such that

μx(S(γ
−1
n x : B(x0, r))) ≥ m− ε,
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for all large n, where m denotes the total mass of μx. The above follows from the
combination of Lemmata 6.7 and 6.8. Therefore, by (8.2),

μx(B) ≥ lim
n→∞

μx(S(γ
−1
n x : B(x0, r)) ∩B) ≥ m− ε,

which holds for every ε > 0. Hence μx(B) = m. This completes the proof of the
theorem. �

Now we prove Lemma 8.6. The lemma would have followed from a generalization
of the Lebesgue density theorem (cf. [17, Subsec. 2.9.11, 2.9.12]) if we knew that
μx is, e.g., a doubling measure. Since this property is unclear, we adopt a more
direct approach. The idea of the proof follows [44, Subsec. 1E] (see also [35, Sec.
3]).

Proof of Lemma 8.6. The proof requires a version of the Lebesgue differentiation
theorem.

Sublemma 8.7. For every bounded measurable function Φ : Flag(τmod) → R≥0,

Φ(τ ) = lim
n→∞

1

μx(S(x : B(γnx0, r)))

∫
S(x:B(γnx0,r))

Φdμx,

for μx-a.e. τ ∈ Λτmod
and all γn ∈ Γ satisfying τ ∈ S(x : B(γnx0, r)).

Proof. For every bounded measurable function Ψ : Flag(τmod) → R≥0, define a
function Ψ∗ on Flag(τmod) which is zero outside Λτmod

(Γ) and on Λτmod
(Γ) it is

defined by

(8.3) Ψ∗(τ ) = lim sup
N→∞

1

μx(S(x : B(γx0, r)))

∫
S(x:B(γx0,r))

Ψdμx.

Here and in the following the limit superior is taken over all γ ∈ Γ that satisfy
dRiem(x, γx0) ≥ N and τ ∈ S(x : B(γx0, r)).

Let Φk be a sequence of continuous functions converging to Φ μx-almost surely
such that ∫

Flag(τmod)

|Φk − Φ|dμx <
1

k
, ∀k ∈ N.

Then for every τ ∈ Flag(τmod) and γ ∈ Γ, we have

(8.4) lim sup
N→∞

∣∣∣∣ 1

μx(S(x : B(γx0, r)))

∫
S(x:B(γx0,r))

Φdμx − Φ(τ )

∣∣∣∣
≤ |Φ− Φk|∗(τ ) + |Φk(τ )− Φ(τ )|

+ lim sup
N→∞

∣∣∣∣∣ 1

μx(S(x : B(γx0, r)))

∫
S(x:B(γx0,r))

Φkdμx − Φk(τ )

∣∣∣∣∣ .
Since Φn are continuous, the last quantity in the right side of the above vanishes.
Moreover, the limit of |Φk(τ )−Φ(τ )| as k → ∞ vanishes at μx-a.e. τ ∈ Flag(τmod).
Therefore, we only need to control the first term of the right side of (8.4): We show
that, for all bounded nonnegative measurable functions Ψ on Flag(τmod) and all
ε > 0,

(8.5) μx ({Ψ∗ > ε}) ≤ const

ε

∫
Flag(τmod)

Ψdμx,
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where the constant does not depend on ε or Ψ. The sublemma follows from this
as follows: Setting Ψ = |Φ − Φk| and taking limit as k → ∞ in (8.5), we see that
|Φ−Φk|∗ μx-a.s. converges to zero. Hence left-hand side of (8.4) also converges to
zero for μx-a.e. τ ∈ Λτmod

.
Now we verify (8.5). Let ε > 0 be arbitrary. For d ≥ 0, let Γd be the set of all

elements γ ∈ Γ such that dθ̄(x, γx0) ≥ d and

(8.6)

∫
S(x:B(γx0,r))

Ψdμx ≥ ε

2
μx(S(x : B(γx0, r))).

Claim 1. The union of all shadows S(x : B(γx0, r)) over γ ∈ Γd covers {Ψ∗ > ε}.

Proof of claim. The proof is straightforward. �

We recursively construct a sequence of subsets, (Γd,N ), of Γd in the following
way: Let Γd,1 = {γ ∈ Γd | 0 ≤ dθ̄(x, γx0) < 1}, and, for N ≥ 2, define

Γd,N =

{
γ ∈ Γd

∣∣∣∣ N − 1 ≤ dθ̄(x, γx0) < N and S(x : B(γx0, r))∩
S(x : B(φx0, r)) = ∅, ∀φ ∈ Γd,1 ∪ · · · ∪ Γd,N−1

}
.

Set Γ∗
d =

⋃
N≥1 Γd,N .

Claim 2. There exists a constant R ≥ r such that, for every d ≥ 0,

{Ψ∗ > ε} ⊂
⋃

φ∈Γ∗
d

S(x : B(φx0, R)).

Proof of claim. It is enough to prove the claim for very large d. In fact, we assume
that d is so large such that x(γx0) is uniformly τmod-regular for all γ ∈ Γd.

Let τ ∈ {Ψ∗ > ε} be arbitrary. Then there exists γ ∈ Γd such that τ ∈ S(x :
B(γx0, r)). Assume that γ �∈ Γ∗

d. By construction of Γ∗
d, there exists φ ∈ Γ∗

d such
that S(x : B(γx0, r)) ∩ S(x : B(φx0, r)) �= ∅ and dθ̄(x, φx0) < dθ̄(x, γx0).

By Lemma 7.4, both γx0 and φx0 stay uniformly close to a τmod-uniform Morse
quasigeodesic α with one endpoint at x. Since dθ̄(x, φx0) < dθ̄(x, γx0), we may
assume that the other endpoint of α is uniformly close to γx0. It follows that
φx0 is uniformly close to the diamond ♦Θ(x, γx0), since α is, for some Θ ⊂ τmod.
Pick y ∈ B(γx0, r) ∩ V (x, st(τ )). Then, by uniform continuity of diamonds (cf.
[14, Thm. 3.7]), for some Θ′ bigger than Θ, ♦Θ(x, γx0) is contained in a uniform
neighborhood of ♦Θ′(x, y). Therefore, φx0 is uniformly close to ♦Θ′(x, y) and, in
particular, to V (x, st(τ )). We may choose R to be this upper bound. �

In particular, we get

(8.7) μx ({Ψ∗ > ε}) ≤
∑
φ∈Γ∗

R

μx (S(x : B(φx0, R))) .

Claim 3. If S(x : B(γx0, r))∩S(x : B(φx0, r)) �= ∅, for γ, φ ∈ Γ∗
d, then dθ̄(γx0, φx0)

is uniformly bounded.

Proof of claim. This follows from the Gromov hyperbolicity of (Γx0, dθ̄) (see Corol-
lary 4.8) and the fact that both γx0 and φx0 lie in an annulus {x′ ∈ X | N − 1 ≤
dθ̄(x, x

′) < N} in the following way: Let τ ∈ S(x : B(γx0, r)) ∩ S(x : B(φx0, r)).
Let z ∈ V (x, st(τ )) be a point uniformly close to Γx0. By δ-hyperbolicity,

(8.8) 〈γx0|φx0〉x + δ ≥ min {〈γx0|z〉x, 〈φx0|z〉x} .
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Expanding the left side, we get

〈γx0|φx0〉x + δ =
1

2
(dθ̄(x, γx0) + dθ̄(φx0, x)− dθ̄(γx0, φx0)) + δ

≤
(
dθ̄(φx0, x)−

1

2
dθ̄(γx0, φx0)

)
+ δ +

1

2
,

(8.9)

and expanding the right side, we get

min {〈γx0|z〉x, 〈φx0|z〉x} = min

{
1
2 (dθ̄(x, γx0) + dθ̄(z, x)− dθ̄(γx0, z)) ,
1
2 (dθ̄(x, φx0) + dθ̄(z, x)− dθ̄(φx0, z))

}
.

Taking z → τ in the right side of the last one and using (3.3), we get

min

{
1

2

(
dθ̄(γx0, x) + Bθ̄

τ (x, γx0)
)
,
1

2

(
dθ̄(φx0, x) + Bθ̄

τ (x, φx0)
)}

,

which, by Lemma 6.9, is at least

min {dθ̄(γx0, x), dθ̄(φx0, x)} − r ≥ dθ̄(γx0, x)− r − 1.

Combining this with (8.8) and (8.9), we get

dθ̄(γx0, φx0) ≤ 2r + 2δ + 3.

�

In particular, for each τ ∈ μx ({Ψ∗ > ε}), # {φ ∈ Γ∗
d | τ ∈ S(x : B(φx0, r))} is

uniformly bounded, say, by D > 0. Therefore,

(8.10)
∑
φ∈Γ∗

R

μx (S(x : B(φx0, r))) ≤ Dμx

⎛⎝ ⋃
φ∈Γ∗

R

S(x : B(φx0, r))

⎞⎠ .

We would like to use the shadow lemma (Theorem 6.1). To this end, we have
(8.11)

μx ({Ψ∗ > ε}) ≤
∑
φ∈Γ∗

R

μx (S(x : B(φx0, R))) ≤ C ′
∑
φ∈Γ∗

R

exp (−βdθ̄(x, φx0)) ,

where the first inequality is given by (8.7) and the last inequality is given by the
shadow lemma with r0 ≤ r = R. Note that the necessary condition dθ̄(x, φx0) ≥ R
which we needed to apply the shadow lemma in the above follows from the definition
of Γ∗

R. Moreover, applying shadow lemma again with r0 ≤ r = r, we get another
constant C > 0 such that

(8.12) C−1
∑
φ∈Γ∗

R

exp (−βdθ̄(x, φx0)) ≤
∑
φ∈Γ∗

R

μx (S(x : B(φx0, r))) .

Combined with (8.10), the inequalities in (8.11) and (8.12) give

μx ({Ψ∗ > ε}) ≤ DC ′Cμx

⎛⎝ ⋃
φ∈Γ∗

R

S(x : B(φx0, r))

⎞⎠ .

Finally, the above and (8.6) yield

μx ({Ψ∗ > ε}) ≤ 2DC ′C

ε

∫
Flag(τmod)

Ψdμx.

This proves (8.5). �
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The proof of the lemma follows from the sublemma by taking Φ in the sublemma
to be the indicator function for B. �

9. Hausdorff density

In this section, we restrict our attention to Anosov subgroups. Usually, one
defines Hausdorff measures and Hausdorff dimension for metric spaces. In Appendix
A, we verify that the theory goes through for premetrics as well. Therefore, we
choose to work with premetric spaces. The reader who prefers to work with metrics
can assume that ε > 0 in the following is chosen so small so that Dθ̄,ε

x is bilipschitz
equivalent a metric on Λτmod

(Γ) (cf. Corollary 5.8).

We fix an ε > 0. For β ≥ 0, we let Hθ̄,ε,β
x denote the β-dimensional Hausdorff

measure on the premetric space (Λτmod
(Γ), Dθ̄,ε

x ). These definitions can be found
in Appendix A. The Hausdorff dimension of a Borel subset B ⊂ Λτmod

(Γ) is then
defined as

dimθ̄,ε
Haus(B) = inf{β | Hθ̄,ε,β

x (B) = 0} = sup{β | Hθ̄,ε,β
x (B) = ∞}.

We observe that if for some β ≥ 0, Hθ̄,ε,β
x (B) ∈ (0,∞), then dimθ̄,ε

Haus(B) = β.

Remark 9.1. The Hausdorff dimension dimθ̄,ε
Haus(B) does not depend on the choice

of a base-point x ∈ X, although the definition above involved such a basepoint.
This follows from the fact that for any x, z ∈ X, the identity map

id : (Λτmod
(Γ), Dθ̄,ε

x ) → (Λτmod
(Γ), Dθ̄,ε

z )

and its inverse are locally Lipschitz maps. We show this in the proof of Proposition
9.2. For this reason, we have dropped the basepoint from the notation of the
Hausdorff dimension.

Proposition 9.2. Suppose that for some β ≥ 0

(9.1) Hθ̄,ε,β
x (Λτmod

(Γ)) ∈ (0,∞).

Let Z = Γx. Then Hθ̄,ε,β = {Hθ̄,ε,β
z }z∈Z is a Γ-invariant θ̄-conformal Z-density of

dimension βε.

Proof. Let y, z ∈ Z. Define a function f : Λτmod
(Γ)× Λτmod

(Γ) → R≥0 by

f(τ1, τ2) =

⎧⎨⎩
Dθ̄,ε

y (τ1,τ2)

Dθ̄,ε
z (τ1,τ2)

, τ1 �= τ2,

exp
(
−εBθ̄

τ (y, z)
)
, τ1 = τ2 = τ.

By a calculation similar to the proof of Lemma 5.6, we obtain

lim
τ1,τ2→τ

Dθ̄,ε
y (τ1, τ2)

Dθ̄,ε
z (τ1, τ2)

= exp
(
−εBθ̄

τ (y, z)
)

which shows that f is continuous. For τ ∈ Λτmod
(Γ) and sufficiently small η > 0,

let Uη be a neighborhood of τ in Λτmod
(Γ) such that ∀τ1, τ2 ∈ Uη,

Dθ̄,ε
y (τ1, τ2) ≤

(
exp
(
−εBθ̄

τ (y, z)
)
+ η
)
Dθ̄,ε

z (τ1, τ2).

Hence the identity map id : (Λτmod
(Γ), Dθ̄,ε

z ) → (Λτmod
(Γ), Dθ̄,ε

y ) restricted to Uη

is Lη-Lipschitz, where Lη := exp
(
−εBθ̄

τ (y, z)
)
+ η. In particular, the map id is



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PATTERSON–SULLIVAN THEORY FOR ANOSOV SUBGROUPS 8725

locally Lipschitz. Therefore, for any B ∈ B(U), Hθ̄,ε,β
y (B) ≤ Lβ

ηHθ̄,ε,β
z (B). This

also shows that Hθ̄,ε,β
y � Hθ̄,ε,β

z . Taking limit as η → 0, we obtain

dHθ̄,ε,β
y

dHθ̄,ε,β
z

(τ ) ≤ exp
(
−βεBθ̄

τ (y, z)
)
,

and by switching the role of y and z in the above we also obtain the reverse in-
equality. Hence

dHθ̄,ε,β
y

dHθ̄,ε,β
z

(τ ) = exp
(
−βεBθ̄

τ (y, z)
)

which proves θ̄-conformality. Suppose that y = γz for some γ ∈ Γ. Then for any
B ∈ B(Λτmod

(Γ)),

Hθ̄,ε,β
γz (B) =

∫
B

exp
(
−βεBθ̄

τ (γz, z)
)
dHθ̄,ε,β

z =

∫
B

d
(
γ∗Hθ̄,ε,β

z

)
= γ∗Hθ̄,ε,β

z (B)

and Γ-invariance also follows. Therefore, Hθ̄,ε,β is a conformal Z-density of dimen-
sion βε. �

Remark 9.3.

(1) Note that if such a family {Hθ̄,ε,β
z | z ∈ Z} exists, then it may be extended

to a full θ̄-conformal density via the correspondence in (3.5).
(2) By the uniqueness of θ̄-conformal density (Corollary 8.4), the number β in

Proposition 9.2 equals to δθ̄/ε.
(3) In the following we shall see that, indeed, the δθ̄/ε-dimensional Hausdorff

measure Hθ̄,ε,
δ
θ̄
ε

x is finite and non-null (i.e., it satisfies (9.1)).

Next we show that if β = δθ̄/ε, then the β-dimensional Hausdorff measure Hθ̄,ε,β
x

satisfies (9.1). Let us first discuss the simpler case, namely, when the pseudo-metric
dθ̄ is a metric. There is an abundance of examples when this occurs, e.g., in the
case when X = G/K is an irreducible symmetric space (i.e., G is simple).

Let (Y, d) be a proper, geodesic, Gromov hyperbolic metric space and Γ be
a nonelementary discrete group of isometries acting properly discontinuously on
Y . Let Λ be the limit set of Γ in ∂∞Y . Further, assume that Γ is quasiconvex-
cocompact, i.e., the quasiconvex hull QCH(Λ) is nonempty and QCH(Λ)/Γ is com-
pact. In [10], Coornaert proved the following result.

Theorem 9.4 ([10, Cor. 7.6]). Suppose that the critical exponent δ of Γ is finite.
Then the δ-dimensional Hausdorff measure on Λ with respect to a Gromov metric
D is finite and non-null.

To apply this theorem to our case, we need an appropriate setup. In Section
4, we proved that the orbit Z = Γx is a Gromov hyperbolic space with respect to
the Finsler metric dθ̄ (cf. Corollary 4.8) and it is also proper. But Z fails to be
geodesic. This problem can be remedied by taking a uniform neighborhood Y of Z
in X such that Z is quasiconvex in Y , and then putting the intrinsic path-metric
d on Y induced by dθ̄ (this requires positivity of dθ̄), and finally by completing Y
in this metric. Then (Y, d) is proper, geodesic and Gromov hyperbolic. Moreover,
(Y, d) and the isometrically embedded (Z, dθ̄) are Hausdorff-close and, in particular,
(Y, d) is quasiisometric to (Z, dθ̄) by a (1, A)-quasiisometry. This implies that there
is a bilipschitz homeomorphism from ∂∞Y (equipped with the metric Dε defined by
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Dε(ξ1, ξ2) = D(ξ1, ξ2)
ε where D is a Gromov metric on ∂∞Y ) to (Λτmod

(Γ), Dθ̄,ε
x ).

Note that the action Γ � (Y, d) satisfies all the properties needed to apply Theorem
9.4. Therefore, by this theorem the δθ̄/ε-dimensional Hausdorff measure on ∂∞Y
(and, consequently, also on Λτmod

(Γ)) is finite and non-null.
In the general case where the positivity of dθ̄ is unknown, the above argument

still works after some modifications. Let us go back to our construction in the
above paragraph. Let Y be a uniform Riemannian neighborhood of Z in which Z
is quasiconvex w.r.t. dθ̄. Define a new Γ-invariant metric d̄θ̄ on Y by

d̄θ̄(y, z) = max
{
dθ̄(y, z), εdRiem(y, z)

}
, ∀y, z ∈ Y,

where ε > 0 is some number that is strictly lesser than L−1 given in (2.6). Note that
for y, z ∈ Z, if dθ̄(y, z) is sufficiently large, then d̄θ̄(y, z) = dθ̄(y, z). Moreover, for a
given ι-invariant compact subset Θ ⊂ ost(τmod) and a possibly smaller ε (depending
on the choice of Θ), any Θ-Finsler geodesic (see Definition 2.2) connecting these two
points remains a geodesic in this new metric. In other words, Z remains quasiconvex
in Y with respect to d̄θ̄.

Observe that the identity embedding (Z, dθ̄) → (Y, d̄θ̄) is a (1, A)-quasiisometric
embedding for some large enough A and the image is Hausdorff-close to Y . There-
fore, in this case also we get a natural identification of the Gromov boundaries of
(Z, dθ̄) and (Y, d̄θ̄). Next, considering intrinsic metrics, we complete Y as before to
get a proper, geodesic, Gromov hyperbolic space (Y, d). The rest of the argument
works as before.

Using Proposition 9.2 together with the remark after the proposition, we obtain
the following result.

Theorem 9.5. Suppose that Γ is a nonelementary τmod-Anosov subgroup of G. If
β = δθ̄/ε, then the β-dimensional Hausdorff density Hθ̄,ε,β = {Hθ̄,ε,β

z | z ∈ X} is
a Γ-invariant θ̄-conformal density of dimension δθ̄. In particular, the Hausdorff

dimension with respect to the metric Dθ̄,ε
x satisfies

dimθ̄,ε
Haus(Λτmod

(Γ)) =
δθ̄
ε
.

Moreover, Hθ̄,ε,β equals to a non-zero multiple of the Patterson–Sullivan density
of type θ̄ corresponding to Γ.

We have mostly completed the proof of this theorem. The only remaining “more-
over” part follows from the uniqueness of the Γ-invariant θ̄-conformal density (The-
orem 8.4).

Corollary 9.6. Let Γ be a τmod-Anosov subgroup of G. For all x ∈ X, the Haus-
dorff dimension of the premetric space (Λτmod

(Γ), Dθ̄,1
x ) equals to δθ̄.

10. Examples

10.1. Product of two hyperbolic planes. Let Γ1, Γ2 be isomorphic discrete
cocompact subgroups of PSL(2,R) where the isomorphism is given by φ : Γ1 → Γ2.
We let f : S1 → S1 be the equivariant homeomorphism of ideal boundaries of
hyperbolic planes determined by φ.

The discrete subgroup

Γ = {(γ1, φγ1) | γ1 ∈ Γ1} < G = PSL(2,R)× PSL(2,R)
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acts on X = H
2×H

2 as a σmod-Anosov subgroup. (This follows, for instance, from
the fact that Γ is an URU subgroup of G.) The σmod-limit set of Γ in the full flag
manifold S1 × S1 equals the graph of the map f .

We denote by d1 (resp. d2) the distance functions of the constant −1 curvature
Riemannian metrics on the first (resp. second) factor of the product H2 ×H

2.
Unlike in Section 5, we work with the Finsler metric on H

2 ×H
2 given by

(10.1) dθ̄((x1, x2), (y1, y2)) =
d1(x1, y1) + d2(x2, y2)

2
.

Basically, we have multiplied the distance function in (2.7) corresponding to θ̄ =

( 1√
2
, 1√

2
), for p = 2, by a factor 1/

√
2 in order to avoid cumbersome radical con-

stants.
By the formula of the Gromov predistance (5.8), for ε = 1 and x = (x1, x2),

Dθ̄,1
x (τ+, τ−) is bilipschitz equivalent to the product

√
α1α2,

where τ± = (ξ±1 , ξ±2 ) and αi is the angle between ξ+i , ξ
−
i as measured from xi,

i = 1, 2.
By [4, Thm. 2 & 3] we note that the θ̄-critical exponent δθ̄ of Γ is at most 1.

This can also be obtained by comparing the Hausdorff dimensions as follows. Note
that by the formula of the Gromov predistance, the identity map

(S1 × S1, ρ) → (Flag(σmod), D
θ̄,1
x )

is Lipschitz, where ρ is a Riemannian distance function on S1×S1 = ∂∞H
2×∂∞H

2.
Moreover, the limit set of Γ in S1×S1 is the graph of a BV (i.e., bounded variation)
function, hence, is a rectifiable curve, and, thus, has Hausdorff dimension 1 with
respect to ρ. Consequently, with respect to Dθ̄,1

x , dimHaus(Λσmod
(Γ)) ≤ 1. By

Theorem 9.5, δθ̄ ≤ 1 as well.
Moreover, by [4, Thm. 2] and Corollary 6.5, δθ̄ = 1 if and only if φ is induced

by an isometry of H2, equivalently, f is a Möbius transformation.
We further note that one can use [8] as an alternative argument for both inequal-

ity and the equality case.

10.2. Hilbert entropy of projective Anosov representations. A subgroup
Γ < SL(k+ 1,R), k ≥ 2, is called projective Anosov if it is τmod-Anosov for τmod =
(1, k) (see Examples 1.9, 2.9, and 5.10 for notations). The θ̄-critical exponent
associated to the unique ι-invariant type

θ̄ =

(
1

2
√
k + 1

, 0,− 1

2
√
k + 1

)
in τmod will be denoted, as usual, by δθ̄.

Let Γ < SL(k + 1,R) be a projective Anosov subgroup. In [21], the authors de-
fined the following two critical exponents of Γ, namely, the Hilbert critical exponent
(corresponding to the sum of all simple roots)

δ1,k+1 = lim sup
r→∞

log card{γ ∈ Γ | σ1(γ)− σk+1(γ) < r}
r

and the simple root critical exponent (corresponding to the first simple root)

δ1,2 = lim sup
r→∞

log card{γ ∈ Γ | σ1(γ)− σ2(γ) < r}
r

.
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A direct computation yields
√
k + 1δθ̄ = δ1,k+1,

which follows from the formula of dθ̄ given by (2.10). Also note that (by (5.9)) for
a pair of partial flags (l1, h1), (l2, h2) ∈ Flag(τmod),

(10.2) Dθ̄,1/
√
k+1

x ((l1, h1), (l2, h2)) =
√
sin∠(l1, h2)

√
sin∠(l2, h1) ≤ sin∠(l1, l2),

where the right side equals the distance (with respect to the constant curvature
Riemannian metric on RP k determined by x ∈ X) between the points l1, l2 in
RP k. This together with Theorem 9.5 implies that

(10.3) δ1,k+1 =
√
k + 1δθ̄ = dim

θ̄,1/
√
k+1

Haus (Λτmod
(Γ)) ≤ dimRiem

Haus (ξ
1(∂∞Γ)),

where ξ1 : ∂∞Γ → RP k is the Γ-equivariant embedding26 of ∂∞Γ into RP k and
dimRiem

Haus denotes the Hausdorff dimension with respect to the Riemannian metric.

The critical exponent δ1,2 is known to give an upper bound for dimRiem
Haus (ξ

1(∂∞Γ))
(see [41, Prop. 4.1] or [21, Thm. 4.1]). By above, we obtain a lower bound.

Theorem 10.1. Let Γ < SL(k + 1,R) be a projective Anosov subgroup. Then

δ1,k+1 ≤ dimRiem
Haus (ξ

1(∂∞Γ)) ≤ dimRP k = k.

Remark 10.2. If one considers the τmod-flag limit set Λτmod
of Γ in the flag manifold

Flag(τmod), then a similar lower bound can be obtained for the Hausdorff dimension
corresponding to the Riemannian metric. Note that (10.2) also holds if one replaces
sin∠(l1, l2) by sin∠(h1, h2). Hence,

(10.4) Dθ̄,1/
√
k+1

x ((l1, h1), (l2, h2)) ≤
√
2 sin2 ∠(l1, l2) + 2 sin2 ∠(h1, h2)

which shows that the identity map (Λτmod
, ρ) → (Λτmod

, Dθ̄,1/
√
k+1) is a Lipschitz

map, where ρ is a(ny) Riemannian distance function in Flag(τmod). Therefore,

δ1,k+1 ≤ dimRiem
Haus (Λτmod

).

This recovers the lower bound obtained in [20, Cor. 1.2].

10.3. Hilbert entropy of PSL(3,R)-Hitchin representations. In suitable pro-
jective Anosov classes, one may be able to improve the inequality in (10.2) to get a
better bound for the Hilbert critical exponent δ1,k+1. Here we present an example
of such an improvement.

Let Γ = π1(S) be a surface27 group. By [9], the PSL(3,R)-Hitchin representa-
tions ρ : Γ → PSL(3,R) = SL(3,R) consist of holonomies of convex RP 2-structures
in S. In particular, ρ(Γ) preserves a properly convex (open) domain Ω in RP 2 with
(C1-) boundary ∂Ω = C, and the action Γ � Ω is properly discontinuous.

Since Hitchin representations are P1-Anosov, Theorem 10.1 shows that

δ1,3(ρ(Γ)) ≤ 2.

However, this most general upper bound is weak for the Hitchin representations.
In Proposition 10.3 we will obtain a stronger bound.

Let τmod = (1, 2). The τmod-flag limit set of ρ(Γ) can be equivariantly identified
with the set of flags {(ξ, ξ∗) | ξ ∈ C}, where ξ∗ ⊂ RP 2 is the line tangent to C

26Composition of the Γ-equivariant boundary embedding ∂∞Γ → Flag(τmod) and the projec-
tion map Flag(τmod) → RPk = Gr1(Rk+1).

27More precisely, S is a closed surface of genus g ≥ 2.
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ξ

θ

ξ∗η∗

ηψ

ψ
β

ψ
α

α β

C

Figure 1

through ξ. We denote the dual curve {ξ∗ | ξ ∈ C} ⊂ (RP 2)∗ by C∗; this curve C∗

also bounds a properly convex domain in (RP 2)∗.

Claim. There exists a constant L such that, for every ξ, η ∈ C,

(10.5) D(ξ, η) :=
√
dRP 2(ξ, η∗)dRP 2(η, ξ∗) ≤ L · dRP 2(ξ, η)d(RP 2)∗(ξ

∗, η∗).

Proof. The curve C is a simple closed C1-curve in an affine chart R2, bounding the
convex subset Ω above. Let dR2(ξ, η) = ψ and ∠(η∗, ξ∗) = θ as in Figure 1. When
ξ �= η are uniformly close, 0 < ψ ≤ ψ0, then the angle θ is acute. See Figure 1.
Then,28 dR2(ξ, η∗) � ψβ, dR2(η, ξ∗) � ψα, and α+ β = θ. Thus,

dR2(ξ, η∗)dR2(η, ξ∗)

dR2(ξ, η)2(∠(η∗, ξ∗))2 � ψ2αβ

ψ2(α+ β)2
=

αβ

(α+ β)2
≤ 1

4
.

So, √
dR2(ξ, η∗)dR2(η, ξ∗) ≤ const · dR2(ξ, η)(∠(η∗, ξ∗)).

Also, since C (resp. C∗) is bounded in the affine chart, the euclidean distances
(resp. the angular distance) above are equivalent to the projective distances in
(10.5). Hence the above inequality justifies (10.5). �

Also, note that the premetric D in left side of (10.5) is bilipschitz equivalent

to the premetric D
θ̄,1/

√
3

x (see the formula in (10.2)), left side of the inequality in
(10.4). But, the square root of the right side of (10.5) is

√
L
√
dRP 2(ξ, η)d(RP 2)∗(ξ∗, η∗) ≤

√
L

2

√
dRP 2(ξ, η)2 + d(RP 2)∗(ξ∗, η∗)2.

In the right side of the above inequality, we obtain a multiple of the Riemannian
distance in Flag(τmod). Thus, the identity map

(Λτmod
, ρ) → (Λτmod

, Dθ̄,1/
√
3

x )

is a 2-Hölder map. Here ρ denotes the distance function of the Riemannian metric
on Flag(τmod). It is known that Λτmod

⊂ Flag(τmod) is a Lipschitz curve, and hence

dimRiem
Haus (Λτmod

(Γ)) = 1.

28We remind our reader that the symbol � is used to mean that the ratio of both sides is
bounded above and below by some positive constants.
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We obtain

δ1,3(ρ(Γ)) = dim
θ̄,1/

√
3

Haus (Λτmod
(Γ)) ≤ dimRiem

Haus (Λτmod
(Γ))

2
=

1

2

(cf. (10.3)). We record this result in Proposition 10.3.

Proposition 10.3. For any Hitchin representation ρ : Γ → PSL(3,R),

δ1,3(ρ(Γ)) ≤
1

2
.

Compare with the last paragraph of [40, p. 892].

Appendix A. Hausdorff measures on premetric spaces

Let X be a metrizable topological space. Recall that an outer measure is a
function μ : P(X) → [0,∞] that satisfies

(i) μ(∅) = 0,
(ii) for all A,B ∈ P(X) with A ⊂ B, μ(A) ≤ μ(B), and
(iii) for all countable collection {Ak | k ∈ N} of subsets of X,

μ

(⋃
k∈N

Ak

)
≤
∑
k∈N

μ(Ak).

A set A ⊂ X is called μ-measurable if for every E ∈ P(X), μ(A) = μ(A ∩ E) +
μ(A ∩ Ec). By Carathéodory’s theorem (cf. [18, Thm. 1.11]), μ-measurable sets
form a σ-algebra to which μ restricts as a complete measure.

Assume now that X is compact. The outer measure μ is called good if addition-
ally,

(iv) for all A,B ⊂ X with Ā ∩ B̄ = ∅, μ(A ∪B) = μ(A) + μ(B).

Lemma A.1 asserts that, for outer measures μ on compact metrizable spaces, the
σ-algebra of Borel sets is a subalgebra of the σ-algebra of μ-measurable sets.

Lemma A.1. Let X be a compact metrizable space. If μ is a good outer measure
on X, then every Borel set B ∈ B(X) is measurable.

Proof. Let d be a metric on X. Then the condition (iv) implies that

(iv’) for all A,B ⊂ X with d(A,B) > 0, μ(A ∪B) = μ(A) + μ(B).

Therefore, μ is a metric outer measure on (X, d). By [18, Prop. 11.16], Borel
subsets of X are measurable. �

Definition A.2 (Premetric space). Let X be a topological space. A symmetric
continuous function d : X ×X → [0,∞] is called a premetric on X. A pair (X, d)
consisting of a metrizable topological space X and a premetric d on X is called a
premetric space.

In what follows, we consider only positive premetrics, i.e.,

d(x, y) > 0 ⇐⇒ x �= y, ∀x, y ∈ X.

Let (X, d) be a compact positive premetric space. Then d satisfies the following
separation property:

(A.1) d(A,B) > 0 ⇐⇒ Ā ∩ B̄ = ∅, ∀A,B ⊂ X.
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Let ε > 0, β > 0. For every A ⊂ X, define

Hβ
ε (A) = inf

U

{∑
k∈N

diamd(Uk)
β

∣∣∣∣ U = {Uk | k ∈ N} covers A, mesh(U) ≤ ε

}
.

In the above, mesh(U) is the supremum of the d-diameters of the members of U .
Then

Hβ
ε : P(X) → [0,∞]

is an outer measure on X (cf. [18, Prop. 1.10]). Define the β-dimensional Hausdorff
measure Hβ by

Hβ(A) = lim
ε→0

Hβ
ε (A).

Theorem A.3. The Hausdorff measure Hβ is a good outer measure.

Proof. We need to check the properties (i)–(iv). Since, for all ε > 0, Hβ
ε is an outer

measure, taking limit ε → 0, properties (i)-(iii) are easily verified. Therefore, we
only need to check that Hβ satisfies property (iv).

Let A,B ⊂ X such that Ā ∩ B̄ = ∅. By (A.1), d(A,B) = d0 > 0. Let ε < d0 be
a positive number and U be a countable open cover of A∪B with mesh(U) ≤ ε. If
such open cover does not exist, then Hβ

ε (A∪B) (and hence, Hβ(A∪B)) is infinity.
Otherwise, U can be written as a disjoint union UA � UB where UA consists of all
open sets in U that intersect A and UB consists of the rest. Clearly, UA and UB are
open covers of A and B, respectively. Therefore,∑

E∈U
diamd(E)β =

∑
E∈UA

diamd(E)β +
∑

E∈UB

diamd(E)β ≥ Hβ
ε (A) +Hβ

ε (B).

Since the above holds for any cover U with mesh ≤ ε, we have

Hβ
ε (A ∪B) ≥ Hβ

ε (A) +Hβ
ε (B).

Taking limit ε → 0, we get Hβ(A ∪ B) ≥ Hβ(A) +Hβ(B). The reverse inequality
follows from property (iii). Therefore,Hβ(A∪B) = Hβ(A)+Hβ(B). This completes
the proof. �

By Lemma A.1 and Theorem A.3, we obtain the following result.

Corollary A.4. Every Borel subset of X is Hβ-measurable.

The Hausdorff dimension of a Borel subset B ⊂ (X, d) is then defined as

dimHaus(B) = inf{β | Hβ(B) = 0} = sup{β | Hβ(B) = ∞}.

Appendix B. A brief overview of the history of the

Patterson–Sullivan theory in higher rank

For reader’s convenience, in this appendix we discuss connection of our work
with some notable earlier papers on the Patterson–Sullivan theory for higher rank
symmetric spaces (of noncompact type).

To the best of our knowledge, Bishop–Steger [4] and Burger [8] were the first
to investigate Poincaré series associated with a discrete isometry group Γ of a
symmetric space of rank ≥ 2. Precisely, for a pair of Fuchsian subgroups Γi <
Isom(H2), i = 1, 2, and an isomorphism φ : Γ1 → Γ2, Burger took the subgroup
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Γ = {(γ1, φ(γ1)) | γ1 ∈ Γ1} < Isom(H2 × H
2) and considered the Finsler Poincaré

series ∑
(γ1,γ2)∈Γ

exp (−s (ad1(γ1x1, x1) + bd2(γ2x2, x2))) , (a, b) ∈ R
2
+,

where d1 (resp. d2) and x1 (resp. x2) denote the distance function and a fixed point,
respectively, in the first (resp. second) factor of H2 ×H

2. Then he studied the set
of all points (a, b) ∈ R

2
+ for which the Poincaré series has the critical exponent

s = 1 which he called the “Manhattan curve.” He proved that each point (a, b) in
this set gives rise to a unique “(a, b)-dimensional” density with respect to which
the action Γ � ∂∞H

2 × ∂∞H
2 is ergodic, [8, Thm. 4]. Theorem A of our paper

illustrates this result, compare Subsection 10.1, although in that example we only
consider the case a = b, the general case can also be obtained by suitably changing
the weights in the formula (10.1) for the Finsler metric. On the other hand, Bishop
and Steger considered the closely related Poincaré series∑

(γ1,γ2)∈Γ

exp (−sd1(γ1x1, x1)− (1− s)d2(γ2x2, x2)) , s ∈ (0, 1),

and showed that it diverges if and only if φ is induced by an isometry of H2. We
discussed the connection of this result with our work in Subsection 10.1 for s = 1/2;
for a general s, one needs to modify the Finsler metric as above.

Patterson–Sullivan measures for general symmetric spaces X were introduced
and studied by Albuquerque [1]. His main result is that for a generic29 Zariski-
dense discrete subgroup Γ of G = Isom0(X), the support of any Patterson–Sullivan
density of dimension δRiem(Γ) in the visual boundary of X lies in a single regular
G-orbit G·ξ0 where ξ0 is the direction in the Weyl chamber along which the growth-
rate of Γ-orbits in X is “maximal.” More precisely, any Patterson–Sullivan density
of dimension δRiem(Γ) is supported on G ·ξ0∩Λ(Γ). He also proved that the critical
exponent δθ̄(Γ) defined in terms of the Finsler pseudometric induced by the linear
functional in the Weyl chamber dual to a vector ξ ∈ σmod is minimal precisely when
ξ = ξ0. Albuquerque further showed that this minimal Finsler critical exponent
equals to the Riemannian critical exponent.

Quint [42, 43] generalized Albuquerque’s results to arbitrary Zariski-dense dis-
crete subgroups Γ < G and to general partial flag-manifolds G/Pτmod

. For such a
group Γ, he defined the indicator of growth function

ψΓ : Δ → R ∪ {−∞},
which can be regarded as a higher rank analogue of the critical exponent, and
showed that it is strictly positive in the interior of the Benoist’s limit cone of Γ.
Note, however, that the orbital counting (done in the definition of the function ψΓ)
in Quint’s paper is different from ours since he takes the infimum of exponents of
convergence τC over certain open cones C ⊂ Δ. For a positive linear function φ
on Δ satisfying φ ≥ ψΓ and φ(x) = ψΓ(x) for some x ∈ int(Δ), Quint (using the
Patterson–Sullivan construction) defined a “(Γ, φ)-Patterson measure” supported
on the flag-limit set of Γ in G/Pθ. Observe that each φ defines a G-invariant
polyhedral Finsler metric on X by the composition φ ◦ dΔ. This part of Quint’s

29Here Γ is called generic if the support of any Patterson–Sullivan density lies in the regular
part of the visual boundary.
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work has nontrivial overlap with ours (specifically, the construction of Patterson–
Sullivan densities in Section 3 of our paper). However, neither work subsumes the
other since we do not assume Zariski density but require subgroups to be τmod-RA,
while Quint does not assume the τmod-RA property but requires Zariski density.
Quint’s work contains wealth of other results such as a proof of the concavity
property of ψΓ and its applications: These issues are not discussed at all in our
paper.

Taking inspiration from [8] and building on [1], Link [34] considered a class of
densities (coming from the Patterson–Sullivan construction) on the visual bound-
ary of X associated with a Zariski-dense discrete subgroup Γ < Isom0(X) that
generalize the conformal densities. After introducing a notion of Hausdorff mea-
sures appropriate for her setup, Link showed that for a regular point ξ ∈ ∂∞X, the
Hausdorff dimension of G · ξ ∩ Λ(Γ) is bounded above by a suitable exponent of
growth of Γ-orbits in X; she also proved the equality for a certain class of groups
which she calls “radially cocompact” (see [34, Sec. 6]). In her subsequent work [35],
Link proved that the action of Γ on the “ray-limit set” is ergodic30 with respect
to these generalized Patterson–Sullivan measures.31 These results are parallel to
the equality of the Finsler critical exponent and the Hausdorff dimension of flag-
limit sets in G/Pτmod

for τmod-Anosov subgroups (Theorem 9.5) and the ergodicity
theorem (Theorem 8.3) proved in our paper. However, the conicality condition for
limit points of Anosov subgroups is a vast relaxation of Link’s notion of radial limit
points. Moreover, it follows from the main theorem of [2] and Lemma 7.4 that, say,
a Zariski dense τmod-Anosov subgroup can never be radially cocompact unless G
has rank one.

To conclude the discussion, we would like to repeat that Albuquerque, Quint and
Link treat general Zariski-dense discrete subgroups, while we study Anosov and,
more generally, regular antipodal subgroups, but do not assume Zariski density.
While many of our proofs work for general τmod-RA subgroups, the Anosov property
is critical in several places, for instance, in the proof of vanishing of δcon

θ̄
(Proposition

7.3), the proof of ergodicity, the proof that (in a suitable range) the Gromov pre-
metric on the limit set is a metric, etc. We would also like to point out that, even in
the Zariski-dense case, parts (ii), (iv) and (v) (ergodicity, divergence and relation of
Finsler critical exponent and Hausdorff dimension of the limit set) in our Theorem
A are new since, to our knowledge, the most general case in this direction was
considered by Link [35] but was conditioned on the density of the ray-limit set.

Appendix C. A discussion of the main results without the

ι-invariance condition on the type θ̄

In this last appendix, on our referee’s suggestion, we show that Theorem A
(except for item (v)), and Theorem B hold true without the ι-invariance condition
that we imposed on the type θ̄ ∈ int(τmod).

Suppose that θ̄ ∈ σmod is a type which is not assumed to be ι-invariant. Then
the G-invariant pseudo-metric dθ̄ : X × X → [0,∞) defined in (2.1) is in general

30More precisely, she proves that if A is a measurable Γ-invariant subset of the ray-limit set,
then either A is a null set or the complement of A in the full limit set is null. However, this
result does not exclude the possibility that the ray-limit set itself is a null set for the generalized
Patterson–Sullivan measures.

31In fact, Albuquerque [1] also attempted to prove ergodicity, but there was a gap in the proof.
This gap was discovered and fixed by Link [35, p. 612].
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asymmetric. However, the following still holds: Since dΔ(y, x) = ιdΔ(x, y), we have

(C.1) dθ̄(y, x) = dιθ̄(x, y), ∀x, y ∈ X.

The inequality (2.2) still holds. The function dθ̄ satisfies the triangle inequality for
the asymmetric distance functions:

dθ̄(x, z) ≤ dθ̄(x, y) + dθ̄(y, z), ∀x, y, z ∈ X.

See [26, Subsec. 5.1.2] for more details.
Let θ̄ ∈ int τmod. In the asymmetric case, we define the θ̄-critical exponent δθ̄ of

a discrete group Γ < G in the same way as it was done for the symmetric case in
Section 2, see (2.3). As a consequence of the above triangle inequality, the critical
exponent does not depend on the choice of a base-point in X (see the paragraph
after Remark 2.4). The definition of θ̄-convergence/divergence type is also same
as in the symmetric case (see Definition 2.5). Proposition 2.6 for uniformly τmod-
regular groups Γ, which only depends on the fact that dRiem and dθ̄ are coarsely
equivalent on an Γ-orbit in X, is valid in this case.

All the definitions (in particular, the crucial definition of θ̄-conformal densities)
and results in Section 3 remain valid in the asymmetric case.

We leave the results in Sections 4 and 5 as they are; those results are mostly
independent of Sections 6, 7, and 8. We remark in passing that an asymmetric Gro-
mov product on Flag(τmod) can be defined as follows: Define the Gromov product
with respect to a base point x ∈ X by

(C.2) 〈τ+|τ−〉θ̄x =
1

2

(
Bθ̄
τ+(x, z) + Bιθ̄

τ−(x, z)
)
, τ± ∈ Flag(τmod) are antipodal,

where z is some point on the parallel set P (τ+, τ−) spanned by τ±. Following
the proof of Lemma 5.1, it can be checked that the definition in (C.2) does not
depend on the choice of z ∈ P (τ+, τ−). The above leads to an asymmetric Gromov

premetric Dθ̄,ε in Flag(τmod) (cf. Definition 5.2) which satisfies

Dθ̄,ε
x (τ1, τ2) = Dιθ̄,ε

x (τ2, τ1), ∀τ1, τ2 ∈ Flag(τmod).

The results in Sections 6 and 7 are valid verbatim in the asymmetric case. In the
proof of Theorem 8.3 in Section 8, we only need to modify the justification of Claim
3 in the proof of the crucial Sublemma 8.7 in the asymmetric case. The statement
in that claim is: If S(x : B(γx0, r)) ∩ S(x : B(φx0, r)) �= ∅, for γ, φ ∈ Γ∗

d, then
dθ̄(γx0, φx0) is uniformly bounded. The proof of this claim uses the main result
of Section 4 and it was given for symmetric functions dθ̄ (note that in that proof,
the requirement that θ̄ has unit length is unimportant, only the hyperbolicity of
Γ-orbits in X is relevant). When dθ̄ is asymmetric, we consider the symmetrization
function dsym

θ̄
= (dθ̄ + dιθ̄)/2,

dsym
θ̄

(x, y) =

〈
dΔ(x, y)|

θ̄ + ιθ̄

2

〉
, x, y ∈ X,

and the previous proof implies that, under the hypothesis, dsym
θ̄

(γx0, φx0) is uni-

formly bounded. Since dθ̄ ≤ 2dsym
θ̄

, dθ̄(γx0, φx0) is also uniformly bounded under
the same hypothesis.
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Études Sci. Publ. Math. 50 (1979), 171–202. MR556586
[48] Dennis Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically

finite Kleinian groups, Acta Math. 153 (1984), no. 3-4, 259–277, DOI 10.1007/BF02392379.
MR766265

[49] Pekka Tukia, Convergence groups and Gromov’s metric hyperbolic spaces, New Zealand J.
Math. 23 (1994), no. 2, 157–187. MR1313451
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