Processing math: 22%


SOLUTION 28: a.) Start with 1sinx+1, so that 3x13x+sinx3x+1 and (Assume that x>0.) 3x12x3x+sinx2x3x+12x. Then \displaystyle{ \lim_{x \to \infty} \ { 3x-1 \over 2x } } = \displaystyle{ `` \infty "\over \infty } = \displaystyle{ \lim_{x \to \infty} \ { 3x-1 \over 2x } \cdot { 1/x \over 1/x } } = \displaystyle{ \lim_{x \to \infty} \ { 3x/x -1/x \over 2x/x } } = \displaystyle{ \lim_{x \to \infty} \ { 3x/x -1/x \over 2x/x } } = \displaystyle{ \lim_{x \to \infty} \ { 3 - \frac{``1"}{\infty} \over 2 } } = \displaystyle{ 3 - 0 \over 2 } = \displaystyle{ 3 \over 2 } . In a similar fashion it can easily be shown that \displaystyle{ \lim_{x \to \infty} \ { 3x+1 \over 2x } } = \displaystyle{ 3 \over 2 } . Since \displaystyle{ \lim_{x \to \infty} \ { 3x-1 \over 2x } } = \displaystyle{ 3 \over 2 } = \displaystyle{ \lim_{x \to \infty} \ { 3x+1 \over 2x } } , it follows from the Squeeze Principle that \displaystyle{ \lim_{x \to \infty} \ { 3x+ \sin x \over 2x } } = \displaystyle{ 3 \over 2 } .


SOLUTION 28: b.) \displaystyle{ \lim_{x \to \infty} \ { 3x+ \sin x \over 2x } } = \displaystyle{ `` \ 3 \cdot \infty + (some \ number \ between \ -1 \ and \ +1) \ " \over 2 \cdot \infty } = \displaystyle{ `` \ \infty + (some \ number \ between \ -1 \ and \ +1) \ " \over \infty } = \displaystyle{ `` \ \infty \ " \over \infty } (Apply Theorem 2 for l'Hopital's Rule.) = \displaystyle{ \lim_{x \to \infty} \ { 3+ \cos x \over 2 } } , which DOES NOT EXIST since \displaystyle{ -1 \le \cos x \le +1 }


SOLUTION 28: c.) The answers to parts a.) and b.) tell us that l'Hopital's Rule may give us a wrong answer if the answer is `` does not exist." We can only be sure that l'Hopital's Rule gives us the correct answer if the answer is finite, + \infty , or - \infty .

Click HERE to return to the list of problems.