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Points on the graph of a function f where the concavity Changes are called points
of inflection, and because concavity is determined by the sign of the second
derivative, finding the points of inflection is a typical application of the second
derivative in introductory calculus courses. But more than one attentive student
has suggested a plausible shortcut that uses only the first derivative to find certain
inflection points.

Example. Let f(x) 3x4 — Sx”. The first derivative is f’(x) = l2x1 — 24x2 =

12x2(x —2) and its sign is

— U — 4) +

x 2

y=O v——lb

We conclude that f achieves its absolute minimum value of v — In at = 2.
Proceed to compute f” in order to determine the inflection points for f.

But wait! At this point an enthusiastic student interjects that the first derivative
f tells us that f must have an inflection point at x = U. since the graph of f is flat
at A’ = I) and decreases on either side of x = 0. The student argues that the sketch
in Figure 1 must look somewhat like the graph of f near x 0. The student

I

=

Figure 1
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certainly appears to be correct. It looks as if x = 0 does
inflection point for f.

Lets check by computing the
12x(3x —4), and its sign:

+ 0 0

Indeed, there is an inflection point at x = 0! There is an additional one at x 4/3.We can now sketch a detailed graph of f; see Figure 2.

Question. Assume that f is twice differentiable on (a. h) and suppose the firstderivative fix) is strictly positive at all points x in (a. b) (or strictly negative at allsuch points), except that fic) = 0 at one point c. a - c <b. Does it then followthat f has an inflection point at x = c?

A counrerezampie. Unfortunately, unless we make additional assumptions aboutthe function f. the answer is no! Consider the function

f(x)_i1+15lul’ forxO

forx=0.

For xOthe derivative is fix)= 3x2 —x2cos(l/x)+ 4x1sin(l/x), and using thelimit definition of the derivative at x = 0. we get

f(O + h ) —f(O) . h’ +
,3 sin( I/h)f(0)= urn = km

h—U Ii h—ti

= urn 1hz + h3 sin( I/h)] = 0.

The second derivative is fix) = fix — sin(I/x) — fix co%(l/x) + l2x1sin(l/x) for

2

— 256/27

FIgure 2

in fact determine an

second derivative, which is f’(x) = 3612
— 48x =

1—0 x—4/3

y — C) r — —256/27

f.,

h
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x * 0; at x = 0

• f’(O+h) —[(0)

h
• 3h—hcos(1/h)+4h3sin(1/h)

= km
h—D h

= lirn [3h —h cos(14fl7i+ 4h2sin(1/h)) = 0.

Thus this function is twice differentiable. (Note that f” is not continuous at x = 0
since the limit of f”(x) does not exist as x approaches zero.)

We next show that the sign of f’ is positive on some two-sided neighborhood of
zero. Since the first derivative is f’(x)= 3x2 —x2 cos(1/x) + 4x3 sinfl/x), we can
insure that fIx) >0 for x> 0 if an appropriate inequality is solved for x. Since
—1 s cos(.1/x), sin(1/x) 1, then for positive x,

f’(x) =3x2—x2cos(1/x) +4x3sin(1/x)
> 3x2 —x2 — 4x3 = 2x2(1 — 2x).

Thus, f’(x)> 0 if 0< x < 1/2. Similarly, for negative x,

f’(x) =3x2—x2cos(1/x) +4x3sin(1/x)
>3x2—x2+4x’=2x2(1+2x),

so that fIx)> 0 for — 1/2 <x <0. Hence, f’ is positive throughout (— 1/2,1/2)
except that 1W) = 0.

The last point to be verified is that this function does nor have an inflection
point at x = 0. We are motivated by the fact that the graph of the derivative fappears to have infinitely many horizontal tangent lines in every neighborhood of
zero. The graph of f’ is shown in Figure 3.

Recall that the second derivative is f”( x) = 6x — sin( I /x) — 6x cos( 1 /x) +
12x2 sin(1/x) for x * 0. Consider the sequence of x-values given by x,, = 1/2nir
and satisfying — 1/2 <x <1/2 for n = 1,2,3 Then

f”(x) =6(ç) —sin(—__) —6(xn)cos(__) + 12(xn)2sin(_!_)

= —sin(2nir) — -—cos(2nr) + 12(y__)sin(2nir)

6 6 1 x
=——0——-——(1)+12 —}(0)2nir 2nir 2nir,
= 0.
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FIgure 3
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Since the sequence x,, converges to zero, it follows that there is no number suchthat f is strictly concave up or concave down on (Ut). Since f” is an odd function.the same argument applied to the sequence —.r shows that f is not strictlyconcave up or down on any interval (—1.0). We conclude that f does not have aninflection point at x 0.

Remark. Even if we require that the second derivative he continuous, thisshortcut is still not valid. Consider the function

f(x)=!X sin(l/x) forx0
forx=0.

It can be shown (with some difficulty) that f is twice continuously differentiable,[(0) 0, and f’(x) >0 for x-values near zero. However. x = I) does not determinean inflection point for f.
The key property of both our counterexamples is that the second derivative haszeros arbitrarily close to the origin. It is reassuring to note that such functions arerarely encountered in a standard calculus textbook, and the following theoremshows that, except for such anomalies, the students were right all along about theirshortcut for identi’ing inflection points where the tangent tine to the graph ishorizontal.

Theorem. Let function f be twice condnztotislv differentiable ott the linen al a. hi.and suppose the second derivative f” has on/v a Jinite ,iunther of zero.s on thisinterval. Suppose fUr) is strictly positive at all points x in (a, h) (or strict/v negativeat all such points), except that f’(c) = 0, a < c < h. Thepi f has an inflection point atx = c.

Proof It suffices to show that there exist numbers s >0 and t > 0 so that

f’(x) >0 forall s in(c,c-rr). (I)
f”(x) <0 for all x in (c—s,c). (2)

We will prove (1) by contradiction, assuming f’( x) is positive at all points x * c in(a, b). The other cases are entirely similar.
Since f” has only a finite number of zeros in Ia. h]. there exists a number t > 1)such that c + t <b and f” is never zero in (c,c — t). The continuity of f” togetherwith the intermediate value theorem guarantees that f’ has constant sign on thcinterval (c,c + r), and we wish to show that it is in fact positive. (If f’ changedsign, the intermediate value theorem would imply that it had a zero somewhere inthis interval, contradicting our choice of t.)
That f” must be positive on (c.c + r) now follows by applying the mean valuetheorem to the first derivative: [[(c + t ) —f’(c)]/t =f”( z ) for some in (c. c tSince by our assumptions f’(c + t ) and t are positive, and f’(c) = 0. it follows thatf”(z)>O, which completes the proof. •
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