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Points on the graph of a function f where the concavity changes are called poinis
of inflection. and because concavity is determined by the sign of the sccond
derivative, finding the points of inflection is a typical application of the second
derivative in introductory calculus courses. But more than one attentive student

has suggested a plausible shortcut that uses only the first derivative to find certain
inflection points.

Example. Let f(x)=3x'-8x" The first derivative is f(x)=12x"- 24y =
12x°(x — 2) and its sign is
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We conclude that f achieves its absolute minimum valuc of v = — 16 at ¢ = 2.

Procced to compute f” in order to determine the inflection points for f

But wait! At this point an enthusiastic student interjects that the first derivative
f7 tells us that £ must have an inflection point at x = 0, since the graph of f is flal
at x = {} and decreases on either side of x = (. The student argues that the skeich
in Figure 1 must look somewhat like the graph of f near x =0. The stedent
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Figure 1
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Figure 2

certainly appears to be correct. It looks as if x =0 does in fact determine an
inflection point for f.

Let’s check by computing the second derivative, which iy S(x)=36x" - 48x =
12x(3x — 4), and its sign:
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Indeed, there is an inflection point at x = (! There is an additional one at x = 4/3.
We can now skeich a detailed graph of f: see Figure 2.

Question. Assume that f is twice differcntiable on (a.b) and supposc the first
derivative f'(x) is strictly positive at all points x in (a.b) (or strictly negative at all
such points), except that f'(c) =0 at one point c.a <c <b. Does it then follow
that f has an inflection point at x = ¢? :

A counterexample, Unfortunately, unless we make additional assumptions about
the function f. the answer is no! Consider the function

f(x) = {x"+x"sin(l/x) forx+0
0 for x =),

For x # 0 the derivative is f'(x) = 3x2 = x7cosl] /x) + 44V sin(1 /x), and using the
limit definition of the derivative at x = 0, we get

SO+R)y = I +h'sin(1 /h)
—_——— = |im
h =0 h

f1(0) = lim

h=0

= lim |42 + W sin(1/m)] = 0.
I} —
The second derivative is f"(1) = 6x — sin() /x) = 63 conl] /x) + 1267 sint l/x} for
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x#0at x=0

. ['(0+h)~f"(0)
f(0) = fim, n
. 3k —h?cos(1/h) + 4hsin(1/h)
= lim
h=0 h
= Jim [3 = heosa LBy 4h?sin(1/k)] = 0.

Thus this function is twice differentiable. (Note that f" is not continuous at x =0
since the limit of f"(x) does not exist as x approaches zero.)

We next show that the sign of f” is positive on some two-sided neighborhood of
zero. Since the first derivative is f'(x)=3x? - x? cos(1 /x) + 4x? sin( 1/x), we can
insure that f(x)> 0 for x >0 if an appropriate inequality is solved for x. Since
— 1 < cos(1/x), sin(1/x) < 1, then for positive x,

f'(x) =3x? —x%cos(1/x) + 4x?sin(1/x)
>3x?—x?—4x? = 2x%(1 - 2x).
Thus, f'(x}>0if 0 <x < 1/2. Similarly, for negative x,

f'(x) =3x*-x%cos(1/x) + 4x sin(1/x)
>3x? = x?+4x3 = 2x2(1 + 2x),
so that f'(x)>0 for —1/2 <x <0. Hence, f’ is positive throughout (-1/2,1/2)
except that f'(0) = 0.

The last point to be verified is that this function does no: have an inflection
point at x = 0. We are motivated by the fact that the graph of the derivative f
appears to have infinitely many horizontal tangent lines in every neighborhood of
zero. The graph of f' is shown in Figure 3,

Recall that the second derivative is f"(x) = 6x — sin(] /x) = 6xcos(l/x) +
12x%sin(1 /x) for x = 0. Consider the sequence of x-values given by x,=1/2nw
and satisfying —1/2<x,<1/2for n=1,2,3,.... Then

['(x,)=6(x,) ﬂsin(-‘:—) - 6( x,,)cos(xln) + 12!(.\’,,,)2 sin(%)

6 6 1\
= e sin(2nw) - mcos(Zmr) + 12(5;;) sin{2nw)
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Since the sequence x, converges to zero., it follows that there is no number ¢ such
that f is strictly concave up or concave down on (0,£). Since 7 is an odd function,
the same argument applied to the sequence —x, shows that f is not strictly
concave up or down on any interval (~¢,0). We conclude that { does not have an
inflection point at x = 0.

Remark. Even if we require that the second derivative be continuous, this
shorteut is still not valid. Consider the function

f(x)={x"+x’s§(l/x) for x % 0
0 for x = ().

It can be shown {(with some difficulty) that f is twice continuously differentiable,
f(0)=0,and f'(x)> 0 for x-values near zero. However, x = () does not determine
an inflection point for f.

The key property of both our counterexamples is that the second derivative has
zeros arbitrarily close 1o the origin. It is reassuring to note that such functions are
rarely encountered in a standard calculus textbook. and the following theorem
shows that, except for such anomalies, the students were right all along about their

shortcut for identifying inflection points where the tangent line to the graph is
horizontal.

Theorem. Let function f be twice contintiously differentiable on the interval [a. b).
and suppose the second derivative [" has only a finite number of zeros on this
interval. Suppose f'(x) is strictly positive at all points x in (a, b) (or stricily negative

at all such points), except that f'(¢)=0,a <c <b. Then [ has an inflection poini at
X=c,

Proof. 1t suffices to show that there exist numbers 5 > 0 and ¢ > ) so that

f(x)>0 forall xin{c.c+1). (1)
f"(x) <0 forall xin(c~ys.c). (2}

We will prove (1) by contradiction, assuming f'(x) is positive at all points x # ¢ in
(@, b). The other cases are entirely similar.

Since f” has only a finite number of zeros in [a, b). there exists 4 number 1> 0
such that ¢ + ¢ <b and " is never zero in (¢, c + 1), The continuity of f” together
with the intermediate value theorem guarantees that f* has constant sign on the
interval (c, ¢ + 1), and we wish to show that it is in fact positive. (If  chunged
sign, the intermediate value theorem would imply that it had a zero somewhere in
this interval, contradicting our choice of 1.)

That f" must be positive on (c,c + 1) now follows by applying the mean value
theorem to the first derivative: [ f'(c + )= feN/1=f"2) for some = in(c.e + 1),
Since by our assumptions f*{c +¢) and ¢ are positive. and f*(¢) = (), it follows tha
f"(2) > 0, which completes the proof. m
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