Math 16A Kouba Functions- Review

<u>DEFINITION</u>: In an equation composed of x's and y's, variable y is a function of x if each admissible x-value has exactly one y-value.

NOTE: The graph of a function passes the vertical line test. That is, a vertical line passed through the graph will touch the graph in at most one point.

 $\underline{\text{EXAMPLE}}$: Assume that $xy-3=x^2+2y$. Then $xy-2y=x^2+3$ \longrightarrow

$$(x-2)y = x^2 + 3 \longrightarrow$$

$$y = \frac{x^2 + 3}{x - 2} \longrightarrow$$

y is a function of x.

 $\underline{\text{EXAMPLE}}$: Assume that $xy^2 - 1 = x + y$. If x = 1, then

$$y^2 - 1 = 1 + y \longrightarrow$$

$$y^2 - y - 2 = 0 \longrightarrow$$

$$(y-2)(y+1) = 0 \longrightarrow$$

$$y = 2$$
 or $y = -1$ \longrightarrow

x = 1 has TWO y-values \longrightarrow

y is NOT a function of x.

 $\underline{\text{NOTATION}}$: If y is a function of x, then we write y = f(x).

EXAMPLE: If $y = x^2 + x$, then y is a function of x and we write $f(x) = x^2 + x$; then

a.)
$$f(-2) = (-2)^2 + (-2) = 4 - 2 = 2$$
.

b.)
$$f(2x-1) = (2x-1)^2 + (2x-1) = 4x^2 - 4x + 1 + 2x - 1 = 4x^2 - 2x$$
.

<u>DEFINITION</u>: Assume that y = f(x) is a function. The <u>domain</u> of function f is the set of all admissible x-values. The <u>range</u> of function f is the set of all corresponding y-values.

<u>EXAMPLE</u>: Consider function $f(x) = \sqrt{2x-6}$. Then $2x-6 \ge 0 \longrightarrow 2x \ge 6 \longrightarrow x \ge 3 \longrightarrow$

DOMAIN :
$$x \ge 3$$
.

Since $\sqrt{2x-6} \ge 0$, f(3) = 0, and 2x-6 gets infinitely large as x gets infinitely large, it follows that

RANGE :
$$y \ge 0$$
.

<u>DEFINITION</u>: A function y = f(x) is <u>one-to-one</u> if each y-value has exactly one x-value. More precisely, a one-to-one function has the property that if $f(x_1) = f(x_2)$ (y-values are equal), then $x_1 = x_2$ (x-values are equal).

NOTE: The graph of a one-to-one function passes the horizontal line test. That is, a horizontal line passed through the graph will touch the graph in at most one point.

 $\underline{\text{EXAMPLE}}$: Consider the function (parabola) $y=x^2-5$. If y=4, then

$$4 = x^2 - 5 \longrightarrow$$

$$x^2 = 9 \longrightarrow$$

$$x = 3$$
 or $x = -3$ \longrightarrow

y = 4 has TWO x-values \longrightarrow

function y is NOT one-to-one.

EXAMPLE: Consider the function $f(x) = \frac{x}{x+3}$. Prove that f is one-to-one:

$$f(x_1) = f(x_2) \longrightarrow$$

$$\frac{x_1}{x_1 + 3} = \frac{x_2}{x_2 + 3} \longrightarrow$$

$$x_1(x_2 + 3) = x_2(x_1 + 3) \longrightarrow$$

$$x_1x_2 + 3x_1 = x_1x_2 + 3x_2 \longrightarrow$$

$$3x_1 = 3x_2 \longrightarrow$$

$$x_1 = x_2 \longrightarrow$$

function f IS one-to-one.

<u>DEFINITION</u>: Assume that y = f(x) and y = g(x) are functions. The composition of functions f and g is

$$(f \circ g)(x) = f(g(x)) .$$

EXAMPLE: Consider the functions $f(x) = \frac{x}{10-x}$ and $g(x) = \frac{1}{x+8}$. Then

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x+8}\right)$$
$$= \frac{\frac{1}{x+8}}{10 - \left(\frac{1}{x+8}\right)}$$

$$= \frac{\frac{1}{x+8}}{10 - \left(\frac{1}{x+8}\right)} \cdot \frac{x+8}{x+8}$$
$$= \frac{1}{10(x+8) - 1}$$
$$= \frac{1}{10x + 79}.$$

<u>DEFINITION</u>: The <u>inverse function</u> of function y = f(x) is the function $y = f^{-1}(x)$ for which

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$.

 $\underline{\text{FACT}}$: If y = f(x) is a one-to-one function, then f has an inverse function.

SEE INVERSE FUNCTION HANDOUT.

EXAMPLE: The function $f(x) = \frac{x}{x+3}$ is one-to-one. Find its inverse:

$$y=rac{x}{x+3}$$
 \longrightarrow (Switch variables.) $x=rac{y}{y+3}$ (Solve for y .) $x(y+3)=y$ \longrightarrow $xy+3x=y$ \longrightarrow $xy-y=-3x$ \longrightarrow $y(x-1)=-3x$ \longrightarrow $y=rac{-3x}{x-1}$ \longrightarrow inverse function is $f^{-1}(x)=rac{3x}{1-x}$.