LattE integrale 1.6
 Tutorial and update

Matthias Köppe, UC Davis
V. Baldoni
N. Berline
J.A. De Loera
B. Dutra
S. Moreinis
G. Pinto
M. Vergne
J. Wu

Image credit: Wikipedia

Rational polytopes and counting problems

Rational polytope

$$
\begin{aligned}
P & =\operatorname{conv}\left\{\mathbf{v}^{1}, \ldots, \mathbf{v}^{k}\right\} \subseteq \mathbf{R}^{d} \\
& =\left\{\mathbf{x} \in \mathbf{R}^{d}: A \mathbf{x} \leq \mathbf{b}\right\}
\end{aligned}
$$

Integer dilates

Consider

$$
\begin{aligned}
n P & =\operatorname{conv}\left\{n \mathbf{v}^{1}, \ldots, n \mathbf{v}^{k}\right\} \subseteq \mathbf{R}^{d} \\
& =\left\{\mathbf{x} \in \mathbf{R}^{d}: A \mathbf{x} \leq n \mathbf{b}\right\}
\end{aligned}
$$

for $n \in \mathbf{N}$.

Ehrhart function

Ehrhart series (generating function)

For lattice polytopes $P, \operatorname{dim} P=d$

i_{p} is a polynomial function of degree d. the Ehrhart polynomial of P

Goals

- Compute the exact counting function (polynomial, series, quasi-polynomial)
- ... its asymptotics (highest coefficients)
- ... or weighted versions (motivated by symmetry techniques)

Rational polytopes and counting problems

Rational polytope

$$
\begin{aligned}
P & =\operatorname{conv}\left\{\mathbf{v}^{1}, \ldots, \mathbf{v}^{k}\right\} \subseteq \mathbf{R}^{d} \\
& =\left\{\mathbf{x} \in \mathbf{R}^{d}: A \mathbf{x} \leq \mathbf{b}\right\}
\end{aligned}
$$

Integer dilates

Consider

$$
\begin{aligned}
n P & =\operatorname{conv}\left\{n \mathbf{v}^{1}, \ldots, n \mathbf{v}^{k}\right\} \subseteq \mathbf{R}^{d} \\
& =\left\{\mathbf{x} \in \mathbf{R}^{d}: A \mathbf{x} \leq n \mathbf{b}\right\}
\end{aligned}
$$

for $n \in \mathbf{N}$.

Ehrhart function

Ehrhart series (generating function)

For lattice polytopes $P, \operatorname{dim} P=d$
i_{p} is a polynomial function of degree d, the Ehrhart polynomial of P

Goals

- Compute the exact counting function (polynomial, series, quasi-polynomial)
- ... its asymptotics (highest coefficients)
- ... or weighted versions (motivated by symmetry techniques)

Rational polytopes and counting problems

Rational polytope

$$
\begin{aligned}
P & =\operatorname{conv}\left\{\mathbf{v}^{1}, \ldots, \mathbf{v}^{k}\right\} \subseteq \mathbf{R}^{d} \\
& =\left\{\mathbf{x} \in \mathbf{R}^{d}: A \mathbf{x} \leq \mathbf{b}\right\}
\end{aligned}
$$

Integer dilates

Consider

$$
\begin{aligned}
n P & =\operatorname{conv}\left\{n \mathbf{v}^{1}, \ldots, n \mathbf{v}^{k}\right\} \subseteq \mathbf{R}^{d} \\
& =\left\{\mathbf{x} \in \mathbf{R}^{d}: A \mathbf{x} \leq n \mathbf{b}\right\}
\end{aligned}
$$

for $n \in \mathbf{N}$.

Ehrhart function

$$
i_{P}: \mathbf{N} \rightarrow \mathbf{N}, \quad n \mapsto \#\left(n P \cap \mathbf{Z}^{d}\right)
$$

Ehrhart series (generating function)

For lattice polytopes $P, \operatorname{dim} P=d$
i_{p} is a polynomial function of degree d. the Ehrhart polynomial of P

Goals

- Compute the exact counting function (polynomial, series, quasi-polynomial)
- ... its asymptotics (highest coefficients)
- ... or weighted versions (motivated by symmetry techniques)

Rational polytopes and counting problems

Rational polytope

$$
\begin{aligned}
P & =\operatorname{conv}\left\{\mathbf{v}^{1}, \ldots, \mathbf{v}^{k}\right\} \subseteq \mathbf{R}^{d} \\
& =\left\{\mathbf{x} \in \mathbf{R}^{d}: A \mathbf{x} \leq \mathbf{b}\right\}
\end{aligned}
$$

Integer dilates

Consider

$$
\begin{aligned}
n P & =\operatorname{conv}\left\{n \mathbf{v}^{1}, \ldots, n \mathbf{v}^{k}\right\} \subseteq \mathbf{R}^{d} \\
& =\left\{\mathbf{x} \in \mathbf{R}^{d}: A \mathbf{x} \leq n \mathbf{b}\right\}
\end{aligned}
$$

for $n \in \mathbf{N}$.

Ehrhart function

$$
i_{P}: \mathbf{N} \rightarrow \mathbf{N}, \quad n \mapsto \#\left(n P \cap \mathbf{Z}^{d}\right)
$$

Ehrhart series (generating function)

$$
\operatorname{Ehr}_{P}(z)=\sum_{n=0}^{\infty} i_{P}(n) z^{n}
$$

> For lattice polytopes $P, \operatorname{dim} P=d$ i_{p} is a polynomial function of degree d, the Ehrhart polynomial of P

Goals

- Compute the exact counting function (polynomial, series, quasi-polynomial)
- ... its asymptotics (highest coefficients)
- ... or weighted versions (motivated by symmetry techniques)

Rational polytopes and counting problems

Rational polytope

$$
\begin{aligned}
P & =\operatorname{conv}\left\{\mathbf{v}^{1}, \ldots, \mathbf{v}^{k}\right\} \subseteq \mathbf{R}^{d} \\
& =\left\{\mathbf{x} \in \mathbf{R}^{d}: A \mathbf{x} \leq \mathbf{b}\right\}
\end{aligned}
$$

Integer dilates

Consider

$$
\begin{aligned}
n P & =\operatorname{conv}\left\{n \mathbf{v}^{1}, \ldots, n \mathbf{v}^{k}\right\} \subseteq \mathbf{R}^{d} \\
& =\left\{\mathbf{x} \in \mathbf{R}^{d}: A \mathbf{x} \leq n \mathbf{b}\right\}
\end{aligned}
$$

for $n \in \mathbf{N}$.

Ehrhart function

$$
i_{P}: \mathbf{N} \rightarrow \mathbf{N}, \quad n \mapsto \#\left(n P \cap \mathbf{Z}^{d}\right)
$$

Ehrhart series (generating function)

$$
\operatorname{Ehr}_{P}(z)=\sum_{n=0}^{\infty} i_{P}(n) z^{n}
$$

For lattice polytopes $P, \operatorname{dim} P=d$

 i_{P} is a polynomial function of degree d, the Ehrhart polynomial of P
Goals

- Compute the exact counting function (polynomial, series, quasi-polynomial)
- ... its asymptotics (highest coefficients)
- ... or weighted versions (motivated by symmetry techniques)

Rational polytopes and counting problems

Rational polytope

$$
\begin{aligned}
P & =\operatorname{conv}\left\{\mathbf{v}^{1}, \ldots, \mathbf{v}^{k}\right\} \subseteq \mathbf{R}^{d} \\
& =\left\{\mathbf{x} \in \mathbf{R}^{d}: A \mathbf{x} \leq \mathbf{b}\right\}
\end{aligned}
$$

Integer dilates

Consider

$$
\begin{aligned}
n P & =\operatorname{conv}\left\{n \mathbf{v}^{1}, \ldots, n \mathbf{v}^{k}\right\} \subseteq \mathbf{R}^{d} \\
& =\left\{\mathbf{x} \in \mathbf{R}^{d}: A \mathbf{x} \leq n \mathbf{b}\right\}
\end{aligned}
$$

for $n \in \mathbf{N}$.

Ehrhart function

$$
i_{P}: \mathbf{N} \rightarrow \mathbf{N}, \quad n \mapsto \#\left(n P \cap \mathbf{Z}^{d}\right)
$$

Ehrhart series (generating function)

$$
\operatorname{Ehr} p(z)=\sum_{n=0}^{\infty} i_{P}(n) z^{n}
$$

For lattice polytopes $P, \operatorname{dim} P=d$

 i_{P} is a polynomial function of degree d, the Ehrhart polynomial of P
Goals

- Compute the exact counting function (polynomial, series, quasi-polynomial)
- ... its asymptotics (highest coefficients)
- ... or weighted versions (motivated by symmetry techniques)

Complexity results

Hardness results

- Detecting lattice points in polytopes (even simplices) is NP-hard
- Counting lattice points in polytopes is \#P-hard
- Computing the volume of polytopes is \#P-hard (Dyer-Frieze, 1988)
- Approximating the volume of polytopes is hard (Elekes, 1986)

Polynomiality results

- Detecting lattice points is polynomial time in fixed dimension (Lenstra, 1983)
- Counting lattice points is polynomial time in fixed dimension (Barvinok, 1994)
- Computing Ehrhart polynomials of integral polytopes is polynomial time in fixed dimension (Barvinok, 1994)
- Computing the first k (fixed) coefficients of Ehrhart quasi-polynomials (for a given coset) of rational simplices is polynomial time in varying dimension (Barvinok, 2005)
- Computing the first k (fixed) coefficients of weighted Ehrhart quasi-polynomials (as closed formulas) of rational simplices is polynomial time in varying dimension (Baldoni-Berline-De Loera-Kö.-Vergne, 2012)

Complexity results

Hardness results

- Detecting lattice points in polytopes (even simplices) is NP-hard
- Counting lattice points in polytopes is \#P-hard
- Computing the volume of polytopes is \#P-hard (Dyer-Frieze, 1988)
- Approximating the volume of polytopes is hard (Elekes, 1986)

Polynomiality results

- Detecting lattice points is polynomial time in fixed dimension (Lenstra, 1983)
- Counting lattice points is polynomial time in fixed dimension (Barvinok, 1994)
- Computing Ehrhart polynomials of integral polytopes is polynomial time in fixed dimension (Barvinok, 1994)
- Computing the first k (fixed) coefficients of Ehrhart quasi-polynomials (for a given coset) of rational simplices is polynomia time in varying dimension (Barvinok, 2005)
- Computing the first k (fixed) coefficients of weighted Ehrhart quasi-polynomials (as closed formulas) of rational simplices is
(Baldoni-Berline-De Loera-Kö.-Vergne, 2012)

Complexity results

Hardness results

- Detecting lattice points in polytopes (even simplices) is NP-hard
- Counting lattice points in polytopes is \#P-hard
- Computing the volume of polytopes is \#P-hard (Dyer-Frieze, 1988)
- Approximating the volume of polytopes is hard (Elekes, 1986)

Polynomiality results

- Detecting lattice points is polynomial time in fixed dimension (Lenstra, 1983)
- Counting lattice points is polynomial time in fixed dimension (Barvinok, 1994)
- Computing Ehrhart polynomials of integral polytopes is polynomial time in fixed dimension (Barvinok, 1994)
- Computing the first k (fixed) coefficients of Ehrhart quasi-polynomials (for a given coset) of rational simplices is polynomial time in varying dimension (Barvinok, 2005)
- Computing the first k (fixed) coefficients of weighted Ehrhart quasi-polynomials (as closed formulas) of rational simplices is polynomial time in varying dimension (Baldoni-Berline-De Loera-Kö.-Vergne, 2012)

Generating functions

Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)
Rational-function-valued valuation (linear map) $\mathcal{F}:[P] \mapsto g_{P}(\mathbf{z})$, agrees with $\sum_{\mathbf{a} \in P} \mathbf{z}^{\mathbf{a}}$ for pointed polyhedra

Thm (Brion, 1088)

Valuation property (linearity)

Generating functions

Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)
Rational-function-valued valuation (linear map) $\mathcal{F}:[P] \mapsto g_{P}(\mathbf{z})$, agrees with $\sum_{\mathbf{a} \in P} \mathbf{z}^{\mathbf{a}}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

Valuation property (linearity)

Generating functions

Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}:[P] \mapsto g_{P}(\mathbf{z})$, agrees with $\sum_{\mathbf{a} \in P} \mathbf{z}^{\mathbf{a}}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

$$
g_{P}(\mathbf{z})=\sum_{C_{i} \text { vertex cone }} g_{C_{i}}(\mathbf{z})
$$

Valuation property (linearity)

Generating functions

Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)
Rational-function-valued valuation (linear map) $\mathcal{F}:[P] \mapsto g_{P}(\mathbf{z})$, agrees with $\sum_{\mathbf{a} \in P} \mathbf{z}^{\mathbf{a}}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

$$
g_{P}(\mathbf{z})=\sum_{c_{i} \text { vertex cone }} g_{c_{i}}(\mathbf{z})
$$

Valuation property (linearity)

For simplicial cones $C \subseteq \mathbf{R}^{d}$:
$\left.\mathbf{b}_{d} \in Z^{d}\right)$,

Generating functions

Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}:[P] \mapsto g_{P}(\mathbf{z})$, agrees with $\sum_{\mathbf{a} \in P} \mathbf{z}^{\mathbf{a}}$ for pointed, zero on non-pointed polyhedra
Thm (Brion, 1988)

$$
g_{P}(\mathbf{z})=\sum_{c_{i} \text { vertex cone }} g_{c_{i}}(\mathbf{z})
$$

Valuation property (linearity)

$$
[P \cup Q]=[P]+[Q]-[P \cap Q]
$$

For simplicial cones

(generated by rays \mathbf{b}_{1}

Generating functions

Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}:[P] \mapsto g_{P}(\mathbf{z})$, agrees with $\sum_{\mathbf{a} \in P} \mathbf{z}^{\mathbf{a}}$ for pointed, zero on non-pointed polyhedra
Thm (Brion, 1988)

$$
g_{P}(\mathbf{z})=\sum_{c_{i} \text { vertex cone }} g_{c_{i}}(\mathbf{z})
$$

Valuation property (linearity)

$$
[P \cup Q]=[P]+[Q]-[P \cap Q]
$$

For simplicial cones

(generated by rays \mathbf{b}_{1}

Generating functions

Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}:[P] \mapsto g_{P}(\mathbf{z})$, agrees with $\sum_{\mathbf{a} \in P} \mathbf{z}^{\mathbf{a}}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

$$
g_{P}(\mathbf{z})=\sum_{c_{i} \text { vertex cone }} g_{c_{i}}(\mathbf{z})
$$

Valuation property (linearity)

$$
[P \cup Q]=[P]+[Q]-[P \cap Q]
$$

For simplicial cones

(generated by rays bI

Generating functions

Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}:[P] \mapsto g_{P}(\mathbf{z})$, agrees with $\sum_{\mathbf{a} \in P} \mathbf{z}^{\mathbf{a}}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

$$
g_{P}(\mathbf{z})=\sum_{c_{i} \text { vertex cone }} g_{c_{i}}(\mathbf{z})
$$

Valuation property (linearity)

$$
[P \cup Q]=[P]+[Q]-[P \cap Q]
$$

Generating functions

Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}:[P] \mapsto g_{P}(\mathbf{z})$, agrees with $\sum_{\mathbf{a} \in P} \mathbf{z}^{\mathbf{a}}$ for pointed, zero on non-pointed polyhedra
Thm (Brion, 1988)

$$
g_{P}(\mathbf{z})=\sum_{c_{i} \text { vertex cone }} g_{c_{i}}(\mathbf{z})
$$

Valuation property (linearity)

$$
[P \cup Q]=[P]+[Q]-[P \cap Q]
$$

Generating functions

Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}:[P] \mapsto g_{P}(\mathbf{z})$, agrees with $\sum_{\mathbf{a} \in P} \mathbf{z}^{\mathbf{a}}$ for pointed, zero on non-pointed polyhedra
Thm (Brion, 1988)

$$
g_{P}(\mathbf{z})=\sum_{c_{i} \text { vertex cone }} g_{c_{i}}(\mathbf{z})
$$

Valuation property (linearity)

$$
g_{P \cup Q}(\mathbf{z})=g_{P}(\mathbf{z})+g_{Q}(\mathbf{z})-g_{P \cap Q}(\mathbf{z})
$$

Generating functions

Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)
Rational-function-valued valuation (linear map) $\mathcal{F}:[P] \mapsto g_{P}(\mathbf{z})$, agrees with $\sum_{\mathbf{a} \in P} \mathbf{z}^{\mathbf{a}}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

$$
g_{P}(\mathbf{z})=\sum_{c_{i} \text { vertex cone }} g_{c_{i}}(\mathbf{z})
$$

Valuation property (linearity)

$$
g_{P \cup Q}(\mathbf{z})=g_{P}(\mathbf{z})+g_{Q}(\mathbf{z})-g_{P \cap Q}(\mathbf{z})
$$

For simplicial cones $C \subseteq \mathbf{R}^{d}$:

(generated by rays $\mathbf{b}_{1}, \ldots, \mathbf{b}_{d} \in \mathbf{Z}^{d}$),

Generating functions

Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)
Rational-function-valued valuation (linear map) $\mathcal{F}:[P] \mapsto g_{P}(\mathbf{z})$, agrees with $\sum_{\mathbf{a} \in P} \mathbf{z}^{\mathbf{a}}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

$$
g_{P}(\mathbf{z})=\sum_{c_{i} \text { vertex cone }} g_{c_{i}}(\mathbf{z})
$$

Valuation property (linearity)

$$
g_{P \cup Q}(\mathbf{z})=g_{P}(\mathbf{z})+g_{Q}(\mathbf{z})-g_{P \cap Q}(\mathbf{z})
$$

For simplicial cones $C \subseteq \mathbf{R}^{d}$:

(generated by rays $\mathbf{b}_{1}, \ldots, \mathbf{b}_{d} \in \mathbf{Z}^{d}$),

$$
g_{c}(\mathbf{z})=\frac{\sum_{\mathbf{a} \in \Pi \cap \mathrm{z}^{n}} \mathrm{z}^{\mathrm{a}}}{\prod_{j=1}^{d}\left(1-\mathbf{z}^{\mathbf{b}_{j}}\right)}
$$

Continuous generating functions: Brion's formula for integrals M. Brion, Ann. Sci. École Norm. Sup. 21 (1988), 653-663.

Theorem (Brion)

Let Δ be the simplex that is the convex hull of $(d+1)$ affinely independent vertices $\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{d+1}$ in \mathbf{R}^{n}.
Let ℓ be a linear form which is regular w.r.t. Δ, i.e.,

$$
\left\langle\ell, \mathbf{s}_{i}\right\rangle \neq\left\langle\ell, \mathbf{s}_{j}\right\rangle \quad \text { for } i \neq j
$$

Then:

$$
\int_{\Delta} e^{\ell} \mathrm{d} m=d!\operatorname{vol}(\Delta, \mathrm{d} m) \sum_{i=1}^{d+1} \frac{e^{\left\langle\ell, \mathbf{s}_{i}\right\rangle}}{\prod_{j \neq i}\left\langle\ell, \mathbf{s}_{i}-\mathbf{s}_{j}\right\rangle}
$$

By expanding the exponential as a Taylor series:

Corollary

Continuous generating functions: Brion's formula for integrals M. Brion, Ann. Sci. École Norm. Sup. 21 (1988), 653-663.

Theorem (Brion)

Let Δ be the simplex that is the convex hull of $(d+1)$ affinely independent vertices $\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{d+1}$ in \mathbf{R}^{n}.
Let ℓ be a linear form which is regular w.r.t. Δ, i.e.,

$$
\left\langle\ell, \mathbf{s}_{i}\right\rangle \neq\left\langle\ell, \mathbf{s}_{j}\right\rangle \quad \text { for } i \neq j
$$

Then:

$$
\int_{\Delta} e^{\ell} \mathrm{d} m=d!\operatorname{vol}(\Delta, \mathrm{d} m) \sum_{i=1}^{d+1} \frac{e^{\left\langle\ell, \mathbf{s}_{i}\right\rangle}}{\prod_{j \neq i}\left\langle\ell, \mathbf{s}_{i}-\mathbf{s}_{j}\right\rangle}
$$

By expanding the exponential as a Taylor series:

Corollary

$$
\int_{\Delta} \ell^{M} \mathrm{~d} m=d!\operatorname{vol}(\Delta, \mathrm{d} m) \frac{M!}{(M+d)!}\left(\sum_{i=1}^{d+1} \frac{\left\langle\ell, \mathbf{s}_{i}\right\rangle^{M+d}}{\prod_{j \neq i}\left\langle\ell, \mathbf{s}_{i}-\mathbf{s}_{j}\right\rangle}\right)
$$

Powers of linear forms are enough: The polynomial Waring problem J. Alexander and A. Hirschowitz, J. Algebraic Geom. 4 (1995), 201-222.

Theorem (Alexander-Hirschowitz, 1995)

A generic homogeneous polynomial of degree M in n variables is expressible as the sum of

$$
r(M, n)=\left\lceil\frac{\binom{n+M-1}{M}}{n}\right\rceil
$$

M-th powers of linear forms, with the exception of the cases $r(3,5)=8, r(4,3)=6$, $r(4,4)=10, r(4,5)=15$, and $M=2$, where $r(2, n)=n$. (Non-constructive.)

Effective (constructive) version?

First numerical procedure given by
J. Brachat, P. Comon,
B. Mourrain, E. Tsigaridas (Lin. Alg. Appl., 2010)

Simple (suboptima) rational constructions

Powers of linear forms are enough: The polynomial Waring problem J. Alexander and A. Hirschowitz, J. Algebraic Geom. 4 (1995), 201-222.

Theorem (Alexander-Hirschowitz, 1995)

A generic homogeneous polynomial of degree M in n variables is expressible as the sum of

$$
r(M, n)=\left\lceil\frac{\binom{n+M-1}{M}}{n}\right\rceil
$$

M-th powers of linear forms, with the exception of the cases $r(3,5)=8, r(4,3)=6$, $r(4,4)=10, r(4,5)=15$, and $M=2$, where $r(2, n)=n$. (Non-constructive.)

Theorem (Carlini-Catalisano-Geramita, 2011)

Minimal, constructive solution for monomials $\mathbf{x}^{\mathrm{M}}, M_{1} \leq \cdots \leq M_{n}$ with $\prod_{i=2}^{n}\left(M_{i}+1\right)$, involving roots of unity.

Simple (suboptimal) rational constructions

Powers of linear forms are enough: The polynomial Waring problem J. Alexander and A. Hirschowitz, J. Algebraic Geom. 4 (1995), 201-222.

Theorem (Alexander-Hirschowitz, 1995)

A generic homogeneous polynomial of degree M in n variables is expressible as the sum of

$$
r(M, n)=\left\lceil\frac{\binom{n+M-1}{M}}{n}\right\rceil
$$

M-th powers of linear forms, with the exception of the cases $r(3,5)=8, r(4,3)=6$,
$r(4,4)=10, r(4,5)=15$, and $M=2$, where $r(2, n)=n$. (Non-constructive.)

Theorem (Carlini-Catalisano-Geramita, 2011)

Minimal, constructive solution for monomials $\mathbf{x}^{\mathrm{M}}, M_{1} \leq \cdots \leq M_{n}$ with $\prod_{i=2}^{n}\left(M_{i}+1\right)$, involving roots of unity.

Effective (constructive) version?
First numerical procedure given by
J. Brachat, P. Comon,
B. Mourrain, E. Tsigaridas (Lin. Alg. Appl., 2010)
\square

Simple (suboptimal) rational constructions

$$
\begin{aligned}
& \quad \mathbf{x}^{\mathbf{M}}=\frac{1}{|\mathbf{M}|!} \sum_{0 \leq p_{i} \leq M_{i}} \alpha_{\mathbf{p}}\left(p_{1} x_{1}+\cdots+p_{n} x_{n}\right)^{|\mathbf{M}|} \\
& \text { with } \alpha_{p}=(-1)^{|\mathbf{M}|-\left(p_{1}+\cdots+p_{n}\right)}\binom{M_{1}}{p_{1}} \cdots\binom{M_{n}}{p_{n}}
\end{aligned}
$$

Powers of linear forms are enough: The polynomial Waring problem J. Alexander and A. Hirschowitz, J. Algebraic Geom. 4 (1995), 201-222.

Theorem (Alexander-Hirschowitz, 1995)

A generic homogeneous polynomial of degree M in n variables is expressible as the sum of

$$
r(M, n)=\left\lceil\frac{\binom{n+M-1}{M}}{n}\right\rceil
$$

M-th powers of linear forms, with the exception of the cases $r(3,5)=8, r(4,3)=6$,
$r(4,4)=10, r(4,5)=15$, and $M=2$, where $r(2, n)=n$. (Non-constructive.)

Effective (constructive) version?

First numerical procedure given by J. Brachat, P. Comon, B. Mourrain, E. Tsigaridas (Lin. Alg. Appl., 2010)

Theorem (Carlini-

 Catalisano-Geramita, 2011)Minimal, constructive solution for monomials $\mathbf{x}^{\mathrm{M}}, M_{1} \leq \cdots \leq M_{n}$ with $\prod_{i=2}^{n}\left(M_{i}+1\right)$, involving roots of unity.

Computational results with LattE integrale

Average and standard deviation of integration time in seconds of a random monomial over a d-simplex (average over 50 random monomials)

Dimension	Degree										
	1	2	5	10	20	30	40	50	100	200	300
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	1.0	3.8
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4	1.7
3	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	2.3	38.7	162.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	1.4	24.2	130.7
4	0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.7	22.1	-	-
	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.7	16.7	-	-
5	0.0	0.0	0.0	0.0	0.1	0.3	1.6	4.4	-	-	-
	0.0	0.0	0.0	0.0	0.0	0.2	1.3	3.5	-	-	-
7	0.0	0.0	0.0	0.0	0.2	2.2	12.3	63.2	-	-	-
	0.0	0.0	0.0	0.0	0.2	1.7	12.6	66.9	-	-	-
8	0.0	0.0	0.0	0.0	0.4	4.2	30.6	141.4	-	-	-
	0.0	0.0	0.0	0.0	0.3	3.0	31.8	127.6	-	-	-
10	0.0	0.0	0.0	0.0	1.3	19.6	-	-	-	-	-
	0.0	0.0	0.0	0.0	1.4	19.4	-	-	-	-	-
15	0.0	0.0	0.0	0.1	5.7	-	-	-	-	-	-
	0.0	0.0	0.0	0.0	3.6	-	-	-	-	-	-
20	0.0	0.0	0.0	0.2	23.3	-	-	-	-	-	-
	0.0	0.0	0.0	1.3	164.8	-	-	-	-	-	-
30	0.0	0.0	0.0	0.6	110.2	-	-	-	-	-	-
	0.0	0.0	0.1	4.0	779.1	-	-	-	-	-	-
40	0.0	0.0	0.0	1.0	-	-	-	-	-	-	-
	0.0	0.0	0.3	7.0	-	-	-	-	-	-	-
50	0.0	0.0	0.1	1.8	-	-	-	-	-	-	-
	0.0	0.1	0.5	12.9	-	-	-	-	-	三-	, -

A change of variables to exponential sums

Set $\mathbf{z}=e^{y}=\left(e^{y_{1}}, \ldots, e^{y_{d}}\right)$ with complex variables y_{1}, \ldots, y_{d}.
The generating function

$$
g(P ; \mathbf{z})=\sum_{\mathbf{x} \in P \cap \mathbf{z}^{d}} \mathbf{z}^{\mathbf{x}}=\sum_{i} \epsilon_{i} \frac{\mathbf{z}^{\mathbf{u}^{i}}}{\prod_{j=1}^{d}\left(1-\mathbf{z}^{\mathbf{v}^{i, j}}\right)}
$$

changes to the exponential sum

$$
S(P ; \mathbf{y})=\sum_{\mathbf{x} \in P \cap \mathbf{Z}^{d}} \exp \{\langle\mathbf{y}, \mathbf{x}\rangle\}
$$

(discrete all-sided Laplace transform of the indicator function of P)

Intermediate sums

The idea to use intermediate sums appeared first in Barvinok (2006), for the computation of the top k Ehrhart coefficients of a rational simplex in varying dimension. We take them to the generating-function (Laplace-transform) level and use them for mixed-integer optimization.

Theorem (S^{L} version of the Khovanskii-Pukhlikov theorem)

Let $L \subseteq V$ be a rational subspace. There exists a unique valuation S^{L} which to every rational polyhedron $P \subset V$ associates a meromorphic function with rational coefficients $S^{L}(P) \in \mathcal{M}\left(V^{*}\right)$ so that the following properties hold:
(1) If P contains a line, then $S^{L}(P)=0$.
(2)

$$
S^{L}(P)(\xi)=\sum_{y \in \Lambda_{V / L}} \int_{P \cap(y+L)} e^{\langle\xi, x\rangle} d m_{L}(x)
$$

for every $\xi \in V^{*}$ such that the above sum converges.
(3) For every point $s \in \Lambda+L$, we have

$$
S^{L}(s+P)(\xi)=e^{\langle\xi, s\rangle} S^{L}(P)(\xi)
$$

Intermediate sums for "parallel" cones

V. Baldoni, N. Berline, J. De Loera, Kö., M. Vergne: Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra.

Let

$$
C=\operatorname{cone}\left\{v_{1}, \ldots, v_{d}\right\}
$$

be a simplicial cone with one face parallel to the subspace

$$
L=L_{l^{c}}=\operatorname{lin}\left\{v_{i}: i \in I^{c}\right\}
$$

Theorem

The intermediate sum for the full cone $s+C$ breaks up into the product

$$
S^{L_{l c}}(s+C)(\xi)=S\left(s_{l}+C_{l}, \Lambda_{l}\right)(\xi) I\left(s_{l c}+C_{l c}, L_{l c} \cap \Lambda\right)(\xi)
$$

where

$$
I\left(s_{\mid c}+C_{I^{c}}, L_{l^{c}} \cap \Lambda\right)(\xi)=e^{\left\langle\xi, s_{\mid c}\right\rangle} \operatorname{vol}_{L_{\mid c} \cap \wedge}\left(\mathbf{B}_{I^{c}}\right)(-1)^{\left|\left|c^{c}\right|\right.} \prod_{j \in I^{c}} \frac{1}{\left\langle\xi, v_{j}\right\rangle}
$$

is the integral over the slice $(s+C) \cap L_{1 c}$.

Arbitrary cones and subspaces: Use Brion-Vergne decomposition

M. Brion and M. Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc. 10 (1997), 797-833

Theorem

Let L be a linear subspace of $V=\mathbf{R}^{d}$. Let C be a full dimensional simplicial cone in V with generators w_{1}, \ldots, W_{d}. You can't read this: Let $a \in V / L$ be generic, belong to the projection of C on V / L. For $\sigma \in \mathcal{B}(C, L)$, let $a=\sum_{j \in \sigma^{a_{\sigma, j}}}\left(w_{j} \bmod L\right)$. Let $\epsilon_{\sigma, j}$ be the sign of $a_{\sigma, j}$ and $\epsilon(\sigma)=\Pi_{j \in \sigma} \epsilon_{\sigma, j}$. Denote by $C_{\sigma} \subset V$ the cone with edge generators $\epsilon_{\sigma, j} w_{j}$ for $j \in \sigma$, and $\rho_{\sigma}\left(w_{k}\right)$ for $k \notin \sigma$, Then we have the following relation between indicator functions of cones.

$$
\begin{equation*}
[C] \equiv \sum_{\sigma \in \mathcal{B}(C, L)} \epsilon(\sigma)\left[C_{\sigma}\right] \bmod \mathcal{L}(V) \tag{1}
\end{equation*}
$$

If codim L is fixed, can compute in polynomial time.

Short formula for intermediate valuations

V. Baldoni, N. Berline, J. De Loera, Kö., M. Vergne: Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra.
V. Baldoni, N. Berline, Kö., M. Vergne: Intermediate Sums on Polyhedra: Computation and Real Ehrhart Theory.

Theorem (Short formula for $S^{L}(P)(\xi)$)

Fix a non-negative integer k_{0}. There exists a polynomial time algorithm for the following problem. Given the following input:
(I_{1}) a number d in unary encoding,
(I_{2}) a simple polytope $P \subset \mathbf{R}^{d}$, represented by its vertices, rational vectors $s_{1}, \ldots, s_{d+1} \in \mathbf{Q}^{d}$ in binary encoding,
$\left(I_{3}\right)$ a subspace $L \subseteq \mathbf{Q}^{d}$ of codimension k_{0}, represented by $d-k_{0}$ linearly independent vectors $b_{1}, \ldots, b_{d-k_{0}} \in \mathbf{Q}^{d}$ in binary encoding,
compute the rational data such that we have the following equality of meromorphic functions:

$$
S^{L}(P)(\xi)=\sum_{n \in N} \alpha^{(n)}\left(e^{\left\langle\xi, s^{(n)}\right\rangle} \prod_{i=1}^{k_{0}} T\left(z_{i}^{(n)},\left\langle\xi, w_{i}^{(n)}\right\rangle\right)\right) \frac{1}{\prod_{i=1}^{d}\left\langle\xi, w_{i}^{(n)}\right\rangle} .
$$

From this, we can extract intermediate sums of polynomial functions using series expansions.

Ehrhart polynomials from generating functions

If vertices are lattice points and dilation factors n are integers: When P is replaced with $n P$, the vertex s is replaced with $n s$ but the tangent cone C_{s} does not change. We replace ξ by $t \xi$ with $t \in \mathbf{C}$. We obtain

$$
\begin{equation*}
\sum_{x \in n P \cap \Lambda} \mathrm{e}^{\langle t \xi, x\rangle}=\sum_{s \in \mathcal{V}(P)} S\left(n s+C_{s}\right)(t \xi)=\sum_{s \in \mathcal{V}(P)} \mathrm{e}^{n t\langle\xi, s\rangle} S\left(C_{s}\right)(t \xi) \tag{*}
\end{equation*}
$$

The decomposition into homogeneous components (of equal ξ-degree) gives

$$
S\left(C_{s}\right)(t \xi)=t^{-d} I\left(C_{s}\right)(\xi)+t^{-d+1} S\left(C_{s}\right)_{[-d+1]}(\xi)+\cdots+t^{k} S\left(C_{s}\right)_{[k]}(\xi)+\cdots
$$

Expanding the exponential, we find that the t^{M}-term in the right-hand side of $(*)$ is equal to

$$
\sum_{k=0}^{M+d}(n t)^{M+d-k} t^{-d+k} \frac{\langle\xi, s\rangle^{M+d-k}}{(M+d-k)!} S\left(C_{s}\right)_{[-d+k]}(\xi)
$$

Thus:

$$
\begin{aligned}
& \sum_{x \in n P \cap \Lambda} \frac{\langle\xi, x\rangle^{M}}{M!}=\sum_{s \in \mathcal{V}(P)} n^{M+d} \frac{\langle\xi, s\rangle^{M+d}}{(M+d)!} I\left(C_{s}\right)(\xi) \\
&+n^{M+d-1} \frac{\langle\xi, s\rangle^{M+d-1}}{(M+d-1)!} S\left(C_{s}\right)_{[-d+1]}(\xi)+\cdots+S\left(C_{s}\right)_{[M]}(\xi)
\end{aligned}
$$

Approximation Theorem

Let $\mathcal{J}_{\geq d_{0}}^{d}$ be the poset of subsets of $\{1, \ldots, d\}$ of cardinality $\geq d_{0}$.

Patching functions λ

For $1 \leq i \leq d$, let $F_{i}(z) \in \mathbf{C}[[z]]$ be any formal power series (in one variable) with constant term equal to 1 . Then

$$
\prod_{1 \leq i \leq d} F_{i}\left(z_{i}\right) \equiv \sum_{I \in \mathcal{J}_{\geq d_{0}}^{d}} \lambda(I) \prod_{i \in I^{c}} F_{i}\left(z_{i}\right) \quad \text { mod terms of } z \text {-degree } \geq d-d_{0}+1
$$

Theorem (Approximation by a patched generating function)

Let $C \subset V$ be a rational simplicial cone with edge generators v_{1}, \ldots, v_{d}. Let $s \in V_{Q}$. Let $I \mapsto \lambda(I)$ be a patching function on the poset $\mathcal{J}_{\geq d_{0}}^{d}$. For $I \in \mathcal{J}_{\geq d_{0}}^{d}$ let L_{I} be the linear span of $\left\{v_{i}\right\}_{i \in I}$. Then we have

$$
S(s+C, \Lambda)(\xi) \equiv A^{\lambda}(s+C, \Lambda)(\xi):=\sum_{I \in \mathcal{J}_{\geq d_{0}}^{d}} \lambda(I) S^{L_{1}}(s+C, \Lambda)(\xi)
$$

$$
\text { mod terms of } \xi \text {-degree } \geq-d_{0}+1
$$

Approximation Theorem: Example

Let C be the first quadrant in \mathbf{R}^{2}, and $d_{0}=1$. Thus $\mathcal{J}_{\geq 1}^{2}$ consists of three subsets, $\{1\},\{2\}$ and $\{1,2\}$. A patching function is given by $\lambda(\{i\})=1$ and $\lambda(\{1,2\})=-1$. We consider the affine cone $s+C$ with $s=\left(-\frac{1}{2},-\frac{1}{2}\right)$. Let $\xi=\left(\xi_{1}, \xi_{2}\right)$. We have

$$
\begin{array}{rlrl}
I\left(s_{i}+C_{\{i\}}\right)(\xi) & =\frac{-\mathrm{e}^{-\xi_{i} / 2}}{\xi_{i}}, & I(s+C)(\xi) & =\frac{\mathrm{e}^{-\xi_{1} / 2-\xi_{2} / 2}}{\xi_{1} \xi_{2}} \\
S\left(s_{i}+C_{\{i\}}\right)(\xi) & =\frac{1}{1-\mathrm{e}^{\xi_{i}}}, & S(s+C)(\xi)=\frac{1}{\left(1-\mathrm{e}^{\xi_{1}}\right)\left(1-\mathrm{e}^{\xi_{2}}\right)}
\end{array}
$$

The approximation theorem claims that

$$
\begin{aligned}
\left(1-\mathrm{e}^{\xi_{1}}\right)\left(1-\mathrm{e}^{\xi_{2}}\right) & \frac{1}{1-\mathrm{e}^{\xi_{2}}} \cdot \frac{-\mathrm{e}^{-\xi_{1} / 2}}{\xi_{1}}+\frac{1}{1-\mathrm{e}^{\xi_{1}}} \cdot \frac{-\mathrm{e}^{-\xi_{2} / 2}}{\xi_{2}}-\frac{\mathrm{e}^{-\xi_{1} / 2-\xi_{2} / 2}}{\xi_{1} \xi_{2}} \\
& \bmod \text { terms of } \xi \text {-degree } \geq 0 .
\end{aligned}
$$

Indeed, the difference between the two sides is equal to

$$
\left(\frac{1}{1-\mathrm{e}^{\xi_{1}}}+\frac{\mathrm{e}^{-\xi_{1} / 2}}{\xi_{1}}\right)\left(\frac{1}{1-\mathrm{e}^{\xi_{2}}}+\frac{\mathrm{e}^{-\xi_{2} / 2}}{\xi_{2}}\right)
$$

which is analytic near 0 .

"Top Ehrhart" theorem

For every fixed number $k_{0} \in \mathbf{N}$, there exists a polynomial-time algorithm for the following problem.
Input:
$\left(\mathrm{I}_{1}\right)$ a simple polytope P, given by its vertices, rational vectors $\mathrm{s}_{j} \in \mathbf{Q}^{d}$ for $j \in \mathcal{V}$ (a finite index set) in binary encoding,
(I_{2}) a rational vector $\ell \in \mathbf{Q}^{d}$ in binary, a number $M \in \mathbf{N}$ in unary encoding. Output, in binary encoding,
$\left(\mathrm{O}_{1}\right)$ polynomials $f^{\gamma, m} \in \mathbf{Q}\left[r_{1}, \ldots, r_{k_{0}}\right]$ and integer numbers $\zeta_{i}^{\gamma, m} \in \mathbf{Z}, q_{i}^{\gamma, m} \in \mathbf{N}$ for $\gamma \in \Gamma$ (a finite index set) and $m=M+d-k_{0}, \ldots, M+d$ and $i=1, \ldots, k_{0}$, such that the Ehrhart quasi-polynomial

$$
E(P, \ell, M ; n)=\sum_{x \in n P \cap \Lambda} \frac{\langle\ell, x\rangle^{M}}{M!}=\sum_{m=0}^{M+d} E_{m}\left(P, \ell, M ;\{n\}_{q}\right) n^{m}
$$

agrees in n-degree $\geq M+d-k_{0}$ with the quasi-polynomial

$$
\sum_{\gamma \in \Gamma} \sum_{m=M+d-k_{0}}^{M+d} f^{\gamma, m}\left(\left\{\zeta_{1}^{\gamma, m} n\right\}_{q_{1}^{\gamma, m}}, \ldots,\left\{\zeta_{k_{0}}^{\gamma, m} n\right\}_{q_{k_{0}}^{\gamma, m}}\right) n^{m}
$$

$E_{m}\left(P, \ell, M,\{n\}_{q}\right)$, when P is the simplex in \mathbf{R}^{5} with vertices:

$$
(0,0,0,0,0),\left(\frac{1}{2}, 0,0,0,0\right),\left(0, \frac{1}{2}, 0,0,0\right),\left(0,0, \frac{1}{2}, 0,0\right),\left(0,0,0, \frac{1}{6}, 0\right),\left(0,0,0,0, \frac{1}{6}\right)
$$

We consider the linear form ℓ on \mathbf{R}^{5} given by the scalar product with $(1,1,1,1,1)$. If $M=0$, the coefficients of $E_{m}\left(P, \ell, M=0 ;\{n\}_{q}\right)$ are just the coefficients of the unweighted Ehrhart quasi-polynomial $S(n P, 1)$. We obtain

$$
\begin{aligned}
S(n P, 1)=\frac{1}{34560} n^{5}+\left(\frac{5}{3456}-\frac{1}{6912}\right. & \left.\{n\}_{2}\right) n^{4} \\
& +\left(\frac{139}{5184}-\frac{5}{864}\{n\}_{2}+\frac{1}{3456}\left(\{n\}_{2}\right)^{2}\right) n^{3}+\cdots .
\end{aligned}
$$

Now if $M=1$, all integral points $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ are weighted with the function $h(x)=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}$, and we obtain

$$
\begin{aligned}
S(n P, h)=\frac{11}{1244160} n^{6}+\left(\frac{19}{41472}\right. & \left.-\frac{11}{207360}\{n\}_{2}\right) n^{5} \\
& +\left(\frac{553}{62208}-\frac{95}{41472}\{n\}_{2}+\frac{11}{82944}\left(\{n\}_{2}\right)^{2}\right) n^{4}+\cdots
\end{aligned}
$$

Note period collapse: Although $q=6$ is the smallest integer such that $q P$ is a lattice polytope, only periodic functions of $n \bmod 2$ enter in the top three Ehrhart coefficients.

Computation of the highest Ehrhart coefficients

 in LattE integrale 1.6Random lattice simplices.

Dimension	Average runtime (CPU seconds)			
	Full Ehrhart polynomial			Top 3
	Dual	Primal	Primal ${ }_{1000}$	coefficients
3	0.16	0.10	0.04	1.12
4	28.00	4.68	0.28	4.31
5		317.5	5.8	13.4
6			198.0	37.4
7				103
8				294
9				393
10				1179
11				1681

LattE command line options for Ehrhart computations

Dual method (default):
count --ehrhart-polynomial

Primal "irrational" method:
count --ehrhart-polynomial --irrational-primal

Primal "irrational" method with stopped decomposition:
count --ehrhart-polynomial --irrational-primal --maxdet=1000

Ehrhart quasi-polynomial, incremental computation of coefficients:
integrate --valuation=top-ehrhart
Same, but output formulas valid for arbitrary real dilations:
integrate --valuation=top-ehrhart --real-dilations

LattE integrale available at http://www.math.ucdavis.edu/~latte/

V. Baldoni, N. Berline, J. A. De Loera, M. Köppe, and M. Vergne.

How to integrate a polynomial over a simplex.
Mathematics of Computation, 80(273):297-325, 2011.
V. Baldoni, N. Berline, J. A. De Loera, M. Köppe, and M. Vergne.

Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra.
Foundations of Computational Mathematics, 12:435-469, 2012.
V. Baldoni, N. Berline, M. Köppe, and M. Vergne. Intermediate sums on polyhedra: Computation and real Ehrhart theory.
Mathematika, 59(1):1-22, September 2013.
J. A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, and J. Wu.

Software for exact integration of polynomials over polyhedra.
Computational Geometry: Theory and Applications,

Algebraic and Geometric Ideas in the Theory of Discrete Optimization

 46(3):232-252, 2013.