

LattE integrale 1.6

Tutorial and update

Matthias Köppe, UC Davis

V. Baldoni N. Berline

J.A. De Loera B. Dutra

M. Vergne

S. Moreinis G. Pinto

J. Wu

Image credit: Wikipedia

Rational polytope

$$P = \operatorname{conv}\{\mathbf{v}^1, \dots, \mathbf{v}^k\} \subseteq \mathbf{R}^d$$
$$= \{ \mathbf{x} \in \mathbf{R}^d : A\mathbf{x} \le \mathbf{b} \}$$

Integer dilates

Consider

$$\mathbf{n}P = \operatorname{conv}\{\mathbf{n}\mathbf{v}^1, \dots, \mathbf{n}\mathbf{v}^k\} \subseteq \mathbf{R}^d$$

$$= \{\mathbf{x} \in \mathbf{R}^d : A\mathbf{x} \le \mathbf{n}\mathbf{b}\}$$

for $n \in \mathbb{N}$

Ehrhart function

$$i_P \colon \mathbb{N} \to \mathbb{N}, \quad n \mapsto \#(nP \cap \mathbb{Z}^d)$$

Ehrhart series (generating function)

$$\mathrm{Ehr}_P(z) = \sum_{n=0}^{\infty} i_P(n) z^n$$

For lattice polytopes P, dim P = d

 i_P is a polynomial function of degree d, the Ehrhart polynomial of P

Goals

- Compute the exact counting function (polynomial, series, quasi-polynomial)
- ... its asymptotics (highest coefficients)
- ... or weighted versions (motivated by symmetry techniques)

Rational polytope

$$P = \operatorname{conv}\{\mathbf{v}^1, \dots, \mathbf{v}^k\} \subseteq \mathbf{R}^d$$
$$= \{ \mathbf{x} \in \mathbf{R}^d : A\mathbf{x} \le \mathbf{b} \}$$

Integer dilates

Consider

for $n \in \mathbb{N}$.

Ehrhart function

$$i_P \colon \mathbb{N} \to \mathbb{N}, \quad n \mapsto \#(nP \cap \mathbb{Z}^d)$$

Ehrhart series (generating function)

$$\mathrm{Ehr}_P(z) = \sum_{n=0}^{\infty} i_P(n) z^n$$

For lattice polytopes P, dim P = d

 i_P is a polynomial function of degree d, the Ehrhart polynomial of P

- Compute the exact counting function (polynomial, series, quasi-polynomial)
- ... its asymptotics (highest coefficients)
- ... or weighted versions (motivated by symmetry techniques)

Rational polytope

$$P = \operatorname{conv}\{\mathbf{v}^{1}, \dots, \mathbf{v}^{k}\} \subseteq \mathbf{R}^{d}$$
$$= \left\{ \mathbf{x} \in \mathbf{R}^{d} : A\mathbf{x} \le \mathbf{b} \right\}$$

Integer dilates

Consider

for $n \in \mathbb{N}$.

Ehrhart function

$$i_P \colon \mathbf{N} \to \mathbf{N}, \quad \mathbf{n} \mapsto \#(\mathbf{n}P \cap \mathbf{Z}^d)$$

Ehrhart series (generating function)

$$\operatorname{Ehr}_{P}(z) = \sum_{n=0}^{\infty} i_{P}(n) z^{n}$$

For lattice polytopes P, dim P = d

 i_P is a polynomial function of degree d, the Ehrhart polynomial of P

- Compute the exact counting function (polynomial, series, quasi-polynomial)
- ... its asymptotics (highest coefficients)
- ... or weighted versions (motivated by symmetry techniques)

Rational polytope

$$P = \operatorname{conv}\{\mathbf{v}^1, \dots, \mathbf{v}^k\} \subseteq \mathbf{R}^d$$
$$= \{ \mathbf{x} \in \mathbf{R}^d : A\mathbf{x} \le \mathbf{b} \}$$

Integer dilates

Consider

for $n \in \mathbb{N}$.

Ehrhart function

$$i_P \colon \mathbf{N} \to \mathbf{N}, \quad \mathbf{n} \mapsto \#(\mathbf{n}P \cap \mathbf{Z}^d)$$

Ehrhart series (generating function)

$$\operatorname{Ehr}_P(z) = \sum_{n=0}^{\infty} i_P(n) z^n$$

For lattice polytopes P, dim P = d

 i_P is a polynomial function of degree d, the Ehrhart polynomial of P

- Compute the exact counting function (polynomial, series, quasi-polynomial)
- ... its asymptotics (highest coefficients)
- ... or weighted versions (motivated by symmetry techniques)

Rational polytope

$$P = \operatorname{conv}\{\mathbf{v}^{1}, \dots, \mathbf{v}^{k}\} \subseteq \mathbf{R}^{d}$$
$$= \left\{ \mathbf{x} \in \mathbf{R}^{d} : A\mathbf{x} \le \mathbf{b} \right\}$$

Integer dilates

Consider

for $n \in \mathbb{N}$.

Ehrhart function

$$i_P \colon \mathbf{N} \to \mathbf{N}, \quad {\color{red} n} \mapsto \#({\color{red} n} P \cap \mathbf{Z}^d)$$

Ehrhart series (generating function)

$$\operatorname{Ehr}_{P}(z) = \sum_{n=0}^{\infty} i_{P}(n) z^{n}$$

For lattice polytopes P, dim P = d

 i_P is a polynomial function of degree d, the Ehrhart polynomial of P

- Compute the exact counting function (polynomial, series, quasi-polynomial)
- ... its asymptotics (highest coefficients)
- ... or weighted versions (motivated by symmetry techniques)

Rational polytope

$$P = \operatorname{conv}\{\mathbf{v}^1, \dots, \mathbf{v}^k\} \subseteq \mathbf{R}^d$$
$$= \{ \mathbf{x} \in \mathbf{R}^d : A\mathbf{x} \le \mathbf{b} \}$$

Integer dilates

Consider

$$\mathbf{n}P = \operatorname{conv}\{\mathbf{n}\mathbf{v}^1, \dots, \mathbf{n}\mathbf{v}^k\} \subseteq \mathbf{R}^d$$

$$= \{\mathbf{x} \in \mathbf{R}^d : A\mathbf{x} \le \mathbf{n}\mathbf{b}\}$$

for $n \in \mathbb{N}$.

Ehrhart function

$$i_P \colon \mathbf{N} \to \mathbf{N}, \quad \overset{\mathbf{n}}{\longrightarrow} \#(\overset{\mathbf{n}}{P} \cap \mathbf{Z}^d)$$

Ehrhart series (generating function)

$$\operatorname{Ehr}_P(z) = \sum_{n=0}^{\infty} i_P(n) z^n$$

For lattice polytopes P, dim P = d

 i_P is a polynomial function of degree d, the Ehrhart polynomial of P

- Compute the exact counting function (polynomial, series, quasi-polynomial)
- ... its asymptotics (highest coefficients)
- ... or weighted versions (motivated by symmetry techniques)

Complexity results

Hardness results

- Detecting lattice points in polytopes (even simplices) is NP-hard
- Counting lattice points in polytopes is #P-hard
- Computing the volume of polytopes is #P-hard (Dyer-Frieze, 1988)
- Approximating the volume of polytopes is hard (Elekes, 1986)

Polynomiality results

- Detecting lattice points is polynomial time in fixed dimension (Lenstra, 1983)
- Counting lattice points is polynomial time in fixed dimension (Barvinok, 1994)
- Computing Ehrhart polynomials of integral polytopes is polynomial time in fixed dimension (Barvinok, 1994)
- Computing the first k (fixed) coefficients of Ehrhart quasi-polynomials (for a given coset) of rational simplices is polynomial time in varying dimension (Barvinok, 2005)
- Computing the first k (fixed) coefficients of weighted Ehrhart quasi-polynomials (as closed formulas) of rational simplices is polynomial time in varying dimension (Baldoni–Berline–De Loera–Kö.–Vergne, 2012)

Complexity results

Hardness results

- Detecting lattice points in polytopes (even simplices) is NP-hard
- Counting lattice points in polytopes is #P-hard
- Computing the volume of polytopes is #P-hard (Dyer-Frieze, 1988)
- Approximating the volume of polytopes is hard (Elekes, 1986)

Polynomiality results

- Detecting lattice points is polynomial time in fixed dimension (Lenstra, 1983)
- Counting lattice points is polynomial time in fixed dimension (Barvinok, 1994)
- Computing Ehrhart polynomials of integral polytopes is polynomial time in fixed dimension (Barvinok, 1994)
- Computing the first k (fixed) coefficients of Ehrhart quasi-polynomials (for a given coset) of rational simplices is polynomial time in varying dimension (Barvinok, 2005)
- Computing the first k (fixed) coefficients of weighted Ehrhart quasi-polynomials (as closed formulas) of rational simplices is polynomial time in varying dimension (Baldoni-Berline-De Loera-Kö.-Vergne, 2012)

Complexity results

Hardness results

- Detecting lattice points in polytopes (even simplices) is NP-hard
- Counting lattice points in polytopes is #P-hard
- Computing the volume of polytopes is #P-hard (Dyer-Frieze, 1988)
- Approximating the volume of polytopes is hard (Elekes, 1986)

Polynomiality results

- Detecting lattice points is polynomial time in fixed dimension (Lenstra, 1983)
- Counting lattice points is polynomial time in fixed dimension (Barvinok, 1994)
- Computing Ehrhart polynomials of integral polytopes is polynomial time in fixed dimension (Barvinok, 1994)
- Computing the first k (fixed) coefficients of Ehrhart quasi-polynomials (for a given coset) of rational simplices is polynomial time in varying dimension (Barvinok, 2005)
- Computing the first k (fixed) coefficients of weighted Ehrhart quasi-polynomials (as closed formulas) of rational simplices is polynomial time in varying dimension (Baldoni–Berline–De Loera–Kö.–Vergne, 2012)

Thm (Khovanskii–Pukhlikov–Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}\colon [P]\mapsto g_P(\mathbf{z})$, agrees with $\sum_{\mathbf{a}\in P}\mathbf{z}^\mathbf{a}$ for pointed polyhedra

Thm (Brion, 1988)

$$g_P(\mathsf{z}) = \sum_{C_i \text{ vertex cone}} g_{C_i}(\mathsf{z})$$

Valuation property (linearity)

=

For simplicial cones $C \subseteq \mathbf{R}^d$

(generated by rays
$$\mathbf{b}_1, \dots, \mathbf{b}_d \in \mathbf{Z}^d$$
),

Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F} \colon [P] \mapsto g_P(\mathbf{z})$, agrees with $\sum_{\mathbf{a} \in P} \mathbf{z}^\mathbf{a}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

$$g_P(\mathbf{z}) = \sum_{C_i \text{ vertex cone}} g_{C_i}(\mathbf{z})$$

Valuation property (linearity)

=

For simplicial cones $C \subseteq \mathbf{R}^d$

(generated by rays $\mathbf{b}_1, \dots, \mathbf{b}_d \in \mathbf{Z}^d$),

Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}\colon [P]\mapsto g_P(\mathbf{z})$, agrees with $\sum_{\mathbf{a}\in P}\mathbf{z}^\mathbf{a}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

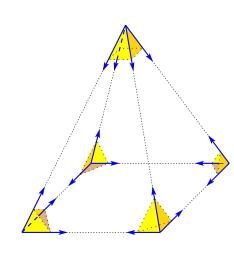
$$g_P(\mathbf{z}) = \sum_{C_i \text{ vertex cone}} g_{C_i}(\mathbf{z})$$

Valuation property (linearity)

=

For simplicial cones $C \subseteq \mathbf{R}^d$

(generated by rays $\mathbf{b}_1, \ldots, \mathbf{b}_d \in \mathbf{Z}^d$)



Thm (Khovanskii–Pukhlikov–Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F} \colon [P] \mapsto g_P(\mathbf{z})$, agrees with $\sum_{\mathbf{a} \in P} \mathbf{z}^\mathbf{a}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

$$g_P(\mathbf{z}) = \sum_{C_i \text{ vertex cone}} g_{C_i}(\mathbf{z})$$

Valuation property (linearity)

=

For simplicial cones $C \subseteq \mathbb{R}^d$:

(generated by rays $\mathbf{b}_1, \dots, \mathbf{b}_d \in \mathbf{Z}^d$),

Thm (Khovanskii–Pukhlikov–Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}\colon [P]\mapsto g_P(\mathbf{z})$, agrees with $\sum_{\mathbf{a}\in P}\mathbf{z}^\mathbf{a}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

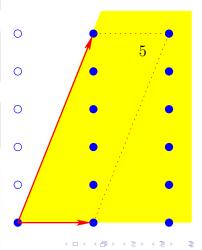
$$g_P(\mathbf{z}) = \sum_{C_i \text{ vertex cone}} g_{C_i}(\mathbf{z})$$

Valuation property (linearity)

$$[P \cup Q] = [P] + [Q] - [P \cap Q]$$

For simplicial cones $C \subseteq \mathbf{R}^d$

(generated by rays $\mathbf{b}_1, \dots, \mathbf{b}_d \in \mathbf{Z}^d$),



Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}\colon [P]\mapsto g_P(\mathbf{z})$, agrees with $\sum_{\mathbf{a}\in P}\mathbf{z}^\mathbf{a}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

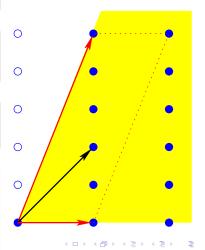
$$g_P(\mathbf{z}) = \sum_{C_i \text{ vertex cone}} g_{C_i}(\mathbf{z})$$

Valuation property (linearity)

$$[P \cup Q] = [P] + [Q] - [P \cap Q]$$

For simplicial cones $C \subseteq \mathbf{R}^d$

(generated by rays $\mathbf{b}_1, \ldots, \mathbf{b}_d \in \mathbf{Z}^d$)



Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}\colon [P]\mapsto g_P(\mathbf{z})$, agrees with $\sum_{\mathbf{a}\in P}\mathbf{z}^\mathbf{a}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

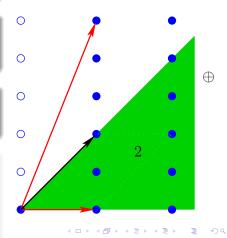
$$g_P(\mathbf{z}) = \sum_{C_i \text{ vertex cone}} g_{C_i}(\mathbf{z})$$

Valuation property (linearity)

$$[P \cup Q] = [P] + [Q] - [P \cap Q]$$

For simplicial cones $C \subseteq \mathbf{R}^d$

(generated by rays $\mathbf{b}_1,\ldots,\mathbf{b}_d\in\mathbf{Z}^d$),



Matthias Köppe

LattE integrale

Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}\colon [P]\mapsto g_P(\mathbf{z})$, agrees with $\sum_{\mathbf{a}\in P}\mathbf{z}^\mathbf{a}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

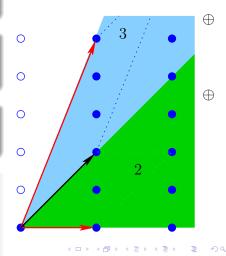
$$g_P(\mathbf{z}) = \sum_{C_i \text{ vertex cone}} g_{C_i}(\mathbf{z})$$

Valuation property (linearity)

$$[P \cup Q] = [P] + [Q] - [P \cap Q]$$

For simplicial cones $C \subseteq \mathbf{R}^d$

(generated by rays $\mathbf{b}_1, \dots, \mathbf{b}_d \in \mathbf{Z}^d$),



Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}\colon [P]\mapsto g_P(\mathbf{z})$, agrees with $\sum_{\mathbf{a}\in P}\mathbf{z}^\mathbf{a}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

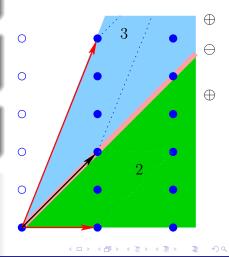
$$g_P(\mathbf{z}) = \sum_{C_i \text{ vertex cone}} g_{C_i}(\mathbf{z})$$

Valuation property (linearity)

$$[P \cup Q] = [P] + [Q] - [P \cap Q]$$

For simplicial cones $C \subseteq \mathbf{R}^d$

(generated by rays $\mathbf{b}_1, \dots, \mathbf{b}_d \in \mathbf{Z}^d$),



Thm (Khovanskii-Pukhlikov-Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}\colon [P]\mapsto g_P(\mathbf{z})$, agrees with $\sum_{\mathbf{a}\in P}\mathbf{z}^\mathbf{a}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

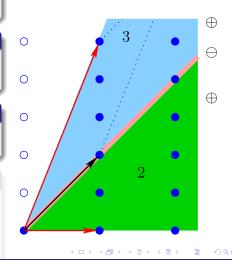
$$g_P(\mathbf{z}) = \sum_{C_i \text{ vertex cone}} g_{C_i}(\mathbf{z})$$

Valuation property (linearity)

$$g_{P\cup Q}(\mathbf{z}) = g_P(\mathbf{z}) + g_Q(\mathbf{z}) - g_{P\cap Q}(\mathbf{z})$$

For simplicial cones $C \subseteq \mathbf{R}^d$

(generated by rays $\mathbf{b}_1, \dots, \mathbf{b}_d \in \mathbf{Z}^d$)



Thm (Khovanskii–Pukhlikov–Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F}\colon [P]\mapsto g_P(\mathbf{z})$, agrees with $\sum_{\mathbf{a}\in P}\mathbf{z}^\mathbf{a}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

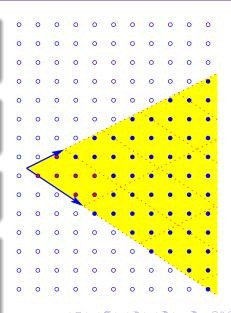
$$g_P(\mathbf{z}) = \sum_{C_i \text{ vertex cone}} g_{C_i}(\mathbf{z})$$

Valuation property (linearity)

$$g_{P\cup Q}(\mathsf{z}) = g_P(\mathsf{z}) + g_Q(\mathsf{z}) - g_{P\cap Q}(\mathsf{z})$$

For simplicial cones $C \subseteq \mathbf{R}^d$:

(generated by rays $\mathbf{b}_1, \dots, \mathbf{b}_d \in \mathbf{Z}^d$),



Thm (Khovanskii–Pukhlikov–Lawrence, 1990s)

Rational-function-valued valuation (linear map) $\mathcal{F} \colon [P] \mapsto g_P(\mathbf{z})$, agrees with $\sum_{\mathbf{a} \in P} \mathbf{z}^\mathbf{a}$ for pointed, zero on non-pointed polyhedra

Thm (Brion, 1988)

$$g_P(\mathbf{z}) = \sum_{C_i \text{ vertex cone}} g_{C_i}(\mathbf{z})$$

Valuation property (linearity)

$$g_{P\cup Q}(\mathbf{z})=g_P(\mathbf{z})+g_Q(\mathbf{z})-g_{P\cap Q}(\mathbf{z})$$

For simplicial cones $C \subseteq \mathbf{R}^d$:

(generated by rays $\mathbf{b}_1, \dots, \mathbf{b}_d \in \mathbf{Z}^d$),

$$g_{\mathcal{C}}(\mathbf{z}) = \frac{\sum_{\mathbf{a} \in \Pi \cap \mathbf{Z}^n} \mathbf{z}^{\mathbf{a}}}{\prod_{i=1}^d (1 - \mathbf{z}^{\mathbf{b}_i})}$$

Continuous generating functions: Brion's formula for integrals

M. Brion, Ann. Sci. École Norm. Sup. 21 (1988), 653-663.

Theorem (Brion)

Let Δ be the simplex that is the convex hull of (d+1) affinely independent vertices $s_1, s_2, ..., s_{d+1}$ in R^n .

Let ℓ be a linear form which is regular w.r.t. Δ , i.e.,

$$\langle \ell, \mathbf{s}_i \rangle \neq \langle \ell, \mathbf{s}_j \rangle$$
 for $i \neq j$

Then:

$$\int_{\Delta} e^{\ell} \, \mathrm{d} m = d! \, \mathsf{vol}(\Delta, \, \mathrm{d} m) \sum_{i=1}^{d+1} \frac{e^{\langle \ell, s_i \rangle}}{\prod_{j \neq i} \langle \ell, s_i - s_j \rangle}.$$

$$\int_{\Delta} \ell^{M} dm = d! \operatorname{vol}(\Delta, dm) \frac{M!}{(M+d)!} \Big(\sum_{i=1}^{d+1} \frac{\langle \ell, \mathbf{s}_{i} \rangle^{M+d}}{\prod_{j \neq i} \langle \ell, \mathbf{s}_{i} - \mathbf{s}_{j} \rangle} \Big).$$

←□ → ←□ → ←□ → ←□ → □

Continuous generating functions: Brion's formula for integrals

M. Brion, Ann. Sci. École Norm. Sup. 21 (1988), 653-663.

Theorem (Brion)

Let Δ be the simplex that is the convex hull of (d+1) affinely independent vertices $s_1, s_2, \ldots, s_{d+1}$ in \mathbb{R}^n .

Let ℓ be a linear form which is regular w.r.t. Δ , i.e.,

$$\langle \ell, \mathbf{s}_i \rangle \neq \langle \ell, \mathbf{s}_j \rangle$$
 for $i \neq j$

Then:

$$\int_{\Delta} e^{\ell} dm = d! \operatorname{vol}(\Delta, dm) \sum_{i=1}^{d+1} \frac{e^{\langle \ell, \mathbf{s}_i \rangle}}{\prod_{j \neq i} \langle \ell, \mathbf{s}_i - \mathbf{s}_j \rangle}.$$

By expanding the exponential as a Taylor series:

Corollary

$$\int_{\Delta} \ell^M \, \mathrm{d} m = \mathit{d} ! \, \mathsf{vol}(\Delta, \, \mathrm{d} m) \frac{\mathit{M} !}{(\mathit{M} + \mathit{d}) !} \Big(\sum_{i=1}^{\mathit{d}+1} \frac{\langle \ell, \mathbf{s}_i \rangle^{\mathit{M} + \mathit{d}}}{\prod_{j \neq i} \langle \ell, \mathbf{s}_i - \mathbf{s}_j \rangle} \Big).$$

Powers of linear forms are enough: The polynomial Waring problem

J. Alexander and A. Hirschowitz, J. Algebraic Geom. 4 (1995), 201-222.

Theorem (Alexander-Hirschowitz, 1995)

A generic homogeneous polynomial of degree M in n variables is expressible as the sum of

$$r(M, n) = \left\lceil \frac{\binom{n+M-1}{M}}{n} \right\rceil$$

M-th powers of linear forms, with the exception of the cases r(3,5)=8, r(4,3)=6, r(4,4)=10, r(4,5)=15, and M=2, where r(2,n)=n. (Non-constructive.)

Theorem (Carlini– Catalisano–Geramita, 2011)

Minimal, constructive solution for monomials $\mathbf{x}^{\mathbf{M}}$, $M_1 \leq \cdots \leq M_n$ with $\prod_{i=2}^n (M_i+1)$, involving roots of unity.

Effective (constructive) version?

First numerical procedure given by J. Brachat, P. Comon, B. Mourrain, E. Tsigaridas (Lin. Alg. Appl., 2010)

Simple (suboptimal) rational constructions

$$\mathbf{x}^{\mathsf{M}} = \frac{1}{|\mathsf{M}|!} \sum_{0 \leq p_i \leq M_i} \alpha_{\mathsf{p}} (p_1 x_1 + \dots + p_n x_n)^{|\mathsf{M}|}$$

with
$$\alpha_p = (-1)^{|\mathsf{M}|-(\rho_1+\cdots+\rho_n)}\binom{M_1}{\rho_1}\cdots\binom{M_n}{\rho_n}$$

Powers of linear forms are enough: The polynomial Waring problem

J. Alexander and A. Hirschowitz, J. Algebraic Geom. 4 (1995), 201–222.

Theorem (Alexander-Hirschowitz, 1995)

A generic homogeneous polynomial of degree M in n variables is expressible as the sum of

$$r(M, n) = \left\lceil \frac{\binom{n+M-1}{M}}{n} \right\rceil$$

M-th powers of linear forms, with the exception of the cases r(3,5)=8, r(4,3)=6, r(4,4)=10, r(4,5)=15, and M=2, where r(2,n)=n. (Non-constructive.)

Theorem (Carlini– Catalisano–Geramita, 2011)

Minimal, constructive solution for monomials $\mathbf{x}^{\mathbf{M}}$, $M_1 \leq \cdots \leq M_n$ with $\prod_{i=2}^n (M_i+1)$, involving roots of unity.

Effective (constructive) version?

First numerical procedure given by J. Brachat, P. Comon, B. Mourrain, E. Tsigaridas (Lin. Alg. Appl., 2010)

Simple (suboptimal) rational constructions

$$\mathbf{x}^{\mathsf{M}} = \frac{1}{|\mathsf{M}|!} \sum_{0 \leq p_i \leq M_i} \alpha_{\mathsf{p}} (p_1 x_1 + \dots + p_n x_n)^{|\mathsf{M}|}$$

with
$$\alpha_{p}=(-1)^{|\mathbf{M}|-(p_{1}+\cdots+p_{n})}\binom{M_{1}}{p_{1}}\cdots\binom{M_{n}}{p_{n}}$$

Powers of linear forms are enough: The polynomial Waring problem J. Alexander and A. Hirschowitz, J. Algebraic Geom. 4 (1995), 201–222.

Theorem (Alexander-Hirschowitz, 1995)

A generic homogeneous polynomial of degree M in n variables is expressible as the sum of

$$r(M, n) = \left\lceil \frac{\binom{n+M-1}{M}}{n} \right\rceil$$

M-th powers of linear forms, with the exception of the cases r(3,5)=8, r(4,3)=6, r(4,4)=10, r(4,5)=15, and M=2, where r(2,n)=n. (Non-constructive.)

Theorem (Carlini– Catalisano–Geramita, 2011)

Minimal, constructive solution for monomials $\mathbf{x}^{\mathbf{M}}$, $M_1 \leq \cdots \leq M_n$ with $\prod_{i=2}^n (M_i + 1)$, involving roots of unity.

Effective (constructive) version?

First numerical procedure given by J. Brachat, P. Comon, B. Mourrain, E. Tsigaridas (Lin. Alg. Appl., 2010)

Simple (suboptimal) rational constructions

$$\mathbf{x}^{\mathsf{M}} = \frac{1}{|\mathsf{M}|!} \sum_{0 \leq p_i \leq M_i} lpha_{\mathsf{p}} (p_1 x_1 + \dots + p_n x_n)^{|\mathsf{M}|}$$

with
$$\alpha_p = (-1)^{|\mathbf{M}|-(p_1+\cdots+p_n)}\binom{M_1}{p_1}\cdots\binom{M_n}{p_n}$$

Powers of linear forms are enough: The polynomial Waring problem

Theorem (Alexander-Hirschowitz, 1995)

A generic homogeneous polynomial of degree M in n variables is expressible as the sum of

J. Alexander and A. Hirschowitz, J. Algebraic Geom. 4 (1995), 201-222.

$$r(M, n) = \left\lceil \frac{\binom{n+M-1}{M}}{n} \right\rceil$$

M-th powers of linear forms, with the exception of the cases r(3,5)=8, r(4,3)=6, r(4,4)=10, r(4,5)=15, and M=2, where r(2,n)=n. (Non-constructive.)

Theorem (Carlini– Catalisano–Geramita, 2011)

Minimal, constructive solution for monomials $\mathbf{x}^{\mathbf{M}}$, $M_1 \leq \cdots \leq M_n$ with $\prod_{i=2}^n (M_i + 1)$, involving roots of unity.

Effective (constructive) version?

First numerical procedure given by J. Brachat, P. Comon, B. Mourrain, E. Tsigaridas (Lin.

Alg. Appl., 2010)

Simple (suboptimal) rational constructions

$$\mathbf{x}^{\mathsf{M}} = \frac{1}{|\mathsf{M}|!} \sum_{0 \leq p_i \leq M_i} lpha_{\mathsf{p}} (p_1 x_1 + \dots + p_n x_n)^{|\mathsf{M}|}$$

with
$$\alpha_{\it p}=(-1)^{|{f M}|-(\it p_1+\cdots+\it p_n)}inom{M_1}{\it p_1}\cdotsinom{M_n}{\it p_n}$$

Computational results with LattE integrale

Average and standard deviation of integration time in seconds of a random monomial over a d-simplex (average over 50 random monomials)

		Degree									
Dimension	1	2	5	10	20	30	40	50	100	200	300
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	1.0	3.8
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4	1.7
3	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	2.3	38.7	162.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	1.4	24.2	130.7
4	0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.7	22.1	_	_
	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.7	16.7	_	_
5	0.0	0.0	0.0	0.0	0.1	0.3	1.6	4.4	_	_	_
	0.0	0.0	0.0	0.0	0.0	0.2	1.3	3.5	_	_	_
7	0.0	0.0	0.0	0.0	0.2	2.2	12.3	63.2	_	_	_
	0.0	0.0	0.0	0.0	0.2	1.7	12.6	66.9	_	_	_
8	0.0	0.0	0.0	0.0	0.4	4.2	30.6	141.4	_	_	_
	0.0	0.0	0.0	0.0	0.3	3.0	31.8	127.6	_	_	_
10	0.0	0.0	0.0	0.0	1.3	19.6	_	_	_	_	_
	0.0	0.0	0.0	0.0	1.4	19.4	_	_	_	_	_
15	0.0	0.0	0.0	0.1	5.7	_	_	_	_	_	_
	0.0	0.0	0.0	0.0	3.6	_	_	_	_	_	_
20	0.0	0.0	0.0	0.2	23.3	_	_	_	_	_	_
	0.0	0.0	0.0	1.3	164.8	_	_	_	_	_	_
30	0.0	0.0	0.0	0.6	110.2	_	_	_	_	-	_
	0.0	0.0	0.1	4.0	779.1	_	_	_	_	_	_
40	0.0	0.0	0.0	1.0	_	_	_	_	_	_	_
	0.0	0.0	0.3	7.0	_	_	_	_	_	_	_
50	0.0	0.0	0.1	1.8	_	_	_	_	_	-	_
	0.0	0.1	0.5	12.9	-	-	-	4 □ →	√ □→	< = F <	a → -a

A change of variables to exponential sums

Set $\mathbf{z} = e^{\mathbf{y}} = (e^{y_1}, \dots, e^{y_d})$ with complex variables y_1, \dots, y_d .

The generating function

$$g(P; \mathbf{z}) = \sum_{\mathbf{x} \in P \cap \mathbf{Z}^d} \mathbf{z}^{\mathbf{x}} = \sum_{i} \epsilon_i \frac{\mathbf{z}^{\mathbf{u}^i}}{\prod_{j=1}^d (1 - \mathbf{z}^{\mathbf{v}^{i,j}})}$$

changes to the exponential sum

$$S(P; \mathbf{y}) = \sum_{\mathbf{x} \in P \cap \mathbf{Z}^d} \exp\{\langle \mathbf{y}, \mathbf{x} \rangle\}$$

(discrete all-sided Laplace transform of the indicator function of P)

Intermediate sums

The idea to use intermediate sums appeared first in Barvinok (2006), for the computation of the top k Ehrhart coefficients of a rational simplex in varying dimension. We take them to the generating-function (Laplace-transform) level and use them for mixed-integer optimization.

Theorem (S^L version of the Khovanskii–Pukhlikov theorem)

Let $L \subseteq V$ be a rational subspace. There exists a unique valuation S^L which to every rational polyhedron $P \subset V$ associates a meromorphic function with rational coefficients $S^L(P) \in \mathcal{M}(V^*)$ so that the following properties hold:

• If P contains a line, then $S^L(P) = 0$.

2

$$S^{L}(P)(\xi) = \sum_{y \in \Lambda_{V/L}} \int_{P \cap (y+L)} e^{\langle \xi, x \rangle} dm_{L}(x),$$

for every $\xi \in V^*$ such that the above sum converges.

3 For every point $s \in \Lambda + L$, we have

$$S^{L}(s+P)(\xi)=e^{\langle \xi,s\rangle}S^{L}(P)(\xi).$$

Intermediate sums for "parallel" cones

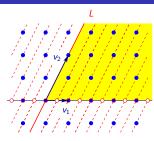
 $V. \ Baldoni, \ N. \ Berline, \ J. \ De \ Loera, \ \textbf{K\"o.}, \ M. \ Vergne: \ Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra.$

Let

$$C = cone\{v_1, \ldots, v_d\}$$

be a simplicial cone with one face parallel to the subspace

$$L = L_{I^c} = \operatorname{lin}\{v_i : i \in I^c\}$$



Theorem

The intermediate sum for the full cone s + C breaks up into the product

$$S^{L_{I^c}}(s+C)(\xi)=S(s_I+C_I,\Lambda_I)(\xi)\,I(s_{I^c}+C_{I^c},L_{I^c}\cap\Lambda)(\xi),$$

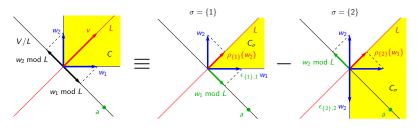
where

$$I(s_{I^c} + C_{I^c}, L_{I^c} \cap \Lambda)(\xi) = e^{\langle \xi, s_{I^c} \rangle} \operatorname{vol}_{L_{I^c} \cap \Lambda}(B_{I^c}) (-1)^{|I^c|} \prod_{i \in I^c} \frac{1}{\langle \xi, v_j \rangle}$$

is the integral over the slice $(s + C) \cap L_{I^c}$.

Arbitrary cones and subspaces: Use Brion-Vergne decomposition

M. Brion and M. Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc. 10 (1997), 797-833



Theorem

Let L be a linear subspace of $V=\mathbf{R}^d$. Let C be a full dimensional simplicial cone in V with generators w_1,\ldots,w_d . You can't read this: Let $a\in V/L$ be generic, belong to the projection of C on V/L. For $\sigma\in\mathcal{B}(C,L)$, let $a=\sum_{j\in\sigma}a_{\sigma,j}(w_j\bmod L)$. Let $\epsilon_{\sigma,j}$ be the sign of $a_{\sigma,j}$ and $\epsilon(\sigma)=\prod_{j\in\sigma}\epsilon_{\sigma,j}$. Denote by $C_\sigma\subset V$ the cone with edge generators $\epsilon_{\sigma,j}w_j$ for $j\in\sigma$, and $\rho_\sigma(w_k)$ for $k\notin\sigma$. Then we have the following relation between indicator functions of cones.

$$[C] \equiv \sum_{\sigma \in \mathcal{B}(C,I)} \epsilon(\sigma) [C_{\sigma}] \mod \mathcal{L}(V). \tag{1}$$

If $\operatorname{codim} L$ is fixed, can compute in polynomial time.

Short formula for intermediate valuations

V. Baldoni, N. Berline, J. De Loera, **Kö.**, M. Vergne: Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra.

V. Baldoni, N. Berline, Kö., M. Vergne: Intermediate Sums on Polyhedra: Computation and Real Ehrhart Theory.

Theorem (Short formula for $S^L(P)(\xi)$)

Fix a non-negative integer k_0 . There exists a polynomial time algorithm for the following problem. Given the following input:

- (I_1) a number d in unary encoding,
- (I_2) a simple polytope $P \subset \mathbf{R}^d$, represented by its vertices, rational vectors $s_1,\ldots,s_{d+1} \in \mathbf{Q}^d$ in binary encoding,
- (I₃) a subspace $L \subseteq \mathbf{Q}^d$ of codimension k_0 , represented by $d-k_0$ linearly independent vectors $b_1, \ldots, b_{d-k_0} \in \mathbf{Q}^d$ in binary encoding,

compute the rational data such that we have the following equality of meromorphic functions:

$$S^{L}(P)(\xi) = \sum_{n \in \mathcal{N}} \alpha^{(n)} \left(e^{\langle \xi, s^{(n)} \rangle} \prod_{i=1}^{k_0} T(z_i^{(n)}, \langle \xi, w_i^{(n)} \rangle) \right) \frac{1}{\prod_{i=1}^d \langle \xi, w_i^{(n)} \rangle}.$$

Ehrhart polynomials from generating functions

If vertices are lattice points and dilation factors n are integers: When P is replaced with nP, the vertex s is replaced with ns but the tangent cone C_s does not change. We replace ξ by $t\xi$ with $t \in \mathbf{C}$. We obtain

$$\sum_{x \in nP \cap \Lambda} e^{\langle t\xi, x \rangle} = \sum_{s \in \mathcal{V}(P)} S(ns + C_s)(t\xi) = \sum_{s \in \mathcal{V}(P)} e^{nt\langle \xi, s \rangle} S(C_s)(t\xi). \tag{*}$$

The decomposition into homogeneous components (of equal ξ -degree) gives

$$S(C_s)(t\xi) = t^{-d}I(C_s)(\xi) + t^{-d+1}S(C_s)_{[-d+1]}(\xi) + \cdots + t^kS(C_s)_{[k]}(\xi) + \cdots$$

Expanding the exponential, we find that the t^M -term in the right-hand side of (*) is equal to

$$\sum_{k=0}^{M+d} \binom{nt}{n}^{M+d-k} t^{-d+k} \frac{\langle \xi, s \rangle^{M+d-k}}{(M+d-k)!} S(C_s)_{[-d+k]}(\xi).$$

Thus:

$$\sum_{x \in nP \cap \Lambda} \frac{\langle \xi, x \rangle^{M}}{M!} = \sum_{s \in \mathcal{V}(P)} n^{M+d} \frac{\langle \xi, s \rangle^{M+d}}{(M+d)!} I(C_{s})(\xi) + n^{M+d-1} \frac{\langle \xi, s \rangle^{M+d-1}}{(M+d-1)!} S(C_{s})_{[-d+1]}(\xi) + \dots + S(C_{s})_{[M]}(\xi).$$

Approximation Theorem

Let $\mathcal{J}^d_{\geq d_0}$ be the poset of subsets of $\{1,\ldots,d\}$ of cardinality $\geq d_0$.

Patching functions λ

For $1 \le i \le d$, let $F_i(z) \in \mathbf{C}[[z]]$ be any formal power series (in one variable) with constant term equal to 1. Then

$$\prod_{1 \leq i \leq d} F_i(z_i) \equiv \sum_{I \in \mathcal{J}^d_{>d_0}} \lambda(I) \prod_{i \in I^c} F_i(z_i) \quad \text{ mod terms of z-degree } \geq d - d_0 + 1.$$

Theorem (Approximation by a patched generating function)

Let $C \subset V$ be a rational simplicial cone with edge generators v_1, \ldots, v_d . Let $s \in V_Q$. Let $I \mapsto \lambda(I)$ be a patching function on the poset $\mathcal{J}^d_{>d_0}$.

For $I \in \mathcal{J}^d_{\geq d_0}$ let L_I be the linear span of $\{v_i\}_{i \in I}$. Then we have

$$S(s+C,\Lambda)(\xi) \equiv A^{\lambda}(s+C,\Lambda)(\xi) := \sum_{I \in \mathcal{J}_{\geq d_0}^d} \lambda(I) \, S^{L_I}(s+C,\Lambda)(\xi)$$

mod terms of ξ -degree $\geq -d_0 + 1$.

Approximation Theorem: Example

Let C be the first quadrant in \mathbf{R}^2 , and $d_0=1$. Thus $\mathcal{J}_{\geq 1}^2$ consists of three subsets, $\{1\},\{2\}$ and $\{1,2\}$. A patching function is given by $\lambda(\{i\})=1$ and $\lambda(\{1,2\})=-1$. We consider the affine cone s+C with $s=(-\frac{1}{2},-\frac{1}{2})$. Let $\xi=(\xi_1,\xi_2)$. We have

$$I(s_i + C_{\{i\}})(\xi) = \frac{-e^{-\xi_i/2}}{\xi_i}, \qquad I(s + C)(\xi) = \frac{e^{-\xi_1/2 - \xi_2/2}}{\xi_1 \xi_2},$$

$$S(s_i + C_{\{i\}})(\xi) = \frac{1}{1 - e^{\xi_i}}, \qquad S(s + C)(\xi) = \frac{1}{(1 - e^{\xi_1})(1 - e^{\xi_2})}.$$

The approximation theorem claims that

$$\frac{1}{(1-e^{\xi_1})(1-e^{\xi_2})} \equiv \frac{1}{1-e^{\xi_2}} \cdot \frac{-e^{-\xi_1/2}}{\xi_1} + \frac{1}{1-e^{\xi_1}} \cdot \frac{-e^{-\xi_2/2}}{\xi_2} - \frac{e^{-\xi_1/2-\xi_2/2}}{\xi_1 \xi_2}$$
 mod terms of ξ -degree ≥ 0 .

Indeed, the difference between the two sides is equal to

$$\left(\frac{1}{1 - e^{\xi_1}} + \frac{e^{-\xi_1/2}}{\xi_1}\right) \left(\frac{1}{1 - e^{\xi_2}} + \frac{e^{-\xi_2/2}}{\xi_2}\right)$$

which is analytic near 0.

"Top Ehrhart" theorem

For every fixed number $k_0 \in \mathbf{N}$, there exists a polynomial-time algorithm for the following problem. Input:

- (I₁) a simple polytope P, given by its vertices, rational vectors $\mathbf{s}_j \in \mathbb{Q}^d$ for $j \in \mathcal{V}$ (a finite index set) in binary encoding,
- (I_2) a rational vector $\ell \in \mathbf{Q}^d$ in binary, a number $M \in \mathbf{N}$ in unary encoding. Output, in binary encoding,
- (O₁) polynomials $f^{\gamma,m} \in \mathbf{Q}[r_1,\ldots,r_{k_0}]$ and integer numbers $\zeta_i^{\gamma,m} \in \mathbf{Z}$, $q_i^{\gamma,m} \in \mathbf{N}$ for $\gamma \in \Gamma$ (a finite index set) and $m = M + d k_0,\ldots,M + d$ and $i = 1,\ldots,k_0$, such that the Ehrhart quasi-polynomial

$$E(P,\ell,M;\mathbf{n}) = \sum_{x \in nP \cap \Lambda} \frac{\langle \ell, x \rangle^{M}}{M!} = \sum_{m=0}^{M+d} E_{m}(P,\ell,M;\{\mathbf{n}\}_{q}) \, \mathbf{n}^{m}$$

agrees in n-degree $\geq M+d-k_0$ with the quasi-polynomial

$$\sum_{\gamma \in \Gamma} \sum_{m=M+d-k_0}^{M+d} f^{\gamma,m} \left(\{\zeta_1^{\gamma,m} {\color{red} n}\}_{q_1^{\gamma,m}}, \ldots, \{\zeta_{k_0}^{\gamma,m} {\color{red} n}\}_{q_{k_0}^{\gamma,m}} \right) {\color{red} n}^m.$$

 $E_m(P, \ell, M, \{n\}_q)$, when P is the simplex in \mathbb{R}^5 with vertices:

$$(0,0,0,0,0),\;(\tfrac{1}{2},0,0,0,0),\;(0,\tfrac{1}{2},0,0,0),\;(0,0,\tfrac{1}{2},0,0),\;(0,0,0,\tfrac{1}{6},0),\;(0,0,0,0,\tfrac{1}{6}).$$

We consider the linear form ℓ on \mathbf{R}^5 given by the scalar product with (1,1,1,1,1). If M=0, the coefficients of $E_m(P,\ell,M=0;\{n\}_q)$ are just the coefficients of the unweighted Ehrhart quasi-polynomial S(nP,1). We obtain

$$S(nP,1) = \frac{1}{34560} n^5 + \left(\frac{5}{3456} - \frac{1}{6912} \{n\}_2\right) n^4 + \left(\frac{139}{5184} - \frac{5}{864} \{n\}_2 + \frac{1}{3456} (\{n\}_2)^2\right) n^3 + \cdots$$

Now if M=1, all integral points (x_1,x_2,x_3,x_4,x_5) are weighted with the function $h(x)=x_1+x_2+x_3+x_4+x_5$, and we obtain

$$S(nP,h) = \frac{11}{1244160} n^6 + \left(\frac{19}{41472} - \frac{11}{207360} \{n\}_2\right) n^5 + \left(\frac{553}{62208} - \frac{95}{41472} \{n\}_2 + \frac{11}{82944} (\{n\}_2)^2\right) n^4 + \cdots$$

Note period collapse: Although q=6 is the smallest integer such that qP is a lattice polytope, only periodic functions of $n \mod 2$ enter in the top three Ehrhart coefficients.

Computation of the highest Ehrhart coefficients $_{\mbox{\scriptsize in LattE integrale }1.6}$

Random lattice simplices.

	Average runtime (CPU seconds)							
•	Full I	Top 3						
Dimension	Dual	Primal	Primal ₁₀₀₀	coefficients				
3	0.16	0.10	0.04	1.12				
4	28.00	4.68	0.28	4.31				
5		317.5	5.8	13.4				
6			198.0	37.4				
7				103				
8				294				
9				393				
10				1179				
11				1681				

LattE command line options for Ehrhart computations

```
Dual method (default):
    count --ehrhart-polynomial
Primal "irrational" method:
    count --ehrhart-polynomial --irrational-primal
Primal "irrational" method with stopped decomposition:
    count --ehrhart-polynomial --irrational-primal --maxdet=1000
Ehrhart quasi-polynomial, incremental computation of coefficients:
    integrate --valuation=top-ehrhart
Same, but output formulas valid for arbitrary real dilations:
    integrate --valuation=top-ehrhart --real-dilations
```

<u>LattE integrale available at http://www.math.ucdavis.edu/~latte/</u>

V. Baldoni, N. Berline, J. A. De Loera, M. Köppe, and M. Vergne.

How to integrate a polynomial over a simplex.

Mathematics of Computation, 80(273):297-325, 2011.

V. Baldoni, N. Berline, J. A. De Loera, M. Köppe, and M. Vergne.

Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra.

Foundations of Computational Mathematics, 12:435-469, 2012,

V. Baldoni, N. Berline, M. Köppe, and M. Vergne.

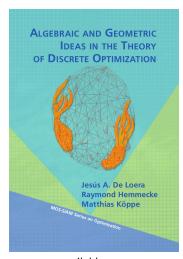
Intermediate sums on polyhedra: Computation and real Ehrhart theory.

Mathematika, 59(1):1-22. September 2013.

J. A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, and J. Wu.

Software for exact integration of polynomials over polyhedra.

Computational Geometry: Theory and Applications, 46(3):232-252, 2013.



available now