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Rational polytopes and counting problems

Rational polytope

P = conv{v1, . . . , vk} ⊆ Rd

=
{
x ∈ Rd : Ax ≤ b

}
Integer dilates

Consider

nP = conv{nv1, . . . , nvk} ⊆ Rd

=
{
x ∈ Rd : Ax ≤ nb

}
for n ∈ N.

Ehrhart function

iP : N→ N, n 7→ #(nP ∩ Zd)

Ehrhart series (generating function)

EhrP(z) =
∞∑
n=0

iP(n)zn

For lattice polytopes P, dimP = d

iP is a polynomial function of degree d ,
the Ehrhart polynomial of P

Goals

Compute the exact counting function (polynomial, series, quasi-polynomial)

. . . its asymptotics (highest coefficients)

. . . or weighted versions (motivated by symmetry techniques)
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Complexity results

Hardness results

Detecting lattice points in
polytopes (even simplices)
is NP-hard

Counting lattice points in
polytopes is #P-hard

Computing the volume of
polytopes is #P-hard
(Dyer–Frieze, 1988)

Approximating the volume
of polytopes is hard
(Elekes, 1986)

Polynomiality results

Detecting lattice points is polynomial time
in fixed dimension (Lenstra, 1983)

Counting lattice points is polynomial time in
fixed dimension (Barvinok, 1994)

Computing Ehrhart polynomials of integral
polytopes is polynomial time in fixed
dimension (Barvinok, 1994)

Computing the first k (fixed) coefficients of
Ehrhart quasi-polynomials (for a given
coset) of rational simplices is polynomial
time in varying dimension (Barvinok, 2005)

Computing the first k (fixed) coefficients of
weighted Ehrhart quasi-polynomials (as
closed formulas) of rational simplices is
polynomial time in varying dimension
(Baldoni–Berline–De Loera–Kö.–Vergne,
2012)
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Matthias Köppe LattE integrale



Generating functions

Thm (Khovanskii–Pukhlikov–Lawrence, 1990s)

Rational-function-valued valuation (linear
map) F : [P] 7→ gP(z), agrees with

∑
a∈P za

for pointed

, zero on non-pointed

polyhedra

Thm (Brion, 1988)

gP(z) =
∑

Ci vertex cone

gCi (z)

Valuation property (linearity)

gP∪Q(z)[P ∪ Q]

=

[P] + [Q]− [P ∩ Q]gP(z) + gQ(z)− gP∩Q(z)

For simplicial cones C ⊆ Rd :

(generated by rays b1, . . . , bd ∈ Zd),

gC (z) =

∑
a∈Π∩Zn z

a∏d
j=1(1− zbj )

0 1 2 3 4

=

+

5

⊕

2

⊕

⊕

2

3
⊕

	

⊕

2

3
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Continuous generating functions: Brion’s formula for integrals
M. Brion, Ann. Sci. École Norm. Sup. 21 (1988), 653–663.

Theorem (Brion)

Let ∆ be the simplex that is the convex hull of (d + 1) affinely independent vertices
s1, s2, . . . , sd+1 in Rn.
Let ` be a linear form which is regular w.r.t. ∆, i.e.,

〈`, si 〉 6= 〈`, sj〉 for i 6= j

Then: ∫
∆

e` dm = d! vol(∆, dm)
d+1∑
i=1

e〈`,si 〉∏
j 6=i 〈`, si − sj〉

.

By expanding the exponential as a Taylor series:

Corollary ∫
∆

`M dm = d! vol(∆, dm)
M!

(M + d)!

( d+1∑
i=1

〈`, si 〉M+d∏
j 6=i 〈`, si − sj〉

)
.
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Powers of linear forms are enough: The polynomial Waring problem
J. Alexander and A. Hirschowitz, J. Algebraic Geom. 4 (1995), 201–222.

Theorem (Alexander–Hirschowitz, 1995)

A generic homogeneous polynomial of degree M
in n variables is expressible as the sum of

r(M, n) =

⌈(n+M−1
M

)
n

⌉
M-th powers of linear forms, with the exception
of the cases r(3, 5) = 8, r(4, 3) = 6,
r(4, 4) = 10, r(4, 5) = 15, and M = 2, where
r(2, n) = n. (Non-constructive.)

Theorem (Carlini–
Catalisano–Geramita, 2011)

Minimal, constructive solution for
monomials xM, M1 ≤ · · · ≤ Mn

with
∏n

i=2(Mi + 1), involving roots
of unity.

Effective (constructive) version?

First numerical procedure given by
J. Brachat, P. Comon,
B. Mourrain, E. Tsigaridas (Lin.
Alg. Appl., 2010)

Simple (suboptimal) rational constructions

xM =
1

|M|!
∑

0≤pi≤Mi

αp(p1x1 + · · ·+ pnxn)|M|

with αp = (−1)|M|−(p1+···+pn)
(
M1
p1

)
· · ·
(
Mn
pn

)
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Effective (constructive) version?

First numerical procedure given by
J. Brachat, P. Comon,
B. Mourrain, E. Tsigaridas (Lin.
Alg. Appl., 2010)

Simple (suboptimal) rational constructions

xM =
1

|M|!
∑

0≤pi≤Mi

αp(p1x1 + · · ·+ pnxn)|M|

with αp = (−1)|M|−(p1+···+pn)
(
M1
p1

)
· · ·
(
Mn
pn

)
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Powers of linear forms are enough: The polynomial Waring problem
J. Alexander and A. Hirschowitz, J. Algebraic Geom. 4 (1995), 201–222.

Theorem (Alexander–Hirschowitz, 1995)

A generic homogeneous polynomial of degree M
in n variables is expressible as the sum of

r(M, n) =

⌈(n+M−1
M

)
n

⌉
M-th powers of linear forms, with the exception
of the cases r(3, 5) = 8, r(4, 3) = 6,
r(4, 4) = 10, r(4, 5) = 15, and M = 2, where
r(2, n) = n. (Non-constructive.)

Theorem (Carlini–
Catalisano–Geramita, 2011)

Minimal, constructive solution for
monomials xM, M1 ≤ · · · ≤ Mn

with
∏n

i=2(Mi + 1), involving roots
of unity.

Effective (constructive) version?

First numerical procedure given by
J. Brachat, P. Comon,
B. Mourrain, E. Tsigaridas (Lin.
Alg. Appl., 2010)

Simple (suboptimal) rational constructions

xM =
1

|M|!
∑

0≤pi≤Mi

αp(p1x1 + · · ·+ pnxn)|M|

with αp = (−1)|M|−(p1+···+pn)
(
M1
p1

)
· · ·
(
Mn
pn

)
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Computational results with LattE integrale

Average and standard deviation of integration time in seconds of a random monomial over a d-simplex
(average over 50 random monomials)

Degree

Dimension 1 2 5 10 20 30 40 50 100 200 300
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.0 3.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 1.7
3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 2.3 38.7 162.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.4 24.2 130.7
4 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.7 22.1 – –

0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.7 16.7 – –
5 0.0 0.0 0.0 0.0 0.1 0.3 1.6 4.4 – – –

0.0 0.0 0.0 0.0 0.0 0.2 1.3 3.5 – – –
7 0.0 0.0 0.0 0.0 0.2 2.2 12.3 63.2 – – –

0.0 0.0 0.0 0.0 0.2 1.7 12.6 66.9 – – –
8 0.0 0.0 0.0 0.0 0.4 4.2 30.6 141.4 – – –

0.0 0.0 0.0 0.0 0.3 3.0 31.8 127.6 – – –
10 0.0 0.0 0.0 0.0 1.3 19.6 – – – – –

0.0 0.0 0.0 0.0 1.4 19.4 – – – – –
15 0.0 0.0 0.0 0.1 5.7 – – – – – –

0.0 0.0 0.0 0.0 3.6 – – – – – –
20 0.0 0.0 0.0 0.2 23.3 – – – – – –

0.0 0.0 0.0 1.3 164.8 – – – – – –
30 0.0 0.0 0.0 0.6 110.2 – – – – – –

0.0 0.0 0.1 4.0 779.1 – – – – – –
40 0.0 0.0 0.0 1.0 – – – – – – –

0.0 0.0 0.3 7.0 – – – – – – –
50 0.0 0.0 0.1 1.8 – – – – – – –

0.0 0.1 0.5 12.9 – – – – – – –
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A change of variables to exponential sums

Set z = ey = (ey1 , . . . , eyd ) with complex variables y1, . . . , yd .

The generating function

g(P; z) =
∑

x∈P∩Zd

zx =
∑
i

εi
zu

i∏d
j=1(1− zvi,j )

changes to the exponential sum

S(P; y) =
∑

x∈P∩Zd

exp{〈y, x〉}

(discrete all-sided Laplace transform of the indicator function of P)
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Intermediate sums

The idea to use intermediate sums appeared first in Barvinok (2006), for the
computation of the top k Ehrhart coefficients of a rational simplex in varying dimension.
We take them to the generating-function (Laplace-transform) level and use them for
mixed-integer optimization.

Theorem (SL version of the Khovanskii–Pukhlikov theorem)

Let L ⊆ V be a rational subspace. There exists a unique valuation SL which to every
rational polyhedron P ⊂ V associates a meromorphic function with rational coefficients
SL(P) ∈M(V ∗) so that the following properties hold:

1 If P contains a line, then SL(P) = 0.

2

SL(P)(ξ) =
∑

y∈ΛV/L

∫
P∩(y+L)

e〈ξ,x〉dmL(x),

for every ξ ∈ V ∗ such that the above sum converges.

3 For every point s ∈ Λ + L, we have

SL(s + P)(ξ) = e〈ξ,s〉SL(P)(ξ).

Matthias Köppe LattE integrale



Intermediate sums for “parallel” cones
V. Baldoni, N. Berline, J. De Loera, Kö., M. Vergne: Computation of the highest coefficients of weighted
Ehrhart quasi-polynomials of rational polyhedra.

Let
C = cone{v1, . . . , vd}

be a simplicial cone with one face parallel to the
subspace

L = LI c = lin{vi : i ∈ I c}

.

v2

v1

L

Theorem

The intermediate sum for the full cone s + C breaks up into the product

SLI c (s + C)(ξ) = S(sI + CI ,ΛI )(ξ) I (sI c + CI c , LI c ∩ Λ)(ξ),

where

I (sI c + CI c , LI c ∩ Λ)(ξ) = e〈ξ,sI c 〉 volLI c∩Λ(BI c )(−1)|I
c |
∏
j∈I c

1

〈ξ, vj〉

is the integral over the slice (s + C) ∩ LI c .
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Arbitrary cones and subspaces: Use Brion–Vergne decomposition
M. Brion and M. Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes,
J. Amer. Math. Soc. 10 (1997), 797–833

a

C

L

w2 mod L

w1 mod L

V /L

vw2

w1
≡

a

L

w1 mod L

σ = {1}

Cσ

w2

ρ{1}(w2)

ε{1},1 w1

−

a

L

Cσ

σ = {2}

w2 mod L

ε{2},2 w2

w2

ρ{2}(w1)

Theorem

Let L be a linear subspace of V = Rd . Let C be a full dimensional simplicial cone in V
with generators w1, . . . ,wd . You can’t read this: Let a ∈ V/L be generic, belong to the projection of C on V/L. For σ ∈ B(C, L),

let a =
∑

j∈σ aσ,j (wj mod L). Let εσ,j be the sign of aσ,j and ε(σ) =
∏

j∈σ εσ,j . Denote by Cσ ⊂ V the cone with edge

generators εσ,j wj for j ∈ σ, and ρσ (wk ) for k /∈ σ, Then we have the following relation between indicator
functions of cones.

[C ] ≡
∑

σ∈B(C ,L)

ε(σ) [Cσ] mod L(V ). (1)

If codim L is fixed, can compute in polynomial time.
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Short formula for intermediate valuations
V. Baldoni, N. Berline, J. De Loera, Kö., M. Vergne: Computation of the highest coefficients of weighted
Ehrhart quasi-polynomials of rational polyhedra.
V. Baldoni, N. Berline, Kö., M. Vergne: Intermediate Sums on Polyhedra: Computation and Real Ehrhart
Theory.

Theorem (Short formula for SL(P)(ξ))

Fix a non-negative integer k0. There exists a polynomial time algorithm for the following
problem. Given the following input:

(I1) a number d in unary encoding,

(I2) a simple polytope P ⊂ Rd , represented by its vertices, rational vectors
s1, . . . , sd+1 ∈ Qd in binary encoding,

(I3) a subspace L ⊆ Qd of codimension k0, represented by d − k0 linearly independent
vectors b1, . . . , bd−k0 ∈ Qd in binary encoding,

compute the rational data such that we have the following equality of meromorphic
functions:

SL(P)(ξ) =
∑
n∈N

α(n)

(
e〈ξ,s

(n)〉
k0∏
i=1

T (z
(n)
i , 〈ξ,w (n)

i 〉)

)
1∏d

i=1〈ξ,w
(n)
i 〉

.

From this, we can extract intermediate sums of polynomial functions using series
expansions.
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Ehrhart polynomials from generating functions

If vertices are lattice points and dilation factors n are integers: When P is replaced with
nP, the vertex s is replaced with ns but the tangent cone Cs does not change. We
replace ξ by tξ with t ∈ C. We obtain∑

x∈nP∩Λ

e〈tξ,x〉 =
∑

s∈V(P)

S(ns + Cs)(tξ) =
∑

s∈V(P)

ent〈ξ,s〉S(Cs)(tξ). (∗)

The decomposition into homogeneous components (of equal ξ-degree) gives

S(Cs)(tξ) = t−d I (Cs)(ξ) + t−d+1S(Cs)[−d+1](ξ) + · · ·+ tkS(Cs)[k](ξ) + · · · .

Expanding the exponential, we find that the tM -term in the right-hand side of (∗) is
equal to

M+d∑
k=0

(nt)M+d−k t−d+k 〈ξ, s〉M+d−k

(M + d − k)!
S(Cs)[−d+k](ξ).

Thus:∑
x∈nP∩Λ

〈ξ, x〉M

M!
=
∑

s∈V(P)

nM+d 〈ξ, s〉M+d

(M + d)!
I (Cs)(ξ)

+ nM+d−1 〈ξ, s〉M+d−1

(M + d − 1)!
S(Cs)[−d+1](ξ) + · · ·+ S(Cs)[M](ξ).
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Approximation Theorem

Let J d
≥d0

be the poset of subsets of {1, . . . , d} of cardinality ≥ d0.

Patching functions λ

For 1 ≤ i ≤ d , let Fi (z) ∈ C[[z]] be any formal power series (in one variable) with
constant term equal to 1. Then∏

1≤i≤d

Fi (zi ) ≡
∑

I∈J d
≥d0

λ(I )
∏
i∈I c

Fi (zi ) mod terms of z-degree ≥ d − d0 + 1.

Theorem (Approximation by a patched generating function)

Let C ⊂ V be a rational simplicial cone with edge generators v1, . . . , vd . Let s ∈ VQ. Let
I 7→ λ(I ) be a patching function on the poset J d

≥d0
.

For I ∈ J d
≥d0

let LI be the linear span of {vi}i∈I . Then we have

S(s + C ,Λ)(ξ) ≡ Aλ(s + C ,Λ)(ξ) :=
∑

I∈J d
≥d0

λ(I ) SLI (s + C ,Λ)(ξ)

mod terms of ξ-degree ≥ −d0 + 1.
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Approximation Theorem: Example

Let C be the first quadrant in R2, and d0 = 1. Thus J 2
≥1 consists of three subsets,

{1}, {2} and {1, 2}. A patching function is given by λ({i}) = 1 and λ({1, 2}) = −1. We
consider the affine cone s + C with s = (− 1

2
,− 1

2
). Let ξ = (ξ1, ξ2). We have

I (si + C{i})(ξ) =
−e−ξi/2

ξi
, I (s + C)(ξ) =

e−ξ1/2−ξ2/2

ξ1ξ2
,

S(si + C{i})(ξ) =
1

1− eξi
, S(s + C)(ξ) =

1

(1− eξ1 )(1− eξ2 )
.

The approximation theorem claims that

1

(1− eξ1 )(1− eξ2 )
≡ 1

1− eξ2
· −e

−ξ1/2

ξ1
+

1

1− eξ1
· −e

−ξ2/2

ξ2
− e−ξ1/2−ξ2/2

ξ1ξ2

mod terms of ξ-degree ≥ 0.

Indeed, the difference between the two sides is equal to( 1

1− eξ1
+

e−ξ1/2

ξ1

)( 1

1− eξ2
+

e−ξ2/2

ξ2

)
which is analytic near 0.
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“Top Ehrhart” theorem

For every fixed number k0 ∈ N, there exists a polynomial-time algorithm for the
following problem.
Input:

(I1) a simple polytope P, given by its vertices, rational vectors sj ∈ Qd for j ∈ V (a
finite index set) in binary encoding,

(I2) a rational vector ` ∈ Qd in binary, a number M ∈ N in unary encoding.

Output, in binary encoding,

(O1) polynomials f γ,m ∈ Q[r1, . . . , rk0 ] and integer numbers ζγ,mi ∈ Z, qγ,mi ∈ N for
γ ∈ Γ (a finite index set) and m = M + d − k0, . . . ,M + d and i = 1, . . . , k0,

such that the Ehrhart quasi-polynomial

E(P, `,M; n) =
∑

x∈nP∩Λ

〈`, x〉M

M!
=

M+d∑
m=0

Em(P, `,M; {n}q) nm

agrees in n-degree ≥ M + d − k0 with the quasi-polynomial

∑
γ∈Γ

M+d∑
m=M+d−k0

f γ,m
(
{ζγ,m1 n}qγ,m1

, . . . , {ζγ,mk0
n}qγ,m

k0

)
nm.
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Em(P, `,M, {n}q), when P is the simplex in R5 with vertices:

(0, 0, 0, 0, 0), ( 1
2
, 0, 0, 0, 0), (0, 1

2
, 0, 0, 0), (0, 0, 1

2
, 0, 0), (0, 0, 0, 1

6
, 0), (0, 0, 0, 0, 1

6
).

We consider the linear form ` on R5 given by the scalar product with (1, 1, 1, 1, 1).
If M = 0, the coefficients of Em(P, `,M = 0; {n}q) are just the coefficients of the
unweighted Ehrhart quasi-polynomial S(nP, 1). We obtain

S(nP, 1) =
1

34560
n5 +

( 5

3456
− 1

6912
{n}2

)
n4

+
( 139

5184
− 5

864
{n}2 +

1

3456
({n}2)2

)
n3 + · · · .

Now if M = 1, all integral points (x1, x2, x3, x4, x5) are weighted with the function
h(x) = x1 + x2 + x3 + x4 + x5, and we obtain

S(nP, h) =
11

1244160
n6 +

( 19

41472
− 11

207360
{n}2

)
n5

+
( 553

62208
− 95

41472
{n}2 +

11

82944
({n}2)2

)
n4 + · · · .

Note period collapse: Although q = 6 is the smallest integer such that qP is a lattice
polytope, only periodic functions of n mod 2 enter in the top three Ehrhart coefficients.
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Computation of the highest Ehrhart coefficients
in LattE integrale 1.6

Random lattice simplices.

Average runtime (CPU seconds)

Full Ehrhart polynomial

Dimension Dual Primal Primal1000

Top 3
coefficients

3 0.16 0.10 0.04 1.12

4 28.00 4.68 0.28 4.31

5 317.5 5.8 13.4

6 198.0 37.4

7 103

8 294

9 393

10 1179

11 1681
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LattE command line options for Ehrhart computations

Dual method (default):

count --ehrhart-polynomial

Primal “irrational” method:

count --ehrhart-polynomial --irrational-primal

Primal “irrational” method with stopped decomposition:

count --ehrhart-polynomial --irrational-primal --maxdet=1000

Ehrhart quasi-polynomial, incremental computation of coefficients:

integrate --valuation=top-ehrhart

Same, but output formulas valid for arbitrary real dilations:

integrate --valuation=top-ehrhart --real-dilations
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Intermediate sums on polyhedra: Computation and real
Ehrhart theory.

Mathematika, 59(1):1–22, September 2013.

J. A. De Loera, B. Dutra, M. Köppe, S. Moreinis,
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