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3 Erdős–Szekeres permutations and square Young tableaux 157
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Preface

“Good mathematics has an air of economy and an element of
surprise.”

– Ian Stewart, From Here to Infinity

As many students of mathematics know, mathematical problems that are
simple to state fall into several classes: there are those whose solutions are
equally simple; those that seem practically impossible to solve despite their
apparent simplicity; those that are solvable but whose solutions nonethe-
less end up being too complicated to provide much real insight; and finally,
there are those rare and magical problems that turn out to have rich so-
lutions that reveal a fascinating and unexpected structure, with surprising
connections to other areas that lie well beyond the scope of the original
problem. Such problems are hard, but in the most interesting and reward-
ing kind of way.

The problems that grew out of the study of longest increasing subse-
quences, which are the subject of this book, belong decidedly in the lat-
ter class. As readers will see, starting from an innocent-sounding question
about random permutations we will be led on a journey touching on many
areas of mathematics: combinatorics, probability, analysis, linear algebra
and operator theory, differential equations, special functions, representa-
tion theory, and more. Techniques of random matrix theory, a sub-branch of
probability theory whose development was originally motivated by prob-
lems in nuclear physics, will play a key role. In later chapters, connec-
tions to interacting particle systems, which are random processes used to
model complicated systems with many interacting elements, will also sur-
face. Thus, in this journey we will have the pleasure of tapping into a rich
vein of mathematical knowledge, giving novices and experts alike fruitful
avenues for exploration. And although the developments presented in this
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viii Preface

book are fairly modern, dating from the last 40 years, some of the tools we
will need are based on classical 19th century mathematics. The fact that
such old mathematics can be repurposed for use in new ways that could
never have been imagined by its original discoverers is a delightful demon-
stration of what the physicist Eugene P. Wigner [146] (and later Hamming
[55] and others) once famously described as the “unreasonable effective-
ness” of mathematics.

Because the subject matter of this book involves such a diverse range
of areas, rather than stick to a traditional textbook format I chose a style
of presentation a bit similar in spirit to that of a travel guide. Each chap-
ter is meant to take readers on an exploration of ideas covering a certain
mathematical landscape, with the main goal being to prove some deep and
difficult result that is the main “tourist attraction” of the subject being cov-
ered. Along the way, tools are developed, and sights and points of interest
of less immediate importance are pointed out to give context and to inform
readers where they might go exploring on their next visit.

Again because of the large number of topics touched upon, I have also
made an effort to assume the minimum amount of background, giving
quick overviews of relevant concepts, with pointers to more comprehen-
sive literature when the need arises. The book should be accessible to any
graduate student whose background includes graduate courses in proba-
bility theory and analysis and a modest amount of previous exposure to
basic concepts from combinatorics and linear algebra. In a few isolated in-
stances, a bit of patience and willingness to consult outside sources may be
required by most readers to understand the finer points of the discussion.
The dependencies between chapters are shown in the following diagram:

1

2

4

3

5

(Chapter 4 is only minimally dependent on Chapter 1 for some notation
and definitions.)

The book is suitable for self-study or can be covered in a class setting
in roughly two semester-long courses. Exercises at many levels of diffi-
culty, including research problems of the “do not try this at home” kind,
are included at the end of each chapter.

The subjects covered in the different chapters are as follows. Chapter 1
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presents the Ulam–Hammersley problem of understanding the asymp-
totic behavior of the maximal length of an increasing subsequence in a
uniformly random permutation as the permutation order grows. After de-
veloping the necessary tools the chapter culminates in the first solution
of the problem by Vershik–Kerov and Logan–Shepp. Chapter 2 covers
the beautiful Baik–Deift–Johansson theorem and its extension due to
Borodin–Okounkov–Olshanski and Johansson – a major refinement of the
picture revealed by Vershik–Kerov and Logan–Shepp that ties the problem
of longest increasing subsequences to the Tracy–Widom distribution from
random matrix theory and to other important concepts like determinan-
tal point processes. Chapter 3 discusses Erdős–Szekeres permutations,
a class of permutations possessing extremal behavior with respect to their
maximal monotone subsequence lengths, which are analyzed by applying
and extending the techniques developed in Chapter 1.

Chapters 4 and 5 are devoted to the study of the corner growth process,
a random walk on Young diagrams that bears an important conceptual re-
semblance to another process introduced in Chapter 1. In Chapter 4 we
prove the well-known limiting shape result of Rost and its extension to the
case of corner growth in discrete time. Chapter 5 then develops a new ap-
proach to the problem, due to Johansson, that enables proving a much more
precise fluctuation result, again involving the Tracy–Widom distribution.

I am grateful to the people and organizations who helped make this book
possible. My work was supported by the National Science Foundation un-
der grant DMS-0955584; by grant 228524 from the Simons Foundation;
and of course by my excellent employer of the last 5 years, the University
of California, Davis. I also received advice, suggestions, error reports, and
encouragement from Arvind Ayyer, Eric Brattain-Morrin, Peter Chang,
Alexander Coward, Ira Gessel, Geoffrey Grimmett, Indrajit Jana, Donald
Knuth, Christian Krattenthaler, Greg Kuperberg, Isaac Lambert, Liron Mor
Yosef, Vladimir Pchelin, Yuval Peres, Amir Sarid, Sasha Soshnikov, Perla
Sousi, Mike Steele, and Peter Winkler. Ron Peled outdid everyone by send-
ing me so many insightful suggestions for improvement that I had to beg
him to stop, and deserves special thanks.

D. Romik
Davis
May 2014





0

A few things you need to know

0.1 Probability notation and prerequisites

The book assumes knowledge of the basic concepts of probability theory at
the level of a first graduate course. For readers’ convenience, we recall here
a few standard definitions and notational conventions: first, throughout the
book we use the following notation and abbreviations.

P(·) Probability of an event

E(·) Expectation of a random variable

1{·} The indicator (a.k.a. characteristic function) of an event/set

r.v. random variable

i.i.d. independent and identically distributed

a.s. almost surely
d
= equality in distribution

∼ [a random variable] is distributed as [a distribution]
(see below for examples)

Second, we make occasional use of the standard terminology regarding
modes of convergence for sequences of random variables and probability
distributions, which are defined as follows.

Almost sure convergence. We say that a sequence (Xn)∞n=1 of random vari-
ables converges almost surely to a limiting random variable X, and denote
Xn

a.s.
−−−→
n→∞

X, if P(Xn → X as n→ ∞) = 1.

1



2 A few things you need to know

Convergence in probability. We say that Xn converges in probability to X,

and denote Xn
P
−−−→
n→∞

X, if for any ε > 0, P(|Xn − X| > ε)→ 0 as n→ ∞.

In a few places, the term “convergence in probability” is used in a broader
sense that applies to convergence of random objects taking value in a more
general space than the real line. In such cases, the meaning of the conver-
gence statement is spelled out explicitly.

Convergence in distribution. We say that a sequence of distribution func-
tions Fn converges in distribution to a limiting distribution function F,

and denote Fn
d
−−−→
n→∞

F, if Fn(x) → F(x) for any x ∈ R that is a con-
tinuity point of F; the same definition applies in the case when Fn and
F are d-dimensional joint distribution functions. Similarly, we say that a
sequence (Xn)∞n=1 of r.v.s (or, more generally, d-dimensional random vec-
tors) converges in distribution to F (a one-dimensional, or more generally

d-dimensional, distribution function), and denote Xn
d
−−−→
n→∞

F, if FXn con-
verges in distribution to F, where for each n, FXn denotes the distribution
function of Xn.

We will repeatedly encounter a few of the special distributions of prob-
ability theory, namely the geometric, exponential and Poisson distribu-
tions. The ubiquitous Gaussian (a.k.a. normal) distribution will also make
a couple of brief appearances. For easy reference, here are their definitions.

The geometric distribution. If 0 < p < 1, we say that an r.v. X has the
geometric distribution with parameter p, and denote X ∼ Geom(p), if

P(X = k) = p(1 − p)k−1, (k = 1, 2, . . .).

The exponential distribution. If α > 0, we say that an r.v. X has the
exponential distribution with parameter α, and denote X ∼ Exp(α), if

P(X ≥ t) = e−αt, (t ≥ 0).

The Poisson distribution. If λ > 0, we say that an r.v. X has the Poisson
distribution with parameter α, and denote X ∼ Poi(λ), if

P(X = k) = e−λ
λk

k!
, (k = 0, 1, 2, . . .).
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The Gaussian distribution. If µ ∈ R and σ > 0, we say that an r.v. X
has the Gaussian distribution with mean µ and variance σ2, and denote
X ∼ N(µ, σ2), if

P(a ≤ X ≤ b) =
1
√

2πσ

∫ b

a
e−(x−µ)2/2σ dx, (a < b).

0.2 Little-o and big-O notation

Throughout the book, we are frequently concerned with asymptotic es-
timates for various quantities as a parameter (usually, but not always, a
discrete parameter n) converges to a limit (usually∞). We use the standard
o(·) (“little-o”) and O(·) (“big-O”) notation conventions. In the typical case
of a discrete parameter n converging to ∞ these are defined as follows. If
an and bn are functions of n, the statement

an = o(bn) as n→ ∞

means that limn→∞ an/bn = 0. The statement

an = O(bn) as n→ ∞

means that there exists a constant M > 0 such that |an/bn| ≤ M for all large
enough values of n. Similarly, one can define statements such as “ f (x) =

O(g(x)) as x → L” and “ f (x) = o(g(x)) as x → L”; we leave this variation
to the reader to define precisely. Big-O and little-o notation can also be
used more liberally in equations such as

an =
√

n + O(1) + O(log n) + o(cn) as n→ ∞,

whose precise meaning is “an −
√

n can be represented as a sum of three
quantities xn, yn and zn such that xn = O(1), yn = O(log n) and zn = o(cn).”
Usually such statements are derived from an earlier explicit description of
the xn, yn, and zn involved in such a representation. Frequently several big-
O and little-o expressions can be combined into one, as in the equation

O(1) + O(log n) + o(1/n) = O(log n) as n→ ∞.

As illustrated previously, asymptotic statements are usually accompanied
by a qualifier like “as n → ∞” indicating the parameter and limiting value
with respect to which they apply. However, in cases when this specification
is clear from the context it may on occasion be omitted.



4 A few things you need to know

More information regarding asymptotic estimation methods, along with
many examples of the use of little-o and big-O notation, can be found in
[49], [93].

0.3 Stirling’s approximation

The canonical example of an interesting asymptotic relation is Stirling’s
approximation for n!. In the above notation it is written as

n! = (1 + o(1))
√

2πn(n/e)n as n→ ∞. (0.1)

We make use of (0.1) on a few occasions. In some cases it is sufficient to
use the more elementary (nonasymptotic) lower bound

n! ≥ (n/e)n (n ≥ 1), (0.2)

which is proved by substituting x = n in the trivial inequality ex ≥ xn/n!
valid for all x ≥ 0. The relation (0.1) is harder (but not especially hard)
to prove. A few different proofs can be found in [35, Section 6.3], [40],
Sections II.9 and VII.3 of [41], [49, Section 9.6], [106], and p. 312 of this
book.
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Longest increasing subsequences in random
permutations

Chapter summary. If σ is a permutation of n numbers, we consider the
maximal length L(σ) of an increasing subsequence of σ. For a permutation
chosen uniformly at random from among all permutations of order n, how
large can we expect L(σ) to be? The goal of this chapter is to answer this
question. The solution turns out to be rather complicated and will take us on
a journey through a fascinating mathematical landscape of concepts such as
integer partitions, Young tableaux, hook walks, Plancherel measures,
large deviation principles, Hilbert transforms, and more.

1.1 The Ulam–Hammersley problem

We begin with a question about the asymptotic behavior of a sequence of
real numbers. Let Sn denote the group of permutations of order n. If σ ∈ Sn

is a permutation, a subsequence of σ is a sequence (σ(i1), σ(i2), . . . , σ(ik)),
where 1 ≤ i1 < i2 < . . . < ik ≤ n. The subsequence is called an increasing
subsequence if σ(i1) < σ(i2) < . . . < σ(ik), a decreasing subsequence
if σ(i1) > σ(i2) > . . . > σ(ik), and a monotone subsequence if it is ei-
ther increasing or decreasing. Define L(σ) to be the maximal length of an
increasing subsequence of σ. That is,

L(σ) = max
{
1 ≤ k ≤ n : σ has an increasing subsequence of length k

}
.

Similarly, define D(σ) to be the maximal length of a decreasing subse-
quence of σ, i.e.,

D(σ) = max
{
1 ≤ k ≤ n : σ has a decreasing subsequence of length k

}
.

5



6 Longest increasing subsequences in random permutations

For example, if σ = (3, 1, 6, 7, 2, 5, 4), then L(σ) = 3, since it has (sev-
eral) increasing subsequences of length 3, but no increasing subsequence
of length 4. Similarly, one can verify easily that D(σ) = 3.

Now define the sequence of numbers

`n =
1
n!

∑
σ∈Sn

L(σ), (n = 1, 2, . . .).

That is, `n is the average of L(σ) over all permutations of order n. For ex-
ample, the first few values in the sequence are `1 = 1, `2 = 3/2, `3 = 2,
`4 = 29/12, `5 = 67/24. We are interested in the problem of determining
the asymptotic behavior of `n as n grows large. A version of the problem
was first mentioned in a 1961 paper by Stanisław Ulam [138], a Polish-
American mathematician better known for his work on the hydrogen bomb.
In his paper, which concerned the Monte Carlo method for numerical com-
putation (which Ulam pioneered), he discussed briefly the idea of studying
the statistical distribution of the maximal monotone subsequence length
in a random permutation; this was brought up as an example of the kinds
of problems that can be attacked using Monte Carlo calculations. Subse-
quently, the question came to be referred to as “Ulam’s problem” by some
authors—starting with John M. Hammersley, who undertook (with some
success) the first serious study of the problem, which he presented in a
1970 lecture and accompanying article [54].1 To honor Hammersley’s con-
tribution to analyzing and popularizing Ulam’s question, we refer to the
problem here as the Ulam–Hammersley problem.

In this chapter and the next one we describe the developments leading
up to a rather complete solution of Ulam and Hammersley’s problem. The
techniques developed along the way to finding this solution did much more
than solve the original problem; in fact, they paved the way to many other
interesting developments, some of which are described later in the book.

To avoid unnecessary suspense, one form of the “final answer,” obtained
in 1998 by Jinho Baik, Percy A. Deift, and Kurt Johansson [11], is as fol-
lows: as n→ ∞, we have

`n = 2
√

n + cn1/6 + o(n1/6), (1.1)

where c = −1.77108 . . . is a constant having a complicated definition in
terms of the solution to a certain differential equation, the Painlevé equation
of type II. We shall have to wait until Chapter 2 to see where this more
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exotic part of the asymptotics comes from. In this chapter our goal is to
prove a first major result in this direction, which identifies only the leading
asymptotic term 2

√
n. The result, proved by Anatoly Vershik and Sergei

Kerov [142], [143] and independently by Benjamin F. Logan and Lawrence
A. Shepp [79] in 1977,2 is the following.

Theorem 1.1 (The asymptotics of `n) We have the limit

`n
√

n
→ 2

as n → ∞. Furthermore, the limit is the same for the “typical” permu-
tation of order n. That is, if for each n, σn denotes a uniformly random
permutation in Sn, then L(σn)/

√
n→ 2 in probability as n→ ∞.

1.2 The Erdős–Szekeres theorem

To gain an initial understanding of the problem, let us turn to a classical
result in combinatorics dating from 1935, the Erdős–Szekeres theorem.3

Paul Erdős and George Szekeres observed that if a permutation has no
long increasing subsequence, its elements must in some sense be arranged
in a somewhat decreasing fashion, so it must have a commensurately long
decreasing subsequence. The precise result is as follows.

Theorem 1.2 (Erdős–Szekeres theorem) If σ ∈ Sn and n > rs for some
integers r, s ∈ N, then either L(σ) > r or D(σ) > s.

Proof We introduce the following variation on the permutation statistics
L(·) and D(·): for each 1 ≤ k ≤ n, let Lk(σ) denote the maximal length of an
increasing subsequence of σ that ends with σ(k), and similarly let Dk(σ)
denote the maximal length of a decreasing subsequence of σ that ends with
σ(k).

Now consider the n pairs (Dk(σ), Lk(σ)), 1 ≤ k ≤ n. The key observation
is that they are all distinct. Indeed, for any 1 ≤ j < k ≤ n, if σ( j) < σ(k)
then L j(σ) < Lk(σ), since we can take an increasing subsequence of σ
that ends with σ( j) and has length L j(σ), and append σ(k) to it. If, on the
other hand, σ( j) > σ(k), then similarly we get that D j(σ) < Dk(σ), since
any decreasing subsequence that ends with σ( j) can be made longer by
appending σ( j) to it.
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The conclusion from this observation is that for some 1 ≤ k ≤ n, either
Lk(σ) > r or Dk(σ) > s, since otherwise the n distinct pairs (Dk(σ), Lk(σ))
would all be in the set {1, 2, . . . , r} × {1, 2, . . . , s}, in contradiction to the
assumption that n > rs. This proves the theorem. �

It is also interesting to note that the condition n > rs in the theorem
cannot be weakened. Indeed, it is easy to construct a permutation σ of
order exactly rs for which L(σ) = r and D(σ) = s; for example, define
σ(si + j) = si − j + s + 1 for 0 ≤ i < r, 1 ≤ j ≤ s (this permutation
has r “blocks,” each comprising a decreasing s-tuple of numbers, with the
ranges of successive blocks being increasing). In fact, it turns out that the
set of permutations that demonstrate the sharpness of the condition has a
very interesting structure; this topic is explored further in Chapter 3.

1.3 First bounds

From here on and throughout this chapter, σn denotes a uniformly random
permutation of order n, so that in probabilistic notation we can write `n =

EL(σn). We can now use Theorem 1.2 to obtain a lower bound for `n.

Lemma 1.3 For all n ≥ 1 we have

`n ≥
√

n. (1.2)

Proof Rephrasing Theorem 1.2 slightly, we can say that for each permu-
tation σ ∈ Sn we have L(σ)D(σ) ≥ n. Now, `n is defined as the average
value of L(σ) over all σ ∈ Sn. However, by symmetry, clearly it is also the
average value of D(σ). By linearity of expectations of random variables,
this is also equal to

`n =
1
n!

∑
σ∈Sn

L(σ) + D(σ)
2

= E
(

L(σn) + D(σn)
2

)
.

By the inequality of the arithmetic and geometric means, we get that

`n ≥ E
( √

L(σn)D(σn)
)
≥
√

n. �

Comparing (1.2) with (1.1), we see that the bound gives the correct order
of magnitude, namely

√
n, for `n, but with a wrong constant. What about
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an upper bound? As the following lemma shows, we can also fairly easily
get an upper bound of a constant times

√
n, and thus establish that

√
n is

the correct order of magnitude for `n. This will give us a coarse, but still
interesting, understanding of `n.

Lemma 1.4 As n→ ∞ we have

lim sup
n→∞

`n
√

n
≤ e. (1.3)

Proof For each 1 ≤ k ≤ n, let Xn,k denote the number of increasing sub-
sequences of the random permutation σn that have length k. Now compute
the expected value of Xn,k, noting that this is equal to the sum, over all(

n
k

)
subsequences of length k, of the probability for that subsequence to be

increasing, which is 1/k!. This gives

E(Xn,k) =
1
k!

(
n
k

)
.

This can be used to bound the probability that L(σn) is at least k, by noting
(using (0.2)) that

P(L(σn) ≥ k) = P(Xn,k ≥ 1) ≤ E(Xn,k) =
1
k!

(
n
k

)
=

n(n − 1) . . . (n − k + 1)
(k!)2 ≤

nk

(k/e)2k . (1.4)

Fixing some δ > 0 and taking k = d(1 + δ)e
√

ne, we therefore get that

P(L(σn) ≥ k) ≤
nk

(k/e)2k ≤

(
1

1 + δ

)2k

≤

(
1

1 + δ

)2(1+δ)e
√

n

,

a bound that converges to 0 at a rate exponential in
√

n as n→ ∞. It follows
(noting the fact that L(σ) ≤ n for all σ ∈ Sn) that

`n = E(L(σn)) ≤ P(L(σn) < k)(1 + δ)e
√

n + P(L(σn) ≥ k)n

≤ (1 + δ)e
√

n + O(e−c
√

n),

where c is some positive constant that depends on δ. This proves the claim,
since δ was an arbitrary positive number. �

Note that the proof of Lemma 1.4 actually gave slightly more infor-
mation than what was claimed, establishing the quantity (1 + δ)e

√
n as a

bound not just for the average value of L(σn), but also for the typical value,
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namely the value that is attained with a probability close to 1 for large n.
Furthermore, the bounds we derived also yielded the fact (which will be
useful later on) that the probability of large fluctuations of L(σn) from its
typical value decays like an exponential function of

√
n. We record these

observations in the following lemma.

Lemma 1.5 For any α > e we have for all n that

P(L(σn) > α
√

n) ≤ Ce−c
√

n

for some constants C, c > 0 that depend on α but not on n.

It is interesting to compare this with the argument that was used to prove
Lemma 1.3, which really only bounds the average value of L(σn) and not
the typical value, since it does not rule out a situation in which (for ex-
ample) approximately half of all permutations might have a value of L(σ)
close to 0 and the other half have a value close to 2

√
n. However, as we

shall see in the next section, in fact the behavior of L(σn) for a typical
permutation σn is asymptotically the same as that of its average value.

1.4 Hammersley’s theorem

Our goal in this section is to prove the following result, originally due to
Hammersley [54].

Theorem 1.6 (Hammersley’s convergence theorem for the maximal in-
creasing subsequence length) The limit Λ = limn→∞

`n√
n exists. Further-

more, we have the convergence L(σn)/
√

n→ Λ in probability as n→ ∞.

Hammersley’s idea was to reformulate the problem of studying longest
increasing subsequences in permutations in a more geometric way. Denote
by � a partial order on R2 where the relation (x1, y1) � (x2, y2) holds pre-
cisely if x1 ≤ x2 and y1 ≤ y2. For a set A = ((xk, yk))n

k=1 of n points in
the plane, an increasing subset of A is a subset any two of whose ele-
ments are comparable in the order � (in the context of partially ordered
sets such a subset of A would be called a chain). See Fig. 1.1. Denote by
L(A) the maximal length of an increasing subset of A. Note that this gen-
eralizes the definition of L(σ) for a permutation σ ∈ Sn, since in that case
L(σ) = L(Gσ), where Gσ = {(i, σ(i)) : 1 ≤ i ≤ n} is the graph of σ.
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Figure 1.1 Points in the plane and an increasing subset (a.k.a.
chain).

With this geometric outlook, a second natural step is to replace the ran-
dom permutation by random points chosen independently in some square,
or more generally rectangular, region. To understand why this works, first
recall that a convenient way to sample a uniformly random permutation
σn in Sn is to start with a sequence X1, . . . , Xn of independent and iden-
tically distributed random variables distributed according to the uniform
distribution U[a, b] on some interval [a, b], and to let σn encode the rela-
tive rankings of X1, . . . , Xn; that is, defining σn( j) for each 1 ≤ j ≤ n to be
the number k such that X j is the kth smallest among X1, . . . , Xn (this is well
defined as long as the X j take distinct values, which happens with proba-
bility 1). The permutation σn defined in this way is sometimes referred to
as the order structure associated with X1, . . . , Xn. It is an easy exercise to
check that σn defined in this way is indeed uniformly distributed in Sn.

Now, let An(s, t) denote a random set of n points chosen independently
and uniformly at random from a rectangle [0, s] × [0, t], where s, t > 0.
We claim that the maximal increasing subset size L(An(s, t)) is a random
variable with the same distribution as L(σn). Indeed, we can represent such
a set as An(s, t) = {(Xk,Yk)}nk=1, where X1, . . . , Xn,Y1, . . . ,Yn are indepen-
dent random variables, with the X j being uniformly distributed in [0, s]
and the Y j being uniform in [0, t]. Denoting by πn and ηn the permutations
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representing the respective order structures associated with the sequences
X1, . . . , Xn and Y1, . . . ,Yn, and denoting σn = πn ◦ η

−1
n (clearly also a uni-

formly random permutation of order n), we leave to readers to verify that
L(An(s, t)) = L(σn).

The next step is to recall that probabilists have a clever way of con-
structing a single probability space that contains many random sets of the
form An(s, t) as defined previously, coupled together for all possible val-
ues of s, t > 0. This is called the Poisson point process (see box on
the opposite page). If we take a Poisson point process of unit intensity
in R2

+ = [0,∞) × [0,∞), which can be represented as a random discrete
countable subset Π of R2

+, one of its defining properties is that for any
s, t > 0, the random variable N(s, t) = |Π ∩ ([0, s] × [0, t])| (where | · | de-
notes the cardinality of a set) has the Poisson distribution with mean s · t. A
well-known, and easy to prove, property of the Poisson point process (see
[29], Exercise 2.1.6, p. 24) is that, conditioned on the event N(s, t) = n, the
distribution of the set Π ∩ ([0, s] × [0, t]) is exactly that of the random set
An(s, t) discussed previously.

Now, for any t > s > 0, consider the random variable

Ys,t = L(Π ∩ ([s, t) × [s, t))). (1.5)

It is easy to see directly from the definitions that we have

Y0,m + Ym,n ≤ Y0,n, 0 < m < n,

since the left-hand side represents the maximal length of a possible increas-
ing subset inΠ∩ ([0, n]× [0, n]) that is formed by combining an increasing
subset in Π ∩ ([0,m] × [0,m]) of length Y0,m with an increasing subset in
Π ∩ ([m, n] × [m, n]) of length Ym,n. This superadditivity property brings to
mind a well-known result in probability theory, Kingman’s subadditive
ergodic theorem, discussed in the Appendix. In particular, condition 1 of
Theorem A.3 from the Appendix is satisfied for the r.v.’s (−Ym,n)m,n. It is
straightforward to verify (Exercise 1.2) that the other conditions of that
theorem are satisfied as well. Therefore we get that, almost surely,

Y0,n

n
→ Λ = sup

m≥1

E(Y0,m)
m

as n→ ∞. (1.6)

Note that we only deduced convergence along integer values of n, but
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The Poisson point process

Physicists once hypothesized that the universe is infinite, with stars dis-
tributed more or less at random with a uniform large-scale density through-
out all of space. Aside from the fact that this turns out not to be a realistic
model of the universe, it is interesting to ask how one might construct a rig-
orous mathematical model that would describe such a hypothetical universe.
The Poisson point process is just such a concept: it models how points can
be spread at random with uniform density throughout d-dimensional space
(or some given subset of it) in the “most random” or “most independent”
way. This is suitable for describing all kinds of phenomena, such as: the
distribution of impurities in a material; times of decay events in a chunk of
radioactive material; times of service requests to a customer call center; and
many others.

Formally, the d-dimensional Poisson point process can be defined as the
unique distribution of points in Rd with constant mean density λ > 0 per unit
of volume, such that for any disjoint measurable sets A1, . . . , Ak ⊂ Rd with
finite volumes, the numbers of random points falling in each of the sets Ai are
independent random variables, each having the Poisson distribution whose
mean is λ times the volume of the corresponding Ai. For more details, see
[29], [33].

since Y0,t is monotone nondecreasing in t, we also have this convergence if
n is considered as a real-valued parameter.

Next, we relate this limit back to the behavior of L(σn) using two key
observations. First, for each n ≥ 1, define a random variable Tn by

Tn = inf{t > 0 : |Π ∩ ([0, t] × [0, t])| = n}, (1.7)

and consider the scaled set 1
Tn+1

(Π ∩ [0,Tn+1) × [0,Tn+1)). This is a random
set of n points in the unit square [0, 1] × [0, 1], and it is easy to check (us-
ing the conditioning property of Poisson processes mentioned previously)
that its joint distribution is exactly that of n independent uniformly random
points in [0, 1]2. In particular, the random variable

Y0,Tn+1 = L
(
Π ∩ ([0,Tn+1) × [0,Tn+1))

)
is equal in distribution to L(σn).

The second observation concerns the asymptotic behavior of Tn. Denote
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S 0 = 0 and S n = T 2
n for n ≥ 1, and rewrite (1.7) as

S n = inf{s > 0 : |Π ∩ ([0,
√

s] × [0,
√

s])| = n}

= inf{s > 0 : M(s) = n},

where M(s) = |Π ∩ ([0,
√

s] × [0,
√

s])|. It is immediate from the def-
inition of the Poisson point process that (M(s))s≥0 is a one-dimensional
Poisson process of unit intensity on [0,∞). (For one-dimensional Poisson
processes, instead of denoting the process as a random set it is customary to
denote it by a family of random variables (M(s))s≥0 such that M(s) denotes
the number of points from the process in the interval [0, s].) Therefore, by
a standard fact from probability theory (see [33], pp. 133–134), the incre-
ments Wk = S n − S n−1 of the sequence S n are i.i.d. random variables with
the exponential distribution Exp(1). It follows using the strong law of large
numbers that almost surely

1
n

S n =
1
n

n∑
k=1

Wk → 1 as n→ ∞,

or equivalently that Tn/
√

n → 1 almost surely as n → ∞. Combining this
with (1.6), we get that

Y0,Tn+1
√

n
=

Tn+1
√

n
·

Y0,Tn+1

Tn+1
→ Λ almost surely as n→ ∞.

Since Y0,Tn+1 is equal in distribution to L(σn), and almost sure convergence
implies convergence in probability, it follows that L(σn)/

√
n converges in

probability to Λ.
We have proved convergence in probability of L(σn)/

√
n to a constant

limit Λ, which was the second claim of Theorem 1.6. We can now de-
duce the first claim regarding the convergence to Λ of the expected values
`n/
√

n. Intuitively, convergence in probability of a sequence of random
variables to a limiting constant implies convergence of the expected val-
ues to the same limit, as long as one can bound the “tail behavior” of the
random variables to rule out a situation in which large fluctuations from
the typical value, which occur with low probability, can still have a non-
negligible effect on the expected values. In our case, the knowledge that
L(σn) is always at most n (which is only a polynomial factor larger than the
typical scale of

√
n), together with the exponential bound of Lemma 1.5,

will be enough to prove the claim.
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To make the idea more precise, fix some δ > 0. We have∣∣∣∣∣∣ `n
√

n
− Λ

∣∣∣∣∣∣ =
∣∣∣n−1/2EL(σn) − Λ

∣∣∣ ≤ E
∣∣∣n−1/2L(σn) − Λ

∣∣∣
= E

( ∣∣∣n−1/2L(σn) − Λ
∣∣∣ 1{|n−1/2L(σn)−Λ|≤δ}

)
+ E

( ∣∣∣n−1/2L(σn) − Λ
∣∣∣ 1{|n−1/2L(σn)−Λ|>δ,L(σn)≤3

√
n}

)
+ E

( ∣∣∣n−1/2L(σn) − Λ
∣∣∣ 1{|n−1/2L(σn)−Λ|>δ,L(σn)>3

√
n}

)
,

where the notation 1A is used to denote the indicator random variable of an
event A. The first summand in the last expression is at most δ. The second
summand satisfies

E
( ∣∣∣n−1/2L(σn) − Λ

∣∣∣1{|n−1/2L(σn)−Λ|>δ,L(σn)≤3
√

n}

)
≤ (3 + Λ)P(|n−1/2L(σn) − Λ| > δ),

which converges to 0 as n→ ∞ by the result we proved on convergence in
probability. The third summand satisfies

E
( ∣∣∣n−1/2L(σn) − Λ

∣∣∣1{|n−1/2L(σn)−Λ|>δ,L(σn)>3
√

n}

)
≤ C(

√
n + Λ)e−c

√
n

by Lemma 1.5. Combining the three bounds we see that

lim sup
n→∞

∣∣∣∣∣∣ `n
√

n
− Λ

∣∣∣∣∣∣ ≤ δ.
Since δ was an arbitrary positive number, the claim follows. �

An alternative approach to proving Theorem 1.6, which does not rely
on knowledge of Kingman’s subadditive ergodic theorem, is outlined in
Exercises 1.3 and 1.4. This approach is based on deriving an upper bound
on the variance of L(σn), which is also of independent interest, since it
provides an explicit measure of the concentration of L(σn) around its mean.

1.5 Patience sorting

We continue our pursuit of an understanding of the numbers `n and the
permutation statistic L(σ). Looking back at the results in the previous sec-
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tions, we see that the proofs, both of the concrete bounds (1.2) and (1.3)
and of the convergence result, Theorem 1.6, used only relatively general
and not very detailed information about the behavior of L(σ) as input for
the proofs. It is therefore not so surprising that the knowledge we gained
was in turn relatively meager.

We now turn to the task of developing a more detailed understanding
of the statistic L(·) at the combinatorial level. We start in this section by
answering perhaps the most fundamental question of all: given a permu-
tation σ, how may one compute L(σ)? It turns out that this can be done
using a simple algorithm called patience sorting, invented by A.S.C. Ross
around 1960 and named by Colin L. Mallows [84], who further analyzed
its behavior in [85] (see also [3]). The name of the algorithm alludes to its
application to sorting a deck of cards. It consists of scanning sequentially
through the permutation values in order, and piling them in a linear array
of “stacks,” according to the following rules:

1. Each new value x will be placed at the top of an existing stack, or will
form a new stack by itself positioned to the right of all existing stacks.

2. The stack on which each new value x is placed is the leftmost stack
from among those whose current top number is bigger than x. If there
are no such stacks, x forms a new stack.

As an example, consider the permutation (4, 1, 2, 7, 6, 5, 8, 9, 3); running
the algorithm with this permutation as input leads to the sequence of stack
arrays shown in Fig. 1.2. Note that the different stacks are aligned at their
tops – in other words, imagine each stack as being “pushed down” when-
ever a new number is added to it.

Lemma 1.7 When patience sorting is applied to a permutation σ ∈ Sn,
the number of stacks at the end is equal to L(σ).

Proof Denote by s the number of stacks at the end of the run, and let
(σ(i1), σ(i2), . . . , σ(ik)) be an increasing subsequence of σ of maximal
length k = L(σ). It is a simple observation that the values σ(i1), . . . , σ(ik)
must all be in different stacks, since each successive value σ(i j+1) must be
placed in a stack to the right of the stacks containing the existing values
σ(i1), . . . , σ(i j). This shows that s ≥ L(σ). Conversely, one can form an
increasing subsequence of length s by judiciously choosing one number
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4 → 1 → 1 2 → 1 2 7 → 1 2 6
4 4 4 4 7

→ 1 2 5 → 1 2 5 8
4 6 4 6

7 7

→ 1 2 5 8 9 → 1 2 3 8 9
4 6 4 5

7 6
7

Figure 1.2 The patience sorting algorithm applied to the
permutation (4, 1, 2, 7, 6, 5, 8, 9, 3).

from each stack. This is done as follows: start with the top number x = xs

in the rightmost stack, and now repeatedly go to the value in the stack to its
left that was at the top of that stack at the time that x was added, to obtain
xs−1, xs−2 and so on down to x1. It is easy to see that x1, . . . , xs forms an
increasing subsequence. �

1.6 The Robinson–Schensted algorithm

Although the patience sorting algorithm of the previous section gives us a
practical way of computing L(σ), it does not seem to offer any immedi-
ate help in analyzing the probabilistic behavior of the permutation statistic
L(σn), where σn is chosen uniformly at random in Sn. We have simply
traded one question, about the behavior of L(σn), for another, about the
behavior of the number of stacks in patience sorting applied to a random
permutation. But how is the latter problem approached?

In fact, the combinatorial power of the algorithm is truly unleashed when
it is applied recursively, leading to a remarkable procedure known as the
Robinson–Schensted algorithm.

To understand this idea, first note that the array of stacks formed during
the application of patience sorting actually contains much more informa-
tion than we need to simply compute L(σ), the number of stacks. To that
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end, it is only the top numbers of the stacks (the first row of the array
of stacks in our visualization scheme) that are important at any point in
the execution, since only they enter into the decision of where to place a
new number. What we shall do is take the additional “useless” informa-
tion in the rows below the first row, and package it in an aesthetically more
pleasing (and mathematically more revealing) form, by taking the numbers
pushed, or “bumped,” down to the second row and using them as input for
an additional patience sorting algorithm, and so on recursively for the third
row, fourth row, and so on.

To make this more precise, consider what happens whenever a new num-
ber is inserted. The number settles down into the first row at the top of
one of the stacks (now more appropriately considered simply as abstract
columns of numbers). As it does so, it either starts its own new column to
the right of the existing ones, in which case the process ends there and we
move on to the next permutation value; or, if it settles down at the top of
an existing column, instead of pushing the entire column down as we did
before, we simply “bump” the previous top entry from that column down to
the second row, where it now itself searches for a column to settle down in,
following similar rules to the standard patience sorting algorithm: namely,
either it settles in an empty space to the right of all other second-row num-
bers if it is bigger than all the numbers currently in the second row, or
otherwise it settles down in the leftmost column having a second-row entry
bigger than itself.

In the event that the number settling down in the second row replaces
an existing number, that number now gets bumped down to the third row,
and the same patience sorting-like process gets repeated in that row. This
continues until the bumping stops when one of the bumped numbers finally
settles down in a previously unoccupied space. When this happens, we
move on to the next value of the permutation and repeat the procedure.
We call each such cycle consisting of an insertion of a new value and the
resulting cascade of bumped values an insertion step.

To illustrate this, Fig. 1.3 shows the sequence of arrays formed by run-
ning this procedure on our previous sample permutation. For example, dur-
ing the sixth insertion step the number 5 was inserted into the first row. This
bumped the number 6 down to the second row, where it took the place of
the number 7, which in turn was bumped down to the third row.
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4 → 1 → 1 2 → 1 2 7 → 1 2 6
4 4 4 4 7

→ 1 2 5 → 1 2 5 8
4 6 4 6
7 7

→ 1 2 5 8 9 → 1 2 3 8 9
4 6 4 5
7 6

7

Figure 1.3 The “recursive patience sorting” algorithm
(essentially the Robinson–Schensted algorithm) applied to the
permutation (4, 1, 2, 7, 6, 5, 8, 9, 3).

For a reason that will be made clear in the next section, it is useful to note
that such an insertion step can be reversed: by starting from the last value in
the bumping sequence (in the preceding example, the number 7 now sitting
in the third row), we can undo the sequence of bumping events to recover
the array of numbers as it existed before the insertion, and separately the
number that was inserted that is now “bumped out” of the array. It is easy
to see that the position of each “reverse bumping” operation is uniquely
determined. Such an inverse operation is called a deletion step.

To summarize, we have defined a computational procedure that refines
the patience sorting algorithm by applying patience sorting recursively to
the rows below the first row. Its input is a permutation and its output is an
interesting-looking two-dimensional array of numbers, where in particular
the length of the first row in the array is exactly L(σ). The array also has
some useful monotonicity properties that are not present in the output of
simple patience sorting. This is almost the Robinson–Schensted algorithm
in its final form. One more refinement is needed, to make the algorithm
reversible. We describe it in the next section after introducing some useful
new terminology, and then study some of its remarkable properties.
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Figure 1.4 The Young diagram (4, 4, 3, 1, 1).

1.7 Young diagrams and Young tableaux

At this point we introduce some important terminology. Let n ∈ N. A
partition (also called integer partition, or unordered partition) of n
is, loosely speaking, a way to represent n as the sum of positive inte-
gers, without consideration for the order of the summands. More precisely,
we say that λ is a partition of n, and denote this λ ` n, if λ is a vec-
tor of the form λ = (λ1, λ2, . . . , λk), where λ1, . . . , λk are positive integers,
λ1 ≥ λ2 ≥ . . . ≥ λk, and n = λ1 + . . .+ λk. The integers λ1, . . . , λk are called
the parts of the partition. We also call n the size of λ, and denote n = |λ|.
We denote the set of partitions of n by P(n).

The relevance of this to our discussion is that the row lengths in the
two-dimensional array of numbers produced by the algorithm we defined
form the parts of a partition of n (with n being the order of the permuta-
tion). Next, for a partition λ ` n, define the Young diagram of λ (named
after Alfred Young, an early 20th-century English mathematician) to be a
graphical diagram representing the partition λ as a two-dimensional array
of boxes, or cells, where the jth row (counting from the top down) has λ j

cells, and the rows are left-justified. The cells of the diagram will serve
as placeholders for the array of numbers produced by the algorithm. For
example, Fig. 1.4 shows the Young diagram corresponding to the partition
(4, 4, 3, 1, 1).

Since Young diagrams are simply schematic devices representing inte-
ger partitions, we shall often identify a Young diagram with its associated
partition and refer to a given λ interchangeably as either a partition or a
Young diagram.

If λ ` n, the conjugate partition of λ, denoted λ′, is the partition ob-
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tained by reading the lengths of the columns of the Young diagram of λ,
instead of the rows. In other words, the Young diagram of λ′ is obtained by
reflecting the Young diagram of λ along its principal diagonal. For exam-
ple, the partition conjugate to λ = (4, 4, 3, 1, 1) is λ′ = (5, 3, 3, 2).

Finally, a Young tableau4 (often referred to as a standard Young
tableau, or standard tableau) consists of a Young diagram λ ` n to-
gether with a filling of the cells of λ with the numbers 1, 2, . . . , n, such
that the numbers in each row and each column are arranged in increasing
order. Note that this is a property possessed by the array of numbers that
is output by the algorithm we defined. We call the diagram λ the shape of
the tableau. If P denotes a Young tableau of shape λ, its transpose is the
Young tableau P> of shape λ′ obtained by reflecting P along the principal
diagonal.

We are now ready to finish the definition of the Robinson–Schensted
algorithm. The algorithm we defined so far can be thought of as taking a
permutation σ ∈ Sn, and computing a partition λ ` n together with a Young
tableau P of shape λ. We call P the insertion tableau. Now note that there
is a nice way to obtain from the algorithm another Young tableau Q of
shape λ, by recording in each cell of the Young diagram λ the number k
if that cell first became occupied in P during the kth insertion step during
the execution of the algorithm (that is, after inserting the number σ(k)). In
other words, Q records the order in which different cells were added to the
shape λ as it “grew” from an empty diagram into its final form during the
execution of the algorithm. It is trivial to see that Q is also a Young tableau.
We call it the recording tableau. The Robinson–Schensted algorithm is
defined as the mapping taking a permutation σ to the triple (λ, P,Q). See
Fig. 1.5 for an illustration.

Why is the recording tableau interesting? A crucial fact is that knowing
it allows us to reverse the action of the algorithm to reproduce from the
insertion tableau P the original permutation σ. To see this, consider how
we can recover just the last value σ(n). When we inserted σ(n) into the
tableau-in-progress P, this resulted in a sequence of bumping operations
(σ(n) settling down in the first row and possibly bumping another number
to the second row, that number settling down in the second row and bump-
ing another number to the third row, and so on). If we knew the last place
where a number being bumped down a row ended up settling, we would
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P =

1 2 3 8 9

4 5

6

7

Q =

1 3 4 7 8

2 5

6

9

Figure 1.5 The insertion and recording tableaux generated by the
Robinson–Schensted algorithm for the permutation
(4, 1, 2, 7, 6, 5, 8, 9, 3).

be able to perform a deletion step (as described in the previous section),
and recover the state of the tableau P before this last insertion. But this is
exactly the information encoded in the recording tableau Q – specifically,
this position is exactly the cell where Q has its maximal entry. So, to re-
cover σ(n) we look for that cell, perform a deletion step starting at that cell,
and recover the previous state of P, together with the value σ(n) which is
the entry that was “bumped out” of the tableau P at the end of the deletion
step.

We can now proceed by induction, by deleting the maximal entry from
Q, and repeating the same procedure to recover σ(n − 1), followed by
σ(n − 2), and so on all the way down to σ(1). This is sometimes referred
to as applying the inverse Robinson–Schensted algorithm.

We summarize this last discussion in a formal statement that will be
extremely important in what follows.

Theorem 1.8 The Robinson–Schensted algorithm (also called the
Robinson–Schensted correspondence) is a mapping that takes a permu-
tation σ ∈ Sn and returns a triple (λ, P,Q), where: λ ` n, and P,Q are two
Young tableaux of shape λ. This mapping is a bijection between Sn and the
set of such triples. Under this bijection, we have the identity

L(σ) = λ1 (the length of the first row of λ). (1.8)

It is recommended to apply the algorithm by hand in a couple of exam-
ples to get a sense of how it works; see Exercises 1.7 and 1.8.

If λ ` n, denote by dλ the number of Young tableaux of shape λ. Be-
cause of a connection to representation theory that is not important for our
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Robinson, Schensted, Knuth, and RSK

The Robinson–Schensted algorithm is named after Gilbert de Beauregard
Robinson and Craige E. Schensted. Robinson described an equivalent but
less explicit version of the algorithm in a 1938 paper [104] in connection with
a problem in representation theory. Schensted [113] rediscovered it in 1961,
described it in a purely combinatorial way, and – importantly – pointed out
the connection to longest increasing subsequences.

In 1970, Donald E. Knuth discovered [70] a significant additional gen-
eralization of the algorithm, which we will discuss in Chapter 5. This has
become known as the Robinson–Schensted–Knuth algorithm, or RSK
for short. In the literature the RSK acronym is often used even in reference
to the more restricted Robinson–Schensted algorithm.

purposes but is explained later (see p. 63), the number dλ is sometimes re-
ferred to as the dimension of λ, and denoted dim λ or f λ. Pay attention to
this definition: the mapping λ 7→ dλ is extremely important in the combina-
torics of Young diagrams and longest increasing subsequences, and plays
a central role in many of the developments in the book.

As a corollary to Theorem 1.8, we get a curious fact involving the enu-
meration of Young tableaux of various shapes, by simply comparing the
cardinalities of the two sets that the bijection maps between.

Corollary 1.9 For each n ≥ 1 we have∑
λ`n

d2
λ = n!, (1.9)

where the sum is over all partitions of n.

Note that our definition of the Robinson–Schensted algorithm treats rows
and columns differently. Another apparent asymmetry of the algorithm is
that the tableaux P and Q play very different roles. It is therefore surpris-
ing that the algorithm does have a symmetry property corresponding to
the interchange of rows and columns and another symmetry related to in-
terchanging P and Q. This is explained in the following theorem,5 whose
proof is outlined in Exercises 1.9 and 1.10.
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Theorem 1.10 Let σ = (σ(1), . . . , σ(n)) ∈ Sn be a permutation, and let
(λ, P,Q) be the triple associated to σ by the Robinson–Schensted algo-
rithm. Then:

(a) If (µ, P′,Q′) is the triple associated by the Robinson–Schensted algo-
rithm with the permutation (σ(n), . . . , σ(1)) (“the reverse of σ”) then
µ = λ′ and P′ = P> (the transpose of P).6

(b) The triple associated by the Robinson–Schensted algorithm with σ−1

is (λ,Q, P).

As a corollary, we get that the shape λ also encodes information about
the maximal decreasing subsequence length of σ.

Corollary 1.11 If (λ, P,Q) is the triple associated to a permutationσ ∈ Sn

by the Robinson–Schensted algorithm, then in addition to the relation (1.8)
we have the symmetric relation

D(σ) = λ′1 (1.10)

between the maximal decreasing subsequence length of σ and the length
of the first column of λ.

Proof If we denote σ′ = (σ(n), . . . , σ(1)), then clearly D(σ) = L(σ′), so
the claim follows from part (a) of Theorem 1.10. �

Another corollary of Theorem 1.10 is an elegant formula for the total
number of Young tableaux of order n; see Exercise 1.11.

1.8 Plancherel measure

The Robinson–Schensted algorithm finally allows us to reformulate our
original question on the asymptotic behavior of the permutation statistic
L(σ) in a way that is truly useful. It does so by giving us an alternative way
of looking at permutations (replacing them with the triples (λ, P,Q) com-
puted by the algorithm), where the statistic L(σ) appears as a natural quan-
tity: the length of the first row of the Robinson–Schensted shape λ. In fact,
note that for the purposes of computing λ1, the tableaux P and Q don’t ac-
tually play any role. It therefore seems natural to simply forget about them,
and to focus on the random Young diagram λ(n) obtained when applying
the Robinson–Schensted algorithm to the random permutation σn.
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How does this random λ(n) behave, probabilistically speaking? Clearly,
for any λ ` n, the probability that λ(n) = λ is 1/n! times the number of per-
mutations σ ∈ Sn whose Robinson–Schensted shape is λ. By the properties
of the algorithm, this can be written as

P(λ(n) = λ) =
d2
λ

n!
. (1.11)

Note that the fact that these probabilities all sum to 1 is simply a re-
statement of equation (1.9). The probability measure on the set of inte-
ger partitions of n that assigns measure d2

λ/n! to any partition λ is known
as Plancherel measure (of order n). Historically, it has its origins in the
work of the Swiss mathematician Michel Plancherel in representation the-
ory, dating to the early 20th century, but here we see that it appears natu-
rally in connection with the purely combinatorial problem of understanding
L(σ): to understand how L(σn) behaves for a uniformly random permuta-
tion in Sn, we can look instead at the random variable λ(n)

1 (the length of the
first row) for a random Young diagram λ(n) chosen according to Plancherel
measure. Equation (1.11), together with Theorem 1.8, implies that these
two random variables are equal in distribution.

1.9 The hook-length formula

All of the foregoing analysis would be in vain if we did not have a good way
of analyzing Plancherel measure. Fortunately, we do. A key element is the
existence of a remarkable formula, known as the hook-length formula,
for computing dλ, the number of Young tableaux of shape λ ` n. It was
proved in 1954 by Frame, Thrall, and Robinson [43], who deduced it from
an earlier and less convenient formula due to Frobenius.

If (i, j) is a cell in the Young diagram of λ ` n (where i is the row index
and j is the column index, as in matrix notation in linear algebra), define
the arm of (i, j) to be the collection of cells in λ of the form (i, x) where
j ≤ x ≤ λi – that is, the cell (i, j) together with the cells in the same row
that lie to its right. Define the leg of (i, j) to be the collection of cells in λ
of the form (y, j) for i ≤ y ≤ λ′j ((i, j) and the cells in its column that lie
below it). Define the hook of (i, j) to be the union of its arm and its leg,
and denote this set of cells by Hλ(i, j).

Define the hook-length of (i, j) as the number of cells in the hook, and
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8 5 4 2

7 4 3 1

5 2 1

2

1

Figure 1.6 A hook-length tableau.

denote it by hλ(i, j). Formally, it is easy to see that we can write

hλ(i, j) = |Hλ(i, j)| = λi − j + λ′j − i + 1.

Theorem 1.12 (The hook-length formula) If λ ` n, then we have

dλ =
n!∏

(i, j) hλ(i, j)
, (1.12)

where the product is over all cells (i, j) in λ.

As an illustration, given λ = (4, 4, 3, 1, 1), a Young diagram of order 13,
to compute dλ we start by tabulating the hook-lengths in the diagram shown
in Fig. 1.6. (Call the resulting array of numbers a hook-length tableau.)
The number of Young tableaux dλ can then be computed as

dλ =
13!

1 · 1 · 1 · 2 · 2 · 2 · 3 · 4 · 4 · 5 · 5 · 7 · 8
= 11583.

Theorem 1.12 has many proofs, including some that are “bijective,” that
is, are based on establishing a combinatorial bijection between two sets
that immediately implies (1.12); see [44], [71, Section 5.1.4], [92], [96].
Here, we give a beautiful probabilistic proof due to Greene, Nijenhuis, and
Wilf [50]. This proof has the added advantage of producing an elegant
and efficient algorithm for sampling a uniformly random Young tableau of
shape λ. This sampling algorithm is described in the next section.

Proof of Theorem 1.12 To start the proof, denote the right-hand side of
(1.12) by eλ. Our goal is to show that dλ = eλ for all integer partitions λ.
Note that dλ satisfies a simple recurrence relation, namely

dλ =
∑
µ↗λ

dµ,
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•

•

•

Figure 1.7 The corners of the Young diagram (4, 4, 3, 1, 1).

where the notation µ ↗ λ indicates that the Young diagram of λ can be
obtained from the Young diagram of µ by the addition of a single cell (and
the summation is over all µ such that µ ↗ λ). This is explained by the
fact that, starting from any Young tableau of shape λ, by deleting the cell
containing the maximal entry we are left with a Young tableau of shape
µ for some µ ↗ λ. This recurrence, together with the “initial condition”
d∅ = 1 (for the “empty” diagram of size 0), determines all values of dλ
uniquely. Since eµ trivially satisfies e∅ = 1, it will be enough to show that
it also satisfies the same recurrence, that is, that

eλ =
∑
µ↗λ

eµ, (λ ` n, n = 1, 2, . . .).

To recast this in a more probabilistic form, we rewrite it in the form∑
µ↗λ

eµ
eλ

= 1.

This seems to hint that for each Young diagram λ, there ought to exist
a “natural” probability measure on the diagrams µ that satisfy µ ↗ λ,
assigning probability exactly eµ/eλ to each such µ. The proof consists in
constructively defining a random process leading to just such a measure.

First, let us examine the set of µ such that µ ↗ λ. These are clearly
in bijection with cells (i, j) that can be removed from λ to obtain a new
valid Young diagram µ. We refer to such cells as the corners of λ; they are
cells that are simultaneously the last in their row and in their column, as
illustrated in Fig. 1.7.

Fix the diagram λ. We now define a probabilistic process – a kind of
random walk, dubbed the hook walk by the authors of [50] – that leads
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to a random choice of corner. First, we choose an initial cell for the walk
to be a uniformly random cell in λ, out of the |λ| possibilities. Next, we
perform a random walk, successively replacing the current cell with a new
one until we reach a corner, according to the following rule: given the cur-
rent cell (i, j), its successor is chosen uniformly at random from the hook
Hλ(i, j) \ {(i, j)} (the current cell is excluded to avoid staying in the same
place, although allowing it as a possible choice will only make the walk
last longer, but will not change the probability distribution of its terminal
point). Of course, the corners are exactly the cells that are the only elements
of their hook, so once we reach a corner there is nowhere else to move to,
and the process terminates.

Denote by c the terminating corner of the hook walk. From the forego-
ing discussion, we see that the proof of the hook-length formula has been
reduced to proving the following claim.

Proposition 1.13 For any corner cell (a, b) of λ, we have

P
(
c = (a, b)

)
=

eµ
eλ
, (1.13)

where µ = λ \ {(a, b)}.

Letting n = |λ|, we can compute the right-hand side of (1.13) as

eµ
eλ

=
(n − 1)!/

∏
(i, j) hµ(i, j)

n!/
∏

(i, j) hλ(i, j)
=

1
n

∏
(i, j)

hλ(i, j)
hµ(i, j)

.

In this product of hook-length ratios, all the terms cancel out except those
in the same row or column as the corner cell (a, b), so this can be rewritten
as

eµ
eλ

=
1
n

a−1∏
i=1

hλ(i, b)
hλ(i, b) − 1

b−1∏
j=1

hλ(a, j)
hλ(a, j) − 1

=
1
n

a−1∏
i=1

(
1 +

1
hλ(i, b) − 1

) b−1∏
j=1

(
1 +

1
hλ(a, j) − 1

)
.
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This last expression can be further expanded in the form

1
n

∑
A⊆{1,...,a−1}

∑
B⊆{1,...,b−1}

(∏
i∈A

1
hλ(i, b) − 1

∏
j∈B

1
hλ(a, j) − 1

)
=

1
n

∑
A⊆{1,...,a−1}

∑
B⊆{1,...,b−1}

Q(A, B), (1.14)

where for sets A ⊆ {1, . . . , a − 1} and B ⊆ {1, . . . , b − 1} we denote
Q(A, B) =

∏
i∈A

1
hλ(i,b)−1

∏
j∈B

1
hλ(a, j)−1 . We now show that Q(A, B) itself

can be given a probabilistic interpretation. For a possible trajectory
(x1, y1) → . . . → (xk, yk) of cells visited by a hook walk, define its hor-
izontal and vertical projections to be the sets {y1, . . . , yk}, {x1, . . . , xk}, re-
spectively. Now for the sets A and B as earlier define a quantity P(A, B) to
be the conditional probability for a hook walk, conditioned to start from
the initial cell (min(A ∪ {a}),min(B ∪ {b})), to eventually reach the corner
(a, b), while passing through a trajectory (x1, y1) → . . . → (xk, yk) = (a, b)
whose vertical projection is A ∪ {a} and whose horizontal projection is
B ∪ {b} = {y1, y2, . . . , yk}. We claim that P(A, B) = Q(A, B). If we prove
this, the theorem will follow, since the probability P

(
c = (a, b)

)
on the

left-hand side of (1.13) can be expanded using the total probability for-
mula as a sum of conditional probabilities given the initial cell (x1, y1) and
the vertical and horizontal projection sets V and H of the walk, times the
probability 1/n for each initial position. This gives

P
(
c = (a, b)

)
=

1
n

a∑
x1=1

b∑
y1=1

∑
∅(H⊆{x1,...,a}

min(H)=x1,max(H)=a

∑
V⊆{y1,...,b},

min(V)=y1,max(V)=b

P(H \ {a},V \ {b}),

=
1
n

a∑
x1=1

b∑
y1=1

∑
∅(H⊆{x1,...,a}

min(H)=x1,max(H)=a

∑
V⊆{y1,...,b},

min(V)=y1,max(V)=b

Q(H \ {a},V \ {b}),

which can then be easily seen to equal the right-hand side of (1.14).
To prove that P(A, B) = Q(A, B), use induction on k. The induction base

k = 1 (corresponding to A = B = ∅) is trivial. For the inductive step,
assume that both A and B are nonempty (the case when only one of them
is empty is similar and is left to the reader) and denote i1 = min(A) and



30 Longest increasing subsequences in random permutations

j1 = min(B). By the definition of the hook walk, we have that

P(A, B) =
1

hλ(i1, j1) − 1
(P(A \ {i1}, B) + P(A, B \ { j1})) .

By induction, this is equal to

1
hλ(i1, j1) − 1

(Q(A \ {i1}, B) + Q(A, B \ { j1}))

=
1

hλ(i1, j1) − 1

 ∏
i∈A\{i1}

1
hλ(i, b) − 1

∏
j∈B

1
hλ(a, j) − 1

+
∏
i∈A

1
hλ(i, b) − 1

∏
j∈B\{ j1}

1
hλ(a, j) − 1


=

(hλ(i1, b) − 1) + (hλ(a, j1) − 1)
hλ(i1, j1) − 1

∏
i∈A

1
hλ(i, b) − 1

∏
j∈B

1
hλ(a, j) − 1

 .
But, fortuitously, we have that (hλ(i1, b)−1)+ (hλ(a, j1)−1) = hλ(i1, j1)−1,
so the last expression in the above chain of equalities is equal to Q(A, B).
This completes the proof of Proposition 1.13, and hence of the hook-length
formula. �

1.10 An algorithm for sampling random Young tableaux

The proof of Theorem 1.12 gives a probabilistic interpretation to the ratio
eµ/eλ as the probability distribution of the terminal cell of a hook walk on
the Young diagram of λ. However, the ratio dµ/dλ (which we now know
is equal to eµ/eλ) also has a fairly obvious, but different, probabilistic in-
terpretation: it is the probability for a Young tableau chosen uniformly at
random from the set of Young tableaux of shape λ (out of the dλ possible
tableaux), to have its maximal entry (namely, n, the size of the diagram λ)
located in the corner cell which is the difference between λ and µ. This is
so because Young tableaux of shape λ having their maximal entry in this
corner cell are in obvious correspondence with Young tableaux of shape µ.

This observation gives rise to a simple algorithm to sample a uniformly
random Young tableau of shape λ: First, choose the cell that will contain
the maximal entry n, by performing a hook walk (which by the preceding
observation leads to the correct probability distribution for the location of
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the maximal entry corner). Write n in this cell, and then delete it to obtain
a smaller Young diagram µ; then repeat the process with µ by performing
another hook walk to choose where to write n − 1, then repeat to choose
where to write n − 2, and so on, until all the cells of the original diagram
are filled with the numbers 1, . . . , n. By induction it follows immediately
that the Young tableau thus generated is uniformly random in the set of
tableaux of shape λ.

As an exercise, I suggest that readers write a computer program to per-
form this algorithm, and run entertaining simulations, perhaps discovering
new facts about random Young tableaux.

1.11 Plancherel measure and limit shapes

With the combinatorial theory in the preceding sections, we have paved
the way for an analysis of the asymptotic behavior of random partitions of
n chosen according to Plancherel measure, as n → ∞. This analysis will
use tools of a more, well, analytical, nature, since we are now interested
in asymptotic results. In particular, as we shall see, the problem of under-
standing the asymptotic behavior of Plancherel-random partitions will lead
us to a certain minimization problem in the calculus of variations, whose
solution will ultimately require the use of some techniques of harmonic
analysis.

Before starting the rigorous analysis, it is worthwhile to look at a com-
puter simulation to develop some intuition. And why not, really? It is easy
to generate a Plancherel-random partition λ(n) of size n, by simply apply-
ing the Robinson–Schensted algorithm to a uniformly random permutation
σn ∈ Sn (another nice algorithm based on a variant of the hook walk is
outlined in Exercise 1.23). The results for two different partition sizes are
shown in Fig. 1.8.

As we can see, for a large value of n the random partition, a discrete ob-
ject, takes on a nearly continuous (maybe even smooth) shape. One can run
the simulation many times and still get a shape that looks approximately
the same as in the figure. It turns out that this is not a coincidence, and in
fact this is our first instance of a limit shape phenomenon – namely, the
phenomenon of some geometric object defined on a class of random dis-
crete objects converging to a limiting continuous shape as a size parameter
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(a) (b)

Figure 1.8 Random Young diagrams sampled from Plancherel
measures of orders (a) n = 100 and (b) n = 1000.

tends to infinity. We will see more examples of limit shapes later in the
book.

It therefore seems that our goal should be to rigorously prove the ex-
istence of this limit shape, in an appropriate limiting sense. With a bit of
luck, we might even find a precise formula for it. Note that such a result
will give us much more information than what we originally bargained for,
which concerned only the length of the first row of the random partition
λ(n). (This illustrates the principle that in mathematics, when one is trying
to solve a difficult problem, the right thing to do is often to try to solve a
much harder problem.)

To begin, our problem involves a probability measure on the set P(n)
of partitions of n, so it will be useful to know roughly how big this set is.
Define

p(n) = |P(n)|.

The function p(n) (called the partition function) is an important special
function of number theory. Its first few values are 1, 2, 3, 5, 7, 11, 15, . . . . It
has many remarkable arithmetic properties and deep connections to many
branches of mathematics, but for our purposes we are interested only in its
rate of growth. It is easy to derive some rough estimates for this, namely
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that there are constants C, c > 0 such that the bounds

cec
√

n ≤ p(n) ≤ CeC
√

n (1.15)

hold for all n ≥ 1; see Exercises 1.13 and 1.15. In qualitative terms, this
means that p(n) is roughly of exponential order in the square root of n. This
will be sufficient for our needs, but for the curious-minded, a more precise
answer was derived by G. H. Hardy and S. Ramanujan, who showed in
1918 [56] (see also [91]) that7

p(n) = (1 + o(1))
1

4
√

3n
eπ
√

2n/3 as n→ ∞. (1.16)

(Exercise 1.16 describes a simple method for proving an upper bound for
p(n) that gives some of indication of where the constant π

√
2/3 comes

from. A proof of (1.16) and additional related results is sketched in Exer-
cises 4.9 and 4.10 in Chapter 4.)

Next, since we will be talking about the convergence of a sequence of
Young diagrams to a limiting shape, we need to define the space of shapes
on which our analysis will take place, and the notion of convergence (i.e.,
a topology or metric structure) on the space. Since integer partitions are
described by a nonincreasing sequence of nonnegative integers that sum
to a given integer n, we can describe the analogous limiting objects as
nonnegative nonincreasing functions on the positive real line that integrate
to a given real number. Define F to be the space of functions f : [0,∞) →
[0,∞) such that:

1. f is nonincreasing;
2.

∫ ∞
0

f (x) dx = 1;
3. f has compact support, that is, sup{x ≥ 0 : f (x) > 0} < ∞.

The requirement for f to integrate to 1 is arbitrary and is made for obvious
reasons of convenience. Condition 3 is also added for convenience, and al-
though it is not a priori obvious that it should be included, we will see later
that adding it simplifies the analysis and does not restrict the generality of
the results. We refer to elements of F as continual Young diagrams.

If λ ∈ P(n), we can embed λ in F by associating with it a function
φλ ∈ F , defined by

φλ(x) = n−1/2 λ′
b
√

nxc+1, (x ≥ 0). (1.17)
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Figure 1.9 An illustration of the function φλ encoding a Young
diagram (4, 4, 3, 1, 1).

In other words, we represent the graph of the Young diagram as a nonin-
creasing function, and scale both the horizontal and positive axes by a fac-
tor of

√
n each, to scale the area of the Young diagram from n down to 1.

The use of the conjugate partition λ′, rather than λ, is not essential, but is
designed to reconcile the two somewhat incompatible coordinate systems
used in the combinatorics of Young diagrams and in calculus (see box on
the next page). Fig. 1.9 illustrates the function φλ.

We defer for the moment the decision about the topology on F ; the
correct notion of convergence will become apparent in the course of the
analysis. The important thing to remember is that as n→ ∞, we expect the
scaled graph of the typical Plancherel-random partition λ(n) of order n to
become, with asymptotically high probability, close (in some limiting sense
that is yet to be determined) to a certain fixed and nonrandom function
in F .

In the next section we take a closer look at the term d2
λ that appears in

the formula (1.11) for Plancherel measure, and show that it can be approx-
imated by a certain analytic expression involving the function φλ.

1.12 An asymptotic hook-length formula

The product of hook-lengths of the cells of λ that is incorporated within
the term d2

λ in (1.11) is clearly the most interesting part of the formula
for Plancherel measure, so getting a better understanding of this product is
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English, French, and Russian coordinates

The literature on Young diagrams and Young tableaux uses several different
coordinate systems to represent Young diagrams and Young tableaux. The
standard way of depicting them, sometimes referred to as “English” nota-
tion, is the one we have used earlier, where the diagram rows (in order of
decreasing size) are drawn from top to bottom. The reference to England
may allude to the legacy of the English mathematicians Alfred Young and
Norman Macleod Ferrers (after whom are named the so-called Ferrers dia-
grams, an earlier variant of Young diagrams using disks instead of squares)
who pioneered the use of these diagrams. In the work of some French au-
thors a different convention has taken root in which the diagrams are drawn
from the bottom up. This “French” coordinate system leads to drawings that
are more compatible with the standard Cartesian coordinate system used in
calculus and much of the rest of mathematics. (Well, Descartes was French
after all...)

A third coordinate system, which we refer to as “Russian coordinates”
(a.k.a. “rotated coordinates”), has emerged in which diagrams are presented
rotated counterclockwise by 45 degrees with respect to the French conven-
tion. This turns out to be a useful trick that simplifies their analysis for many
purposes (including ours). The use of this coordinate system was especially
popularized in the 1980s and 1990s through the works of the Russian math-
ematician Sergei Kerov and other authors building on his work.

English French Russian

an obvious goal on the way to proving a limit shape result. Because of the
simple form of the product, it turns out that we can, without much difficulty,
define an analogous analytical expression that appears in connection with
functions f ∈ F , and that can be used to get a very good approximation of
the hook-length product for large Young diagrams.

Let f ∈ F , and let (x, y) ∈ [0,∞)× [0,∞) be some point that is bounded
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under the graph of f ; that is, we have y ≤ f (x) (if f is thought of as a
limiting notion of a Young diagram, then (x, y) corresponds to the limiting
location of a cell). We define the arm of (x, y) to be the set {(x′, y) : x ≤
x′ ≤ f −1(y)}. We define the leg of (x, y) to be the set {(x, y′) : y ≤ y′ ≤ f (x)}.
Let the hook of (x, y), denoted H f (x, y), be the union of the arm and the leg
of (x, y). Define the hook-length of (x, y), denoted h f (x, y), to be the length
of H f (x, y), namely

h f (x, y) = f (x) − y + f −1(y) − x,

where f −1(y) is defined by

f −1(y) = inf{x ≥ 0 : f (x) ≤ y}.

Define the hook integral of f by the expression

Ihook( f ) =

∫ ∞

0

∫ f (x)

0
log h f (x, y) dy dx. (1.18)

It is not too difficult to verify that the integral converges absolutely (Ex-
ercise 1.17). We also see this later as a consequence of a different way of
writing the hook integral.

The precise connection of the hook integral to the hook-length formula
and to Plancherel measure is explained in the following result.

Theorem 1.14 (Asymptotic hook-length formula) As n → ∞, we have,
uniformly over all partitions λ ∈ P(n), that

d2
λ

n!
= exp

[
−n

(
1 + 2Ihook(φλ) + O

(
log n
√

n

))]
. (1.19)

Proof First, by elementary manipulations and Stirling’s approximation
(0.1), we can bring the formula for Plancherel measure to a form more
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suitable for doing asymptotics, as follows:

d2
λ

n!
=

1
n!
·

(n!)2(∏
(i, j) hλ(i, j)

)2 = n!
∏
(i, j)

hλ(i, j)−2

= exp
(
(n + 1

2 ) log n − n + 1
2 log(2π) − 2

∑
(i, j)

log hλ(i, j) + o(1)
)

= exp
(
− 2

∑
(i, j)

log
(
hλ(i, j)
√

n

)
− n + 1

2 log(2πn) + o(1)
)

= exp
[
− n

(
1 + 2 ·

1
n

∑
(i, j)

log
(
hλ(i, j)
√

n

)
−

1
2n

log(2πn) + o(1/n)
)]
.

Here, the products and sums are over all cells (i, j) of λ. As a consequence
of this, we see that to prove (1.19), it will be enough to show that

1
n

∑
(i, j)

log
(
hλ(i, j)
√

n

)
= Ihook(φλ) + O

(
log n
√

n

)
. (1.20)

This already starts to look reasonable, since we can decompose the hook
integral too as a sum over the cells (i, j) of λ, namely

Ihook(φλ) =
∑
(i, j)

∫ j/
√

n

( j−1)/
√

n

∫ i/
√

n

(i−1)/
√

n
log(φλ(x) + φ−1

λ (y) − x − y) dy dx.

Fix a cell (i, j), and denote h = hλ(i, j). We estimate the error in the ap-
proximation arising from the cell (i, j), namely

Ei, j :=
∫ j/

√
n

( j−1)/
√

n

∫ i/
√

n

(i−1)/
√

n
log(φλ(x) + φ−1

λ (y) − x − y) dy dx −
1
n

log
(

h
√

n

)
.

Note that from the definition of φλ it follows that when x ranges over the
interval [( j − 1)/

√
n, j/

√
n], the value of φλ(x) is constant and equal to

1
√

nλ
′
j. Similarly, when y ranges over [(i− 1)/

√
n, i/
√

n], the value of φ−1
λ (y)

is constant and equal to 1
√

nλi. Therefore Ei, j can be rewritten as

Ei, j =

∫ j/
√

n

( j−1)/
√

n

∫ i/
√

n

(i−1)/
√

n
log

(
λi + λ′j
√

n
− x − y

)
dy dx −

1
n

log
(

h
√

n

)
.

Noting that h = λi + λ′j − i − j + 1, by a simple change of variable we see
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that this can be rewritten in the form

Ei, j =
1
n

∫ 1/2

−1/2

∫ 1/2

−1/2

(
log(h − x − y) − log h

)
dy dx

=
1
n

∫ 1/2

−1/2

∫ 1/2

−1/2
log

(
1 −

x + y
h

)
dy dx.

When h ≥ 2, this can be easily bounded: since | log(1 − t)| ≤ 2|t| for t ∈
[−1/2, 1/2], we have

|Ei, j| ≤
2

n · h
. (1.21)

When h = 1, on the other hand, Ei, j is exactly equal to

1
n

∫ 1/2

−1/2

∫ 1/2

−1/2
log(1 − x − y) dy dx =

1
n

(2 log 2 − 3/2) ≈ −
0.11

n
,

and in particular the bound (1.21) also holds in this case.
Finally, the total approximation error that we were trying to bound is∣∣∣∣∣Ihook(φλ) −

1
n

∑
(i, j)

log
(
hλ(i, j)
√

n

) ∣∣∣∣∣ =

∣∣∣∣∣∑
(i, j)

Ei, j

∣∣∣∣∣ ≤∑
(i, j)

|Ei, j| ≤
2
n

∑
(i, j)

1
hλ(i, j)

,

so (1.20) reduces to showing that for any partition λ ∈ P(n) we have∑
(i, j)

1
hλ(i, j)

= O(
√

n log n), (1.22)

with a constant concealed by the big-O symbol that is uniform over all
partitions of n. To prove this claim, fix 1 ≤ m ≤ n, and note that the cells
(i, j) of λ with a given hook-length hλ(i, j) = m all lie on different rows and
different columns. This implies that there are at most

√
2n of them, since

otherwise the sum of their column indices (which are all distinct) would be
greater than n – in contradiction to the fact that, because their row indices
are all distinct, this sum represents the number of cells that are directly to
the left of such an “m-hook” cell, and is therefore ≤ n.

Since this is true for each m, it follows that the sum of the hook-length
reciprocals is at most what it would be if the hook-lengths were crowded
down to the smallest possible values under this constraint, namely

d
√

2ne︷       ︸︸       ︷
1
1 + . . . + 1

1 +

d
√

2ne︷       ︸︸       ︷
1
2 + . . . + 1

2 +

d
√

2ne︷       ︸︸       ︷
1
3 + . . . + 1

3 + . . . ,



1.13 A variational problem for hook integrals 39

where we terminate the sum as soon as n summands have been included.
This clearly results in a bound of order

√
n log n, proving (1.22). �

1.13 A variational problem for hook integrals

Theorem 1.14 can be interpreted qualitatively as giving us a means of com-
puting, for each given shape f ∈ F , how unlikely this shape (or one ap-
proximating it) is to be observed in a Plancherel-random partition of high
order. The measure of unlikelihood for this event is given by the expres-
sion 1 + 2Ihook( f ) involving the hook integral, which is the main term in the
exponent in (1.19). More precisely, this quantity is an exponential measure
of unlikelihood, since the integral appears in the exponent; that is, each
change of f that leads to an increase of Ihook( f ) by an additive constant
translates to a decrease in probability by a multiplicative constant. The
factor of n appearing in front of this expression in the exponent magnifies
the effect so that it becomes more and more pronounced as n grows larger.

In probability theory one often encounters results of similar nature con-
cerning an exponential measure of unlikelihood of an event. They are called
large deviation principles (since they measure probabilities of extremely
unlikely events, i.e., large deviations from the typical behavior). A gen-
eral theory of large deviations has been developed that facilitates proving
and using such theorems (see box on the next page). This theory becomes
useful in relatively abstract situations. Here, since the setting involves a
fairly concrete combinatorial structure, we can accomplish our goals with
more transparent ad hoc arguments, so there will be no need to develop the
general theory.

An important idea in the theory of large deviations is that in many cases
when we have a large deviation principle, the behavior of the random model
that is observed typically (i.e., with asymptotically high probability) is sim-
ilar to the behavior that is the most likely – that is, the behavior where
the “exponential measure of unlikelihood” (usually referred to as the rate
function, or rate functional) is at its minimum. This favorable state of
affairs does not occur in all situations,9 but for our problem we shall see
later that it does. Thus, the key to the limit shape result will be to identify
the element f ∈ F for which the hook integral Ihook( f ) takes its minimal
value. For an integral functional such as the hook integral defined on some
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Large deviations

The theory of large deviations studies probabilities of extremely rare events.
For example, what can be said about the probability that a sequence of
10,000 tosses of a fair coin will yield the result “heads” 6000 times? To be
sure, “almost 0” would be a pretty good answer, but often it is desirable
to have more accurate answers, since such “exponentially unlikely” events,
if they have an exponentially large influence on the outcome of an experi-
ment, can have a significant effect on the average result. For this reason,
the Swedish actuary Frederick Esscher was among the first people to study
such problems in the 1930s, motivated by questions of risk analysis for the
insurance industry [139].

The theory of large deviations was later extensively developed in the
second half of the 20th century with the works of notable mathematicians
such as Cramér, Donsker, Sanov, and especially Srinivasa S. R. Varadhan,
who formalized and unified the theory8; see [31], [139]. The theory has found
many applications. One particularly useful idea (which we use here) is that
the analysis of the large deviation properties of a system can often give
insight into its typical behavior. This is somewhat counterintuitive, since un-
derstanding the typical behavior requires one to identify events that are very
likely to happen, whereas the large deviation analysis is concerned with
measuring the probabilities of extremely unlikely events. But, to paraphrase
Sherlock Holmes, once you have eliminated the exponentially improbable,
whatever remains must be the truth!

(generally infinite-dimensional) space of functions, the problem of finding
its minimum (or more generally its stationary points) is known as a vari-
ational problem. The area of mathematics that concerns the systematic
study of such problems is called the calculus of variations (see the box
opposite).

The variational problem for hook integrals. Find the function f ∈ F for
which Ihook( f ) is minimized, and compute the value Ihook( f ) at the minimiz-
ing function.

Our goal for the next few sections will be to solve this variational prob-
lem. This will proceed through several stages of simplification and analy-
sis, culminating in an explicit formula for the minimizer. Finally, once the
problem is solved, we will deduce from its solution our limit shape theo-
rem for Plancherel-random partitions. From there, the way will be paved
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The calculus of variations

The calculus of variations is concerned with problems involving the mini-
mization or maximization of real-valued “functions of functions” (which are
often called functionals, to avoid an obvious source of confusion). Such
numerical quantities depending on an entire function (e.g., the length of a
curve or energy of a vibrating string) usually involve integration of some local
parameter along the graph of the function.

Historically, the first examples motivating the development of the general
theory came from physics; some famous ones are the tautochrone prob-
lem of finding a curve along which a ball rolling under the influence of gravity
will oscillate around the minimum point of the curve with a period indepen-
dent of its starting position, and the related brachistochrone problem of
finding a curve connecting two given points such that a ball rolling from the
top point to the bottom will make the descent in the fastest time. The former
question was solved in 1657 by Christiaan Huygens (who then unsuccess-
fully attempted to use the solution to construct a more precise version of
his famous pendulum clock). The latter was solved by Johann Bernoulli in
1696. The solutions to both problems are curves known as cycloids. Later,
in 1755, Leonhard Euler and Joseph-Louis Lagrange generalized the tech-
niques originating in the tautochrone problem to derive a much more general
principle for finding stationary points of integral functionals, which became
known as the Euler–Lagrange equation. This laid the foundation for the
emerging field of the calculus of variations.

To this day, the calculus of variations is of fundamental importance in
physics. One reason for this is the fact that many physical laws, though
usually derived as differential equations, have equivalent formulations as
variational principles – namely, statements to the effect that the physical
system “chooses” its behavior so as to minimize the integral of a certain
quantity over the entire history of the system.

for solving our original problem of determining the first-order asymptotics
of `n, the average length of a longest increasing subsequence of a uniformly
random permutation.

1.14 Transformation to hook coordinates

The hook integral is rather messy as it involves the expression h f (x, y) for
the hook-lengths (which, annoyingly, involves both the function f and its
inverse), and is therefore difficult to analyze. It turns out that it can be
simplified and brought to a much cleaner form that will give us consider-
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x

y

u

v

(a) (b)

Figure 1.10 A continual Young diagram in standard and rotated
coordinates.

able insight into its behavior, using several clever transformations. First, we
change our coordinate system from the “standard” or “English” coordinate
system to the “Russian” coordinates

u =
x − y
√

2
, v =

x + y
√

2
. (1.23)

The u–v coordinates are simply an orthogonal coordinate system rotated by
45 degrees relative to the standard x–y coordinates. Note that some authors
divide by 2 instead of

√
2, which results in the change of variables being

a nonorthogonal transformation. This results in some cleaner formulas but
seems a bit less intuitive, so we prefer the convention given here.

Having changed the coordinate system, we can define a new space of
functions G that describe the limiting shapes of Young diagrams in this
new coordinate system. More precisely, to each continual Young diagram
f ∈ F there corresponds a unique function g ∈ G whose graph is the graph
of f drawn in the new coordinate system. We still refer to g as a continual
Young diagram, leaving the coordinate system to be understood from the
context. For example, Fig. 1.10 shows a continual Young diagram f ∈ F
and its associated rotated version g ∈ G. Formally, f and g are related to
each other by

v = g(u) ⇐⇒
v − u
√

2
= f

(
v + u
√

2

)
. (1.24)

What exactly is the new space of functions G obtained by transforming



1.14 Transformation to hook coordinates 43

t s

Hu,vL

u

Figure 1.11 Hook coordinates.

functions in f in this way? It is not hard to see that G is exactly the space
of functions g : R→ [0,∞) satisfying the following conditions:

1. g is 1-Lipschitz, that is, |g(s) − g(t)| ≤ |s − t| for all s, t ∈ R;
2. g(u) ≥ |u| for all u ∈ R;
3.

∫ ∞
−∞

(g(u) − |u|) du = 1;
4. g(u) − |u| is supported on a compact interval [−I, I].

Note that in particular, in this new coordinate system the functions being
considered as candidates to be the limit shape are now continuous, and in
fact also (being Lipschitz functions) almost everywhere differentiable. This
is already somewhat of an advantage over the previous coordinate system.

Fix f ∈ F , and let g ∈ G be the function corresponding to f in the new
coordinate system. The hook integral is defined as a double integral over
the region bounded under the graph of f – or, in terms of u–v coordinates,
over the region bounded between the graph of g and the graph of the ab-
solute value function v = |u|. We now define a second transformation that
parametrizes this region in terms of yet another set of coordinates, which
we call the hook coordinates. These are defined as follows: if (u, v) is a
point such that |u| ≤ v ≤ g(u), consider the arm and the leg which together
form the hook of the point (u, v). In the Russian coordinate system, the arm
and the leg extend from (u, v) in the northeast and northwest directions,
respectively, until they intersect the graph of g. Denote the points of inter-
section with the graph of g by (s, g(s)) and (t, g(t)). The hook coordinates
are simply the pair (t, s); see Fig. 1.11
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Formally, t and s can be defined using the equations

g(s) − s = v − u, g(t) + t = v + u. (1.25)

The hook coordinates can be thought of as a system of nonlinear coordi-
nates, mapping the region bounded between the graphs of g and |u| to some
region ∆ in the t–s plane. This allows us to rewrite the hook integral as a
double integral over the region ∆. The integrand log h f (x, y) simply trans-
forms to log

(√
2(s − t)

)
, so the integral will be

Ihook( f ) =

"
∆

log
(√

2(s − t)
) ∣∣∣∣∣D(u, v)

D(t, s)

∣∣∣∣∣ ds dt,

where D(u, v)/D(t, s) is the Jacobian of the transformation (t, s) → (u, v).
Let us compute this Jacobian, or rather (since this is a bit more convenient)
its reciprocal, D(t, s)/D(u, v), which is the Jacobian of the inverse trans-
formation (u, v)→ (t, s). To do this, take partial derivatives with respect to
both the variables u and v of both equations in (1.25), and solve for the four
partial derivatives ∂s/∂u, ∂s/∂v, ∂t/∂u, ∂t/∂v, to get easily that

∂t
∂u

=
∂t
∂v

=
1

1 + g′(t)
,

∂s
∂u

= −
∂s
∂v

=
1

1 − g′(s)
.

Therefore we get that

D(t, s)
D(u, v)

= det
 ∂t

∂u
∂t
∂v

∂s
∂u

∂s
∂v

 =
2

(g′(s) − 1)(g′(t) + 1)
. (1.26)

So, we have shown so far that the hook integral from (1.18) can be ex-
pressed as

Ihook( f ) = 1
2

"
∆

log
(√

2(s − t)
)

(1 + g′(t))(1 − g′(s)) dt ds

= 1
2

"
−∞<t<s<∞

log
(√

2(s − t)
)

(1 + g′(t))(1 − g′(s)) dt ds,

(1.27)

where the last equality comes from the observation that outside of ∆ we
always have that either 1 + g′(t) = 0 (when t becomes sufficiently negative
so that g(t) = −t) or 1 − g′(s) = 0 (when s is sufficiently positive so that
g(s) = t), so the integrand vanishes.
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t t+Dt s s+Ds

Hu,vL
Hu+Du,v+DvL

u

Figure 1.12 Perturbing the hook coordinates as a geometric way
to compute the Jacobian of the transformation to hook
coordinates.

As a side remark, note that there is another, more geometric, way to un-
derstand the Jacobian factor of the transformation (u, v) → (s, t). This is
illustrated in Fig. 1.12, which shows the effect of perturbing the t and s
coordinates slightly. When ∆t and ∆s become small, the Jacobian (ignor-
ing its sign) emerges as the approximate ratio of the area of the rotated
rectangle with opposite corners (u, v) and (u + ∆u, v + ∆v) shown in the fig-
ure, to the differential ∆t ∆s. It is not hard to see by elementary geometric
considerations that this is approximately equal to 1

2 (1 − g′(s))(1 + g′(t)).
To simplify (1.27) some more, first note that the

√
2 term in the loga-

rithm can be handled separately, and adds a constant contribution of 1
2 log(2)

(since the constant is integrated against a weight function that integrates
to 1); second, define

h(u) = g(u) − |u|, (1.28)

so that we have h′(u) = g′(u) − sgn(u) (where sgn(u) is the signum func-
tion), and observe that it is convenient to represent the integral

"
t<s

log(s − t)(1 + g′(t))(1 − g′(s)) dt ds (1.29)
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as a sum of two terms, the first one of which being"
t<s

log(s − t)(g′(t) − sgn(t))(sgn(s) − g′(s)) dt ds

= −

"
t<s

log(s − t)h′(t)h′(s) dt ds, (1.30)

and the second being the difference of (1.29) and this last integral. This dif-
ference can be computed by splitting the domain of integration into several
parts according to the signs of t and s. The part where t < 0 < s disappears
because of cancellation, and we are left with"

−∞<t<s<0
log(s − t) h′(t)(1 − (−1)) dt ds

+

"
0<t<s<∞

log(s − t)(1 − (−1))(−h′(s)) dt ds

= 2
∫ 0

−∞

h′(t)
(∫ 0

t
log(s − t) ds

)
dt − 2

∫ ∞

0
h′(s)

(∫ s

0
log(s − t) dt

)
ds

= −2
∫ ∞

−∞

h′(u)
(
u log |u| − u

)
du.

We can now write our integral functional Ihook( f ) in the final form that
we will need for our analysis. Define

B(h1, h2) = − 1
2

∫ ∞

−∞

∫ ∞

−∞

log |s − t| h′1(t)h′2(s) dt ds,

Q(h) = B(h, h) = − 1
2

∫ ∞

−∞

∫ ∞

−∞

log |s − t| h′(t)h′(s) dt ds,

L(h) = −2
∫ ∞

−∞

h′(u)
(
u log |u| − u

)
du.

Then combining (1.27) with the computations above, and noting that Q(h)
is a symmetrized form of (1.30), we have shown that

2Ihook( f ) = log 2 + Q(h) + L(h) =: J(h). (1.31)

Note that B(h1, h2) is a bilinear form in h′1 and h′2; Q(h) is a quadratic form
in h′; and L(h) is a linear functional of h′. The representation (1.31) pro-
vides an alternative method of showing that the hook integral converges
absolutely; see Exercise 1.17.

The function h, by its definition in (1.28) as a transformed version of
g, now ranges over a new space of functions, which we denote by H . By
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the connection between the Lipschitz property and the notion of absolute
continuity, this can be described as the space of functions h : R → [0,∞)
satisfying:

1. h is absolutely continuous (that is, almost everywhere differentiable
and satisfies the Newton–Leibniz formula h(x) = h(0) +

∫ x

0
h′(u) du

for all x);

2.
∫ ∞
−∞

h(u) du = 1;

3. sgn(u) · h′(u) ∈ [−2, 0] wherever h′(u) is defined;

4. h is supported on a compact interval [−I, I].

The problem of minimizing Ihook( f ) on the function space F has thus been
reformulated to that of minimizing J(h) on the new space H . This is ad-
dressed in the next section.

1.15 Analysis of the functional

Our new representation of the hook integral in the form J(h) = Q(h) +

L(h) + log(2), consisting of a constant, a linear term, and a quadratic term,
should give us hope that the minimization problem that we are trying to
solve should actually not be too difficult. (To be sure, many clever steps
were already required just to get to this point in the analysis!) In fact, it is
interesting to note that our minimization problem is similar to variational
problems that appear in several other branches of mathematics – notably
in the analysis of stationary distributions of electrostatic charges in certain
physical systems, in potential theory, and in random matrix theory; see
[58], Section 5.3. In other words, we are in fairly well-charted territory and
can use more or less standard techniques, although this will require using
some nontrivial facts from analysis, and in particular some of the properties
of the Hilbert transform (see box on the next page).

We start by examining the quadratic part Q(h) of the hook integral func-
tional. A key property is that it is positive-definite.

Proposition 1.15 For any Lipschitz function h : R → R with compact
support, we have that Q(h) ≥ 0, with equality if and only if h ≡ 0.

Proof Let h be a function satisfying the assumptions of the proposition.
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The Hilbert transform

The Hilbert transform, named after David Hilbert, is an important analytic
transform that maps a function f : R→ R to the function f̃ defined by

f̃ (x) =
1
π

∫ ∞

−∞

f (y)
x − y

dy,

where the integral is required to converge almost everywhere in the sense
of the Cauchy principal value (i.e., the limit as ε ↓ 0 of the integrals where
an ε-neighborhood centered around the singularity point y = x is removed
from the domain of integration). When the Hilbert transform exists (e.g., if
f ∈ L2(R)), we have the inversion relation

f (x) = −
1
π

∫ ∞

−∞

f̃ (y)
x − y

dy

(i.e., f (x) = − ˜̃f (x)), and we say that f and f̃ are a Hilbert transform pair.
This concept is closely related to the notion of conjugate harmonic func-
tions in complex analysis: it can be shown that if F(z) = u(z) + iv(z) is a
complex analytic function in the upper half-plane H = {z ∈ C : Im z > 0}
(so that u and v are a pair of conjugate harmonic functions on H) such that
limz∈H,|z|→∞ F(z) = 0, then, under some additional integrability conditions, the
limits

f (x) = lim
y↓0

u(x + iy), g(x) = lim
y↓0

v(x + iy)

exist for almost every x ∈ R, and g(x) = f̃ (x).
Another interesting way of looking at the Hilbert transform is in terms

of how it acts in the frequency domain. It is known that f̃ can be obtained
from f by shifting the phase of all positive frequencies by −π/2 and shifting
the phase of all negative frequencies by π/2. More precisely, we have the
equation

ˆ̃f (s) = −i sgn(s) f̂ (s),

where ĝ denotes the Fourier transform of g. This fact is roughly equivalent
to the identities

˜sin(x) = − cos(x), ˜cos(x) = sin(x),

which can be checked without too much difficulty, and also offers an easy
way to see that the Hilbert transform is an isometry of L2(R) onto itself. For
more details, refer to [68].

Recall that the Fourier transform of h is defined by

ĥ(x) =

∫ ∞

−∞

h(u)e−ixu du
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(where i =
√
−1). The Hilbert transform of h is defined by

h̃(x) =
1
π

∫ ∞

−∞

h(u)
x − u

du,

where the integral is interpreted in the sense of the Cauchy principal value
(see box). Given our assumptions on h it is easy to see that this integral
converges for every x ∈ R. By integration by parts (which is also easy to
justify under our assumptions), h̃(x) can also be expressed as

h̃(x) =
1
π

∫ ∞

−∞

h′(u) log |x − u| du.

It follows that Q(h) can in turn be written as

Q(h) = −
π

2

∫ ∞

−∞

h′(u) h̃(u) du = −
π

2

∫ ∞

−∞

h′(u) h̃(u) du,

where an overline is used to denote the complex conjugate (note that since h
is real-valued, so is its Hilbert transform). The integral is the inner product
in L2(R) of the derivative of h and its Hilbert transform, so, by Parseval’s
theorem in Fourier analysis, we have that

Q(h) = − 1
4

∫ ∞

−∞

ĥ′(x)ˆ̃h(x) dx. (1.32)

Here, the Fourier transforms of h′ and h̃ are given by10

ĥ′(x) = (i x)ĥ(x), (1.33)
ˆ̃h(x) = (−i sgn(x))ĥ(x). (1.34)

These relations correspond to the well-known facts that in the frequency
domain the derivative operation and Hilbert transform both appear as sim-
ple operations of multiplication by the functions i x and −i sgn(x), respec-
tively. So we get from (1.32) that

Q(h) = 1
4

∫ ∞

−∞

|x| ·
∣∣∣ĥ(x)

∣∣∣2 dx. (1.35)

This immediately implies our claim. �

Next, we prove an explicit computational criterion that will allow us to
deduce that a given element ofH is a minimizer for J(·).



50 Longest increasing subsequences in random permutations

Theorem 1.16 Let h0 ∈ H . Assume that for some constant λ ∈ R, the
function p : R→ R defined by

p(u) = −

∫ ∞

−∞

h′0(s) log |s − u| ds − 2
(
u log |u| − u

)
+ λu (1.36)

has the property that, for almost every u ∈ R,

p(u) is


= 0, if sgn(u) · h′0(u) ∈ (−2, 0),
≤ 0, if h′0(u) + sgn(u) = 1,
≥ 0, if h′0(u) + sgn(u) = −1.

(1.37)

Then for any h ∈ H we have that

J(h) ≥ J(h0) + Q(h − h0). (1.38)

In particular (since Q(h−h0) ≥ 0), it follows that h0 is the unique minimizer
for J(·) onH .

Proof Let h ∈ H . Because we know that h satisfies |h′(u) + sgn(u)| ≤ 1,
the condition (1.37) implies that

(h′(t) − h′0(t))p(t) ≥ 0

holds almost everywhere. It follows by integration that∫ ∞

−∞

h′(t)p(t) dt ≥
∫ ∞

−∞

h′0(t)p(t) dt.

By the definition of p, this translates to

2B(h, h0) + L(h) + λ

∫ ∞

−∞

uh′(u) du ≥ 2B(h0, h0) + L(h0) + λ

∫ ∞

−∞

uh′0(u) du.

Equivalently, because we know that
∫ ∞
−∞

uh′(u) du = −
∫ ∞
−∞

h(u) du = −1
and similarly for h0, we can write this as 2B(h − h0, h0) ≥ L(h0 − h). It
follows that

J(h) = Q(h) + L(h) + log 2 = Q(h0 + (h − h0)) + L(h) + log 2

= Q(h0) + Q(h − h0) + 2B(h0, h − h0) + L(h) + log 2

≥ Q(h0) + Q(h − h0) + L(h0) + log 2 = J(h0) + Q(h − h0),

as claimed. �



1.15 Analysis of the functional 51

It is worth mentioning that there is some methodology involved in for-
mulating the condition (1.37). It is a version of the so-called complemen-
tary slackness condition from the theory of convex optimization – essen-
tially a fancy application of the standard technique of Lagrange multipliers
from calculus. The constant λ plays the role of the Lagrange multiplier.

It now remains to exhibit a function h0 ∈ H for which the assumptions
of Theorem 1.16 are satisfied. We follow a slightly simplified version of
the argument from Logan and Shepp’s paper [79].

First, we make an informed guess about the form of the solution h0. Re-
member that the variational problem originally arose out of the problem of
finding the asymptotic shape of a typical Young diagram chosen accord-
ing to Plancherel measure of high order. Specifically, h0(u) is of the form
g0(u) − |u|, where g0 represents the limit shape in the Russian coordinate
system. Looking back at the simulations from p. 32, we see that we should
expect h0 to have compact support, and to be symmetric about the origin
(i.e., an even function). In particular, we should have that

h′0(u) = 0 if and only if |u| ≥ β,

for some value β > 0. In fact, the value β =
√

2 is a strong candidate to be
the correct value, since, after taking the scaling and rotation into account,
that would mean (heuristically, at least) that the graph of the Plancherel-
random Young diagram of order n would have a first row of length approx-
imately 2

√
n for n large. This corresponds, via the Robinson–Schensted al-

gorithm, to the empirical observation that uniformly random permutations
of order n have a longest increasing subsequence of length about 2

√
n,

which is the result that we are ultimately aiming to prove. So we assume
that β =

√
2.

Having made these assumptions, note that the first condition in (1.37)
translates to the equation

−

∫ √
2

−
√

2
h′0(s) log |s − u| ds = 2(u log |u| − u) − λu, (|u| ≤

√
2);

or, differentiating with respect to u, we get the condition

−π ˜(h′0)(u) = −

∫ √
2

−
√

2

h′0(s)
u − s

ds = 2 log |u| − λ (1.39)

that should hold for |u| ≤
√

2. In other words, we need at the very least to
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find a function that is supported on [−
√

2,
√

2] and whose Hilbert trans-
form coincides up to an additive constant with (−2/π) log |u| on the interval
[−
√

2,
√

2]. This is accomplished using the following lemma.

Lemma 1.17 Define functions f , g : R→ R by

f (x) =

sin−1(x) − π
2 sgn(x) if |x| ≤ 1,

0 if |x| > 1,

g(x) =

− log (2|x|) if |x| ≤ 1,

− log (2|x|) − log
(
|x| −

√
x2 − 1

)
if |x| > 1.

Then g is the Hilbert transform of f .

Proof We use the notion of a Hilbert transform pair (see box on p. 48).
The claim will follow by showing that the pointwise limit

f (x) + ig(x) = lim
y↓0

F(x + iy) (1.40)

holds for almost all x ∈ R, where F(z) is a suitable analytic function defined
on the upper half-plane H = {z ∈ C : Im z > 0}.

Consider the following simple computations. Let G(z) = Log(−iz),
where Log(w) denotes the principal value of the complex logarithm func-
tion (whose imaginary value is defined to be in (−π, π]). Then G(z) is ana-
lytic on H, and for all x ∈ R \ {0} we have

lim
y↓0

G(x + iy) = log |x| −
πi
2

sgn(x). (1.41)

Next, let H(z) = arcsin(z), a branch of the arcsine function considered as an
analytic function on H. Formally, H(z) = −i Log(iz +

√
1 − z2), where

√
w

is the branch of the square root function defined as
√

w = exp( 1
2 Log w). It

is easy to verify that

lim
y↓0

√
1 − (x + iy)2 =


√

1 − x2 if |x| ≤ 1,

−i sgn(x)
√

x2 − 1 if |x| > 1,

from which it follows that

lim
y↓0

H(x + iy) =

sin−1(x) if |x| ≤ 1,
π
2 sgn(x) − i log

(
|x| −

√
x2 − 1

)
if |x| > 1.

(1.42)
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Finally, define

F(z) = H(z) − iG(z) − i log(2) = arcsin(z) − i Log(−iz) − i log(2). (1.43)

By combining (1.41) and (1.42) we get exactly (1.40).
Finally, according to the theory of the Hilbert transform, to conclude

from (1.40) that f and g are a Hilbert transform pair, it is still necessary
to check that F(z) is a “good” function; for example, knowing that it is in
the Hardy space H2(H) of the upper half-plane would suffice. This requires
checking that

sup
y∈(0,∞)

∫ ∞

−∞

|F(x + iy)|2 dx < ∞,

whereupon Theorem 95 of [135] (a version of a result known as the Paley–
Wiener theorem) implies our claim. An alternative and perhaps easier
method is to show first that limz∈H,|z|→∞ F(z) = 0, and then follow the
derivation in [68], Section 3.4, which produces the desired result as long as
one separately verifies a slightly modified version of the convergence we
claimed, namely the fact that∫ b

a
|F(x + iy) − ( f (x) + ig(x))| dx −−−→

y↘0
0

for any −∞ < a < b < ∞. Either of these claims are straightforward and
left as exercises for readers with an affinity for complex analysis. �

Theorem 1.18 The function

h0(u) =


2
π

(
u sin−1

(
u
√

2

)
+
√

2 − u2
)
− |u| if |u| ≤

√
2,

0 if |u| >
√

2,
(1.44)

is the unique minimizer of the functional J(·) onH .

Proof Note that h0 is continuous and piecewise differentiable, with its
derivative given by

h′0(u) =


2
π

sin−1
(

u
√

2

)
− sgn(u) if |u| ≤

√
2,

0 if |u| >
√

2.

First, we verify that h0 ∈ H . Trivially, 0 ≤ h′0(u) ≤ 1 for u ≤ 0 and
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−1 ≤ h′0(u) ≤ 0 for u ≥ 0, so also h0(u) ≥ 0 for all u. Furthermore,∫ ∞

−∞

h0(u) du =

∫ √
2

−
√

2
h0(u) du = −

∫ √
2

−
√

2
uh′0(u) du

=

∫ √
2

−
√

2
|u| du −

2
π

∫ √
2

−
√

2
u sin−1(u/

√
2) du

= 2 −
4
π

∫ 1

−1
x sin−1(x) dx = 2 −

4
π
·
π

4
= 1,

where the last integral is evaluated using the indefinite integral evaluation∫
x sin−1(x) dx =

(
1
2 x2 − 1

4

)
sin−1(x) + 1

4 x
√

1 − x2 + C.

So h0 is indeed inH .
Next, we verify that the conditions in (1.37) are satisfied for a suitable

choice of constant λ. Differentiating (1.36), we get that

p′(u) = −

∫ √
2

−
√

2

h′0(s)
u − s

ds − 2 log |u| + λ = −π ˜(h′0)(u) − 2 log |u| + λ.

But the Hilbert transform of h′0(u) is given by Lemma 1.17, up to a small
scaling operation (recall that the Hilbert transform is linear and commutes
with dilations, or simply manipulate the integral to bring it to the form of
the lemma). So we get after a short computation that

p′(u) =

log(2) + λ if |u| <
√

2,

log(2) + λ + 2 log
(
|u|
√

2
−

√
u2

2 − 1
)

if |u| >
√

2,

or, now choosing λ = − log(2),

p′(u) =

0 if |u| <
√

2,

2 log
(
|u|
√

2
−

√
u2

2 − 1
)

if |u| >
√

2.

In particular, p(u) is constant on [−
√

2,
√

2], and it is easy to check that
p′(u) ≤ 0 for all u. Finally, p(0) = 0, since for u = 0 the integrand in
(1.36) is an odd function. Combining these facts gives that (1.37) is indeed
satisfied, which completes the proof. �
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1.16 Computation of J(h0)

We proved that the function h0 given in (1.44) is the minimizer for the func-
tional J(·), but we do not yet know the actual minimum value J(h0). This
is not a very difficult computation, given the results we already derived.

Theorem 1.19 J(h0) = −1.

Proof First, we compute L(h0), as follows. We already saw that h0 satis-

fies
∫ √2

−
√

2
h′0(u)u du = −1, so

L(h0) = −2
∫ √

2

−
√

2
h′0(u)(u log |u| − u) du

= −2 − 4
∫ √

2

0
h′0(u)u log(u) du

= −2 + 4
∫ √

2

0
u log(u) du −

8
π

∫ √
2

0
u log(u) sin−1(u/

√
2) du

= −2 + (2 log(2) − 2) + (2 − 3 log(2)) = −2 − log(2),

where we make use of the definite integral evaluation∫ 1

0
x log(x) sin−1(x) dx =

π

8
(log(2) − 1), (1.45)

(a proof of this slightly nontrivial evaluation is sketched in Exercise 1.18).
Next, note that the fact that p(u) = 0 on [−

√
2,
√

2] implies that

0 =

∫ √
2

−
√

2
p(u)h′0(u) du = 2Q(h0) + L(h0) − λ = 2Q(h0) − 2,

so Q(h0) = 1. From this we get finally that

J(h0) = Q(h0) + L(h0) + log(2) = −1. �

1.17 The limit shape theorem

We now go back to the problem of the limit shape of Plancherel-random
partitions. As before, for each n ≥ 1 we let λ(n) denote a random partition
of n chosen according to Plancherel measure of order n. Let φn(x) be the
function in the function space F corresponding to λ(n) as in (1.17). Since
it will be natural to formulate our results in terms of the rotated coordinate
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system, let ψn be the element of the function space G corresponding to φn

in the rotated coordinate system, with φn and ψn being related as f and g
in (1.24).

Our first formulation of the limit shape theorem will be in terms of a
certain nonstandard topology on G related to the quadratic functional Q(·).
For any compactly supported Lipschitz function h : R→ [0,∞), denote

‖h‖Q = Q(h)1/2. (1.46)

Because Q is positive-definite (Proposition 1.15), this norm-like function
induces a metric dQ on G, defined by

dQ(g1, g2) = ‖g1 − g2‖Q = Q(g1 − g2)1/2 (g1, g2 ∈ G).

Theorem 1.20 As n → ∞, the random function ψn converges in proba-
bility in the metric dQ to the limiting shape given by

Ω(u) =


2
π

(
u sin−1

(
u
√

2

)
+
√

2 − u2
)

if |u| ≤
√

2,

|u| if |u| >
√

2.
(1.47)

That is, for all ε > 0 we have

P
(
‖ψn −Ω‖Q > ε

)
−−−→
n→∞

0.

Proof For each partition λ ∈ P(n), denote by gλ the element of G corre-
sponding to the function φλ ∈ F , and denote hλ(u) = gλ(u)− |u|. Denote by
Mn the set of partitions λ ∈ P(n) for which ‖gλ − Ω‖Q > ε. By (1.38), for
each λ ∈ Mn we have

J(hλ) ≥ J(h0) + Q(hλ − h0) = −1 + Q(hλ − h0) > −1 + ε2.

By Theorem 1.14 and (1.31), this implies that

P(λ(n) = λ) ≤ exp
(
− ε2n + O(

√
n log n)

)
,

where the O-term is uniform over all partitions of n.
Note that we also know that |Mn| ≤ |P(n)| ≤ eC

√
n, by (1.15). So alto-

gether we get that

P(λ(n) ∈ Mn) =
∑
λ∈Mn

P(λ(n) = λ) ≤ C exp(−ε2n + C
√

n + O(log n
√

n)),

which indeed converges to 0 as n→ ∞. �
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One problem with Theorem 1.20 is that it proves the convergence to
the limit shape in an exotic topology whose connection to more standard
notions of convergence in function spaces is unclear. In addition to being
an aesthetic flaw, this makes it difficult to apply the theorem to our needs.
However, with a bit more work this flaw can be corrected, and in fact we
can get convergence in the more familiar uniform norm (a.k.a. supremum
norm or L∞ norm), defined by

‖ f ‖∞ = sup
u∈R
| f (u)|.

The necessary tool is the following lemma.11

Lemma 1.21 Let A, L > 0, and let Lip(L, A) denote the space of all func-
tions f : R→ R which are Lipschitz with constant L and are supported on
the interval [−A, A]. For any f ∈ Lip(L, A) we have

‖ f ‖∞ ≤ C Q( f )1/4 (1.48)

where C > 0 is some constant that depends on A and L.

Proof We prove this using standard facts from the fractional calculus.
For completeness, we include a self-contained argument, but for more back-
ground and motivation see the box on the next page.

First, to see why the fractional calculus may prove useful in this context,
note that, by (1.35) and the Plancherel theorem from Fourier analysis, the
quantity Q( f )1/2 can be thought of, somewhat speculatively, as being pro-
portional to the L2-norm of a function g : R→ C whose Fourier transform
satisfies |ĝ(s)| = |s|1/2

∣∣∣ f̂ (s)
∣∣∣. Indeed, such a function exists and is exactly the

half-derivative, or derivative of order 1/2, a well-understood object from
the fractional calculus. We can construct it explicitly as

g(x) =
1

2
√
π

∫ ∞

0

f (x) − f (x − t)
t3/2 dt =

1
2
√
π

∫ x

−∞

f (x) − f (y)
(x − y)3/2 dy. (1.49)

It is easy to see using the Lipschitz property and the fact that f is supported
on [−A, A] that the integral converges absolutely for any x, and furthermore
that we can represent g(x) more explicitly as

g(x) =


0 if x ≤ −A,

f (x)
√
π(x+A)

+ 1
2
√
π

∫ x

−A
f (x)− f (y)
(x−y)3/2 dy if − A < x < A,

− 1
2
√
π

∫ A

−A
f (y)

(x−y)3/2 dy if x ≥ A.
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Fractional calculus

The fractional calculus studies the various senses in which differentiation
and integration operations can be applied to an arbitrary fractional (real or
complex) order α. For example, a half-derivative operator D1/2 should sat-
isfy the property that D1/2D1/2 f = f ′ in the appropriate function space. In
contrast to the usual calculus operations of differentiation and integration
applied an integer number of times, there is no unique way to define such
an operation, and the meaning that it can be given, as well as the sense
in which the fractional integral operator is inverse to the fractional derivative
operator of the same order, will depend on the particular space of functions
and type of fractional differential and integral operators used. One popular
approach starts with the Riemann–Liouville integral, which is the fractional
integral operator of order α taking a function f to

(Iα f )(x) =
1

Γ(α)

∫ x

0
f (t)(x − t)−1+α dt,

where Γ(·) denotes the Euler gamma function. This operator is defined and
well-behaved if Re(α) > 0. It can be shown that under certain conditions, the
inverse operation is given by the Marchaud fractional derivative operator
Dα, defined by

(Dαg)(x) =
α

Γ(1 − α)

∫ ∞

0

f (x) − f (x − t)
t1+α

dt.

For more details, refer to [89].

From this representation it follows easily that g is bounded and for large
positive x satisfies a bound of the form |g(x)| ≤ Cx−3/2 where C is some
positive constant. In particular, g is in L1(R) (and also in L2(R)) and there-
fore has a Fourier transform, which can be computed as follows:

ĝ(s) =

∫ ∞

−∞

g(x)e−isx dx =
1

2
√
π

∫ ∞

0

1
t3/2

∫ ∞

−∞

( f (x) − f (x − t))e−isx dx dt

=
1

2
√
π

∫ ∞

0

1
t3/2

(
f̂ (s) − f̂ (s)e−ist

)
dt

=
1

2
√
π
|s|1/2 f̂ (s)

∫ ∞

0

1 − e−i sgn(s)u

u3/2 du = |s|1/2e−πi sgn(s)/4 f̂ (s),

where we use the integral evaluation∫ ∞

0

1 − eiu

u3/2 du = 2e−πi/4 √π (1.50)
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(Exercise 1.19). This was exactly the property we wanted, since it implies
that ‖g‖22 = ‖ĝ‖22/2π = (2/π)Q( f ).

Next, to compare ‖ f ‖∞ with Q( f ) = (π/2)‖g‖22, we need to know how
to recover f from g. This is done by performing a fractional integration of
order 1/2, defined by

h(x) =
1
√
π

∫ x

−∞

g(t)
√

x − t
dt =

0 if x < −A,

1
√
π

∫ x

−A
g(t)
√

x−t
dt if x ≥ −A.

(1.51)

The properties of g ensure that the integral defining h(x) converges abso-
lutely for all x. The Fourier transform of h is

ĥ(s) =

∫ ∞

−A
h(x)e−isx dx =

1
√
π

∫ ∞

−A
e−isx

∫ x

−A

g(t)
√

x − t
dt dx

=
1
√
π

∫ ∞

−A
g(t)

∫ ∞

t

e−isx

√
x − t

dx dt =
1
√
π

∫ ∞

−A
g(t)e−ist dt

∫ ∞

0

e−isu

√
u

du

=
1
√
π
|s|−1/2ĝ(s)

∫ ∞

0

e−i sgn(s)x

√
x

dx = |s|−1/2eπi sgn(s)/4ĝ(s) = f̂ (s),

for all s , 0, where we use another integral evaluation (actually equivalent
to (1.50) – see Exercise 1.19)

∫ ∞

0

eiu

u1/2 du = eπi/4 √π. (1.52)

This result ought to imply that h = f almost everywhere, that is, that the
half-integral operation (1.51) is indeed inverse to the half-differentiation
in (1.49). Note, however, that this is merely a formal computation, since a
priori we do not know that h ∈ L1(R) and therefore the integral defining
its Fourier transform may not be defined, and the change in the order of
integration we performed is also unjustified. Nonetheless, the conclusion
that h = f a.e. is correct and is not hard to justify (Exercise 1.20).

Equipped with these latest observations, we can now bound the L1-norm
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of f in terms of ‖g‖2 =
√

2/πQ( f )1/2, as follows:

‖ f ‖1 =

∫ A

−A
| f (x)| dx ≤

1
√
π

∫ A

−A

∫ x

−A

|g(t)|
√

x − t
dt dx

=
1
√
π

∫ A

−A
|g(t)|

(∫ A

t

1
√

x − t
dx

)
dt =

1
√
π

∫ A

−A
|g(t)|2

√
A − t dt

≤
2
√

2A
√
π

∫ A

−A
|g(t)| dt ≤

4A
√
π

(∫ A

−A
g(t)2 dt

)1/2

≤
4A
√
π
‖g‖2 =

4
√

2
π

AQ( f )1/2. (1.53)

Finally, we convert this bound to a bound on the uniform norm of f . If
x0 ∈ [−A, A] is such that | f (x0)| = ‖ f ‖∞, then by the Lipschitz property we
get that

‖ f ‖1 =

∫ A

−A
| f (x)| dx =

∫ ∞

−∞

| f (x)| dx

≥

∫ ∞

−∞

max
(
0, | f (x0)| − L|x − x0|

)
dx =

| f (x0)|2

L
=
‖ f ‖2∞

L
. (1.54)

Combining (1.53) and (1.54) we get the claim of the lemma. �

As a consequence, we can finally prove the celebrated 1977 theorem of
Vershik, Kerov, Logan, and Shepp.

Theorem 1.22 (Limit shape theorem for Plancherel-random partitions) As
n → ∞, the random function ψn converges in probability in the norm ‖·‖∞
to the limiting shape Ω defined in (1.47). That is, for all ε > 0 we have

P
(
sup
u∈R
|ψn(u) −Ω(u)| > ε

)
−−−→
n→∞

0.

Proof By Lemma 1.5, combined with the Robinson–Schensted algorithm,
we see that, with probability that converges to 1 as n → ∞, the partition
λ(n) has a first row of length < 3

√
n, and by the symmetry between rows

and columns this bound also applies with high probability to the length of
its first column. These bounds imply that the corresponding function ψn

is supported on the compact interval [−3
√

2, 3
√

2]. Therefore the conver-
gence in the metric dQ given in Theorem 1.20 immediately translates, via
Lemma 1.21, to a convergence in the uniform norm. �
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Figure 1.13 (a) The Logan–Shepp–Vershik–Kerov limit shape Ω.
(b) The limit shape superposed for comparison (after correct
scaling) on a simulated Plancherel-random Young diagram of
order n = 1000.

Theorem 1.22 is a landmark achievement in the development of the
mathematics of longest increasing subsequences; the result, and the ideas
used in its proof, have had a considerable impact on research in the field
beyond their immediate applicability to the Ulam–Hammersley problem.
Take a moment to appreciate this beautiful result with a look at Fig. 1.13.

As a first application of Theorem 1.22, we can prove a first asymptoti-
cally sharp bound on `n, the average maximal length of a longest increasing
subsequence of a random permutation of order n.
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Theorem 1.23 If Λ = limn→∞ `n/
√

n is the constant whose existence is
proved in Theorem 1.6, then we have

Λ ≥ 2.

Proof As we already noted, the Robinson–Schensted algorithm implies
that the random variable L(σn), where σn is a uniformly random element of
Sn, is equal in distribution to the length λ(n)

1 of the first row of a Plancherel-
random partition λ(n) of order n. But by Theorem 1.22, with asymptotically
high probability λ(n) must have a first row of length at least (2 − o(1))

√
n:

for, if this were not the case, then for infinitely many values of n the corre-
sponding function ψn encoding its diagram in the Russian coordinate sys-
tem would coincide with the absolute value function |u| on some interval
[−
√

2,−
√

2 + ε], for some fixed ε > 0 that does not depend on n. Clearly
this would prevent ψn from converging uniformly to the limit shape Ω, in
contradiction to Theorem 1.22. �

It is instructive to try to similarly prove the matching upper bound Λ ≤ 2
using the limit shape theorem. Such an attempt will not succeed. Indeed,
while the assumption that Λ > 2 would lead to the conclusion that ψn

differs from the absolute value function (and hence from the limit shape
Ω(u)) on some interval

[
−
√

2 − ε,−
√

2
]
, this does not contradict the limit

shape theorem, nor does it even imply that J(ψn − |u|) > J(h0) + δ for some
fixed δ > 0 (which was the more fundamental fact that we used to prove
the limit shape theorem). Thus, proving the upper bound Λ ≤ 2 in order
to conclude our proof of Theorem 1.1 requires a new idea. However, this
part turns out to be quite easy and will be done in Section 1.19 after a brief
digression into representation theory.

1.18 Irreducible representations of Sn with maximal dimension

The limit shape theorem for Plancherel measure is a powerful and elegant
result in combinatorial probability. In the next section we shall use it to
prove Theorem 1.1, which will finish the first main part of our analysis of
the maximal length of increasing subsequences of random permutations.
In this section, we digress briefly from this original motivation to note that
Theorem 1.22, or more precisely the analysis leading to it, actually pro-
vides the answer to another question in pure mathematics concerning the
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Representation theory and the representations of Sn

Representation theory aims to understand algebraic structures, for ex-
ample (in the simplest case) finite groups, by studying their representa-
tions. The representations of a finite group G are homomorphisms ϕ : G →
GL(n,C), where GL(n,C) is the group of invertible matrices of order n over
C. The number n is called the dimension of the representation. A given
finite group will have infinitely many representations, but only a finite num-
ber (in fact, equal to the number of conjugacy classes of G) of irreducible
representations, which are special representations that cannot be decom-
posed (in some natural sense) into a sum of smaller representations. Each
representation can itself be decomposed in a unique way into a sum of irre-
ducible representations. The irreducible representations thus play a role in
representation theory somewhat akin to that of the prime numbers in multi-
plicative arithmetic.

The representations of complicated groups can be complicated to un-
derstand. It is therefore no surprise that the representation theory of the
symmetric group Sn, developed in the works of Frobenius, Young, Weyl, von
Neumann, and others, is rich and nontrivial. A few fundamental facts, how-
ever, are simple to state: it is known that the irreducible representations of Sn

are in canonical bijection with partitions of n, and that the dimension of the
irreducible representation corresponding to a given partition λ ∈ P(n) is ex-
actly dλ, the number of standard Young tableaux of shape λ. In fact, this was
the original motivation for studying Young tableaux, and many combinatorial
facts about Young tableaux find an expression in terms of representations of
Sn. For more details, see [24], [112].

representations of the symmetric group. Specifically, the question is to
identify (approximately, or precisely if possible) the irreducible represen-
tation of the symmetric group of order n having the largest dimension. For
readers unfamiliar with representation theory, see the box for a summary
of the relevant background facts.

The question of finding the irreducible representation of maximal di-
mension of a given group is natural and simple to state,12 but (it turns out)
can be difficult to answer. In the case of the symmetric group Sn, since the
dimension of the irreducible representation corresponding to a Young dia-
gram λ ∈ P(n) is equal to dλ, the number of standard Young tableaux of
shape λ, the question is equivalent to finding the Young diagram λ ∈ P(n)
for which dλ is maximized. This is exactly where Theorem 1.14 comes
in: what we interpreted probabilistically as a large deviation principle for
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the behavior of Plancherel measure can be thought of alternatively as a
first-order asymptotic expansion for the mapping λ 7→ dλ. Using our iden-
tification of the minimizer for the hook functional Ihook, it is an easy matter
to deduce that the asymptotic shape of the Young diagram corresponding
to the irreducible representation of maximal dimension is the same limiting
shape as the one we found for Plancherel-random partitions. The precise
result is as follows.

Theorem 1.24 For each n ≥ 1, let µ(n) ∈ P(n) be the Young diagram
corresponding to the maximal dimension irreducible representation of Sn

(if there is more than one such, we take µ(n) to denote an arbitrary choice
of one among them). Let φn(x) be the function in the function space F
corresponding to µ(n). Let ψn be the element of the function space G corre-
sponding to φn in the rotated coordinate system. Then we have

max
u∈R
|ψn(u) −Ω(u)| −−−→

n→∞
0.

Note that the theorem gives only an approximate answer to the question
that is valid in the limit of large n. More detailed results have been derived
on the irreducible representation of maximal dimension and on its dimen-
sion, and on the related question of better understanding the asymptotics
of the typical dimension of a Plancherel-random Young diagram (see [23],
[140], [143]), but these results are still of an asymptotic nature. Some in-
teresting open problems in this context would be to say anything precise
(that is, nonasymptotic) about the maximal dimension shape for finite val-
ues of n (e.g., in the form of some kind of explicit description or even just
an efficient algorithm for computing this shape); to prove that the maximal
dimension shape is unique; and to improve the asymptotic bounds in the
papers cited earlier.

1.19 The Plancherel growth process

We now want to prove that Λ ≤ 2 and thereby finish the proof of Theo-
rem 1.1. This will involve introducing a new and interesting way to think
about the family of Plancherel measures. First, observe that it will be enough
to prove that

`n − `n−1 ≤
1
√

n
, (n ≥ 1), (1.55)
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which by induction will imply that the bound

`n ≤ 2
√

n

holds for all n ≥ 1. The left-hand side of (1.55) is the difference of the
expectations of λ(n)

1 and λ(n−1)
1 . Note that until now we considered each of

the random partitions λ(n) as existing in its own probability space, but an
elegant new idea that enters here, and has clear relevance to the discussion,
is to consider the sequence of Plancherel-random partitions as a random
process (λ(n))∞n=1. That is, if we had a natural coupling of all the λ(n) for all
values of n simultaneously on a single probability space, we would have a
potential way of approaching inequalities such as (1.55). Fortunately, there
is a natural such coupling that emerges directly from the combinatorial in-
terpretation of the λ(n) in terms of the Robinson–Schensted correspondence.
Recall that we originally obtained Plancherel measure, the distribution of
λ(n), as the distribution of the Young diagram that is output (along with two
standard Young tableaux, which we discarded, whose shape is the Young
diagram) by the Robinson–Schensted algorithm applied to a uniformly ran-
dom permutation σn of order n. But it is well known that there is a simple
way to couple all the uniform measures on the symmetric groups (Sn)∞n=1.
Perhaps the most convenient way to describe it is by taking a sequence
X1, X2, X3, . . . of independent and identically distributed random variables
with the uniform distribution U[0, 1], and defining σn for each n to be the
order structure of the finite sequence X1, . . . , Xn. (See the related discussion
on p. 11.) Alternatively, one can give an algorithm that, given the random
permutation σn in Sn, modifies it (adding some new randomness) to pro-
duce the random permutation σn+1 that is distributed uniformly in Sn+1. The
algorithm chooses a random integer k uniformly from {1, . . . , n + 1}, then
returns the new permutation

σn+1( j) =


σn( j) if j ≤ n and σn( j) < k,

σn( j) + 1 if j ≤ n and σn( j) ≥ k,

k if j = n + 1.

It is a simple matter to check that this produces a uniformly random ele-
ment of Sn+1, and that this construction is equivalent to the previous one, in
the sense that the joint distribution of the sequence (σn)∞n=1 generated using
this construction is the same as for the first construction.
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Having defined a process version (σn)∞n=1 of the sequence of uniformly
random permutations, by applying the Robinson–Schensted algorithm to
each permutation in the sequence (and discarding the Young tableaux, keep-
ing just their shape) we now have a process of random partitions (λ(n))∞n=1,
where for each n, λ(n) is distributed according to Plancherel measure of
order n. This process is called the Plancherel growth process.13

To understand this process, note that by the construction, the Robinson–
Schensted shape λ(n) of the permutation σn is obtained from λ(n−1) by
attaching an additional cell in one of the positions where a cell may be
added to the Young diagram λ(n−1) to result in a new Young diagram (such
positions may be called external corners, in analogy with the internal cor-
ners discussed in Section 1.9 in connection with the hook-length formula).
In the notation of Section 1.9, we have that λ(n−1) ↗ λ(n). If we define
the Young graph (also called the Young lattice) to be the directed graph
whose vertex set is the set ∪∞n=1P(n) of all nonempty integer partitions, and
whose edges are the ordered pairs (µ, λ) with µ ↗ λ, then the Plancherel
growth process defines a random infinite path on this graph, starting from
the trivial partition λ(1) = (1) ∈ P(1). The first few levels of the Young
graph are shown in Fig. 1.14.

As it turns out, the Plancherel growth process has a simple description
as a Markov chain, or in other words a kind of weighted random walk on
the Young graph. This is explored in Exercise 1.22. For our purposes, we
need only the following simple lemma on conditional probabilities.

Lemma 1.25 For any µ ∈ P(n − 1) and λ ∈ P(n) satisfying µ ↗ λ, we
have

P(λ(n) = λ | λ(n−1) = µ) =
dλ

n dµ
. (1.56)

Proof By definition, we have

P(λ(n) = λ | λ(n−1) = µ) =
P
(
{λ(n−1) = µ} ∩ {λ(n) = λ}

)
P(λ(n−1) = µ)

=
P
(
{λ(n−1) = µ} ∩ {λ(n) = λ}

)
d2
µ/(n − 1)!

.

In this expression, the numerator is given by 1/n! times the number of per-
mutations σ ∈ Sn such that after applying the first n − 1 insertion steps
in the Robinson–Schensted algorithm to the sequence (σ(1), . . . , σ(n − 1))
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Figure 1.14 The Young graph.

the resulting pair of Young tableaux has shape µ, and after in addition per-
forming the last insertion step where the value σ(n) is inserted, the result-
ing shape is λ. Note that for such a permutation, if we denote the output
of the Robinson–Schensted algorithm by (λ, P,Q), where P is the insertion
tableau and Q is the recording tableau, then Q has its maximal entry ex-
actly in the corner cell c of λ such that {c} = λ\µ, since before inserting the
last value σ(n) the shape was µ. The number of standard Young tableaux
of shape λ whose maximal entry is in position c is trivially equal to dµ.
Therefore, the number of permutations we are trying to count is exactly the
product dµdλ, and we get that

P(λ(n) = λ | λ(n−1) = µ) =
dµdλ/n!

d2
µ/(n − 1)!

=
dλ

n dµ
,

as claimed. �

Proof of (1.55) We identify the left-hand side of (1.55) with the expected
value E(λ(n)

1 − λ
(n−1)
1 ), where λ(n−1) and λ(n) are now coupled according

to the Plancherel growth process. In this realization, the random variable
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λ(n)
1 − λ

(n−1)
1 is the indicator function of the event

En =
{
λ(n) = grow1

(
λ(n−1)

)}
,

where for a diagram µ ∈ P(n − 1) we denote by grow1(µ) the diagram
obtained from µ by adding a square at the end of the first row of µ. To
bound the probability of this event, we use Lemma 1.25 to write

P(En) =
∑
µ`n−1

d2
µ

(n − 1)!
P(En | λ

(n−1) = µ)

=
∑
µ`n−1

d2
µ

(n − 1)!
P(λ(n) = grow1(µ) | λ(n−1) = µ)

=
∑
µ`n−1

d2
µ

(n − 1)!
·

dgrow1(µ)

n dµ
.

This is an average of the quantity dgrow1(µ)/ndµ with respect to Plancherel
measure, so we can apply the Cauchy–Schwarz inequality to this average,
and deduce that

P(En) ≤

 ∑
µ`n−1

d2
µ

(n − 1)!

(
dgrow1(µ)

n dµ

)2


1/2

=
1
√

n

 ∑
µ`n−1

d2
grow1(µ)

n!


1/2

.

In this last expression, the sum inside the square root represents the prob-
ability that λ(n) is of the form grow1(µ) for some µ ` n − 1, and hence is
at most 1. So we have shown that P(En) = E(λ(n)

1 − λ
(n−1)
1 ) ≤ 1/

√
n, as

claimed. �

1.20 Final version of the limit shape theorem

We have achieved our goal of proving Theorem 1.1, the main result of this
chapter. We conclude the chapter by reformulating one of our other main
results, the limit shape theorem for Plancherel-random Young diagrams
(Theorem 1.22), in a way that incorporates the observations of the last sec-
tion. This will result in a stronger version of the theorem. The new form is
also more suitable for comparison with an important analogous result we
will prove in Chapter 4.
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2

2

Figure 1.15 The limit shape ∆Plancherel of Plancherel-random
Young diagrams, in x–y coordinates.

Let ω = (ωx, ωy) : [−π/2, π/2]→ R2 be the planar curve defined by

ωx(θ) =

(
2θ
π

+ 1
)

sin θ +
2
π

cos θ,

ωy(θ) =

(
2θ
π
− 1

)
sin θ +

2
π

cos θ.

It is straightforward to check that this is a parametric form of the Logan–
Shepp–Vershik–Kerov limit shape Ω from (1.47), translated via (1.23) to
the original x–y coordinate system whose axes are aligned with the Young
diagram axes.

Next, given a Young diagram λ = (λ1, . . . , λk), associate with λ the set
setλ ⊂ R2 defined by

setλ =
⋃

1≤i≤k
1≤ j≤λi

(
[i − 1, i] × [ j − 1, j]

)
. (1.57)

We will refer to setλ as the planar set of λ.
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Theorem 1.26 (Limit shape theorem for Plancherel-random partitions; strong
version) Define a set ∆Plancherel ⊂ R2 by

∆Plancherel =
{
t · ω(θ) : t ∈ [0, 1], θ ∈ [−π/2, π/2]

}
.

For each n ≥ 1 let λ(n) denote a random Young diagram chosen according
to Plancherel measure of order n. Then the planar set setλ(n) converges in
probability to ∆Plancherel as n → ∞, in the following precise sense: for any
0 < ε < 1, we have that

P
(
(1 − ε)∆Plancherel ⊂

1
√

n
setλ(n) ⊂ (1 + ε)∆Plancherel

)
→ 1 as n→ ∞.

The connection of Theorem 1.26 to Theorem 1.22 together with the new
information about the convergence of the scaled length n−1/2λ(n)

1 of the first
row of λ(n) to 2 should be fairly obvious, so we leave it to readers to work
out the (easy) details of the proof. The set ∆Plancherel is shown in Fig. 1.15.

Exercises

Note on exercise difficulty levels. The unit of difficulty for exercises is the coffee
cup (“K”), with the difficulty scale ranging fromK (easy) toKKKKK (research
problem).

1.1 (KK) If Λ = limn→∞ `n/
√

n as in Theorem 1.6, show that the bounds
1 ≤ Λ ≤ e that follow from Lemmas 1.3 and 1.4 can be improved using
elementary arguments, as follows:

(a) Given a Poisson point process of unit intensity in [0,∞) × [0,∞), con-
struct an increasing subset (X1,Y1), (X2,Y2), (X3,Y3), . . . of points by let-
ting (X1,Y1) be the Poisson point that minimizes the coordinate sum
x + y, and then by inductively letting (Xk,Yk) be the Poisson point in
(Xk−1,∞) × (Yk−1,∞) that minimizes the coordinate sum x + y. Analyze
the asymptotic behavior of this sequence, and deduce that Λ ≥ (8/π)1/2 ≈

1.595.
(b) In the proof of Lemma 1.4 observe that if L(σn) ≥ t then Xn,k ≥

(
t
k

)
, so

the bound in (1.4) can be improved. Take k ≈ α
√

n and t ≈ β
√

n and
optimize over α < β to show that Λ ≤ 2.49.

1.2 (K) Verify that the random variables −Ym,n defined in (1.5) satisfy the con-
ditions of Theorem A.3. (Hint: Use Lemma 1.4.)



Exercises 71

1.3 (Steele [129]) The goal of this exercise is to prove the following explicit
variance bound for L(σn).

Theorem 1.27 For some constant C > 0 and all n ≥ 1, we have

Var(L(σn)) ≤ C
√

n. (1.58)

We make use of the following version of a general probabilistic concentra-
tion inequality due to Efron–Stein [36] and Steele [128].

Theorem 1.28 (Efron–Stein–Steele inequality) Let X1, . . . , Xn be indepen-
dent random variables. Let g : Rn → R and g j : Rn−1 → R, ( j = 1, . . . , n),
be measurable functions. Denote Z = g(X1, . . . , Xn), and for any 1 ≤ j ≤ n
denote Z j = g(X1, . . . , X̂ j, . . . , Xn), where X̂ j means that X j is omitted from
the list. Then we have

Var(Z) ≤
n∑

j=1

E(Z − Z j)2. (1.59)

See [20], Section 2, for the (easy) proof of Theorem 1.28.

(a) (KK) If x1, . . . , xn are distinct real numbers, denote by L(x1, . . . , xn) the
maximal length of an increasing subsequence in the sequence x1, . . . , xn.
Take X1, . . . , Xn to be i.i.d. random variables with the uniform distribution
on [0, 1]. Let Z = L(X1, . . . , Xn), and let Z j = L(X1, . . . , X̂ j, . . . , Xn) for
1 ≤ j ≤ n. Note that, as discussed on p. 11, Z is equal in distribution to
L(σn).
Prove that the random variable Z − Z j takes on only the values 0 or 1,
that is, it is an indicator random variable Z − Z j = 1E j , and show that the
event E j is precisely the event that X j participates in all maximal-length
increasing subsequences in X1, . . . , Xn.

(b) (KK) Prove that
∑n

j=1(Z − Z j)2 =
∑n

j=1 1E j ≤ Z.
(c) (K) Apply Theorem 1.28, to conclude that Var(Z) ≤ E(Z).
(d) (K) Finally, use (1.3) to deduce (1.58). (Note that C can be taken as any

number greater than e if n is assumed large enough.)

1.4 (KKK) Using Theorem 1.27, give an alternative proof of Theorem 1.6 that
avoids the use of Kingman’s subadditive ergodic theorem. Note that you will
still need to use the geometric ideas discussed in Section 1.4 relating L(σn)
to the Poisson point process, and Fekete’s subadditive lemma (Lemma A.1
in the Appendix).

1.5 (a) (KKK) (Bollobás–Winkler [17]) Let d ≥ 2. Given two points
x = (x1, . . . , xd), x′ = (x′1, . . . , x

′
d) in Rd, denote x � x′ if x j ≤ x′j for

all j. A set of points in Rd is called a chain if any two of its elements are
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comparable in the partial order �. For a set A ⊂ Rd, denote by L(A) the
maximal size of a subset of A that is a chain.
Let X1,X2, . . . denote a sequence of independent and identically distributed
random points chosen uniformly at random from the unit cube [0, 1]d,
and for any n denote An = {X1, . . . ,Xn} (a random n-element subset of
[0, 1]d). Prove the following generalization of Theorem 1.6: there exists a
constant 0 < cd < e such that we have the convergence in probability

n−1/dL(An)
P
−−−→ cd as n→ ∞.

(b) (K) Translate the above result into purely combinatorial language as a
statement about random permutations. (For d = 2 it would be the claim
from Theorem 1.6 that L(σn)/

√
n→ Λ in probability as n→ ∞.)

(c) (KKKKK) Find a formula (or even a good numerical estimate) for c3.
1.6 (Lifschitz–Pittel [75]) Let Xn denote the total number of increasing subse-

quences (of any length) in the uniformly random permutation σn. For conve-
nience, we include the empty subsequence of length 0, so that Xn can be writ-
ten as
Xn = 1 +

∑n
k=1 Xn,k where the random variables Xn,k are defined in the proof

of Lemma 1.4 (p. 9).

(a) (KKK) Prove the identities

EXn =

n∑
k=1

1
k!

(
n
k

)
,

EX2
n =

∑
k,`≥0, k+`≤n

4`

(k + `)!

(
n

k + 1

)(
(k + 1)/2 + ` − 1

`

)
.

(b) (KKK) Use the above identities to prove the asymptotic estimates

EXn = (1 + o(1))
1

2
√
πe n1/4

exp
(
2
√

n
)

as n→ ∞,

Var Xn = (1 + o(1))
exp

(
2
√

2 +
√

5 ·
√

n
)

√
20π

(
2 +
√

5
)

exp
(
2 +
√

5
)

n1/4
as n→ ∞.

(c) (KKKK) Prove that there is a constant γ > 0 such that we have the
convergence in probability

1
√

n
log Xn

P
−−−→ γ as n→ ∞.
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(d) (KKKKK) Find the value of γ.

1.7 (K) Compute the Young diagram λ and Young tableaux (P,Q) obtained by
applying the Robinson–Schensted algorithm to the permutation

σ = (13, 8, 3, 10, 2, 15, 7, 1, 5, 6, 11, 12, 14, 9, 4).

1.8 (K) Apply the inverse Robinson–Schensted algorithm to the pair of Young
tableaux

P =

1 4 6 10 11

2 5 7

3 8 9

Q =

1 3 5 8 9

2 4 10

6 7 11

to recover the associated permutation σ ∈ S11.
1.9 (a) (KKK) (Schensted [113]) Given a Young diagram λ, define an increas-

ing tableau of shape λ to be a filling of the cells of λ with distinct
numbers such that all rows and columns are arranged in increasing or-
der. The insertion steps of the Robinson–Schensted algorithm, defined in
Section 1.6, can be formalized as a mapping taking a number x and an
increasing tableau P of shape λ whose entries are all distinct from x, and
returning a new increasing tableau, denoted Rx(P), obtained by the appli-
cation to P of an insertion step with the number x as input. We call the
operator Rx a row-insertion operator. By analogy, define now a column-
insertion operator Cx that, when applied to the tableau P, will produce
a new increasing tableau Cx(P) by performing an insertion step in which
the roles of rows and columns are reversed.
Prove that the operators Rx and Cy commute. That is, if x, y are distinct
numbers and P is an increasing tableau with entries distinct from x and y,
then we have that

CyRxP = RxCyP.

Hint: Divide into cases according to whether the maximum among x, y
and the entries of P is x, y or one of the entries of P.

(b) (KK) Deduce the claim of Theorem 1.10(a) from part (a) above.
1.10 (KKK) This exercise presents an outline of the steps needed to prove Theo-

rem 1.10(b), based on the exposition of Knuth [71, Section 5.1.4]. Start with
a definition: a planar permutation of order n is a two-line array of the form
σ =

(
q1 q2 ... qn
p1 p2 ... pn

)
, where q1 < . . . < qn and p1, . . . , pn. We say that (qi, pi) is

the ith element of σ. The inverse of σ is the planar permutation σ−1 obtained
by switching the top and bottom rows of the array and sorting the columns
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to bring the top row to increasing order. Note that an ordinary permutation
would correspond to the usual two-line notation for permutations, and in this
caseσ−1 corresponds to the usual notion of an inverse permutation. It is help-
ful to visualize σ simply as a set of points in the plane with distinct x- and
y-coordinates, which emphasizes the symmetry between the q’s and the p’s.
With such an interpretation, the operation of taking the inverse corresponds
to reflection of the set of points along the diagonal y = x.

(a) Convince yourself that in this setting the Robinson–Schensted algorithm
generalizes to a mapping that takes a planar permutation σ =

(
q1 ... qn
p1 ... pn

)
of

order n and returns a triple (λ, P,Q) where λ ∈ P(n) and P,Q are increas-
ing tableaux of shape λ (see Exercise 1.9 above for the definition) with the
entries of P being p1, . . . , pn and the entries of Q being q1, . . . , qn. Denote
the sequence of intermediate insertion and recording tableaux obtained
during the computation by P( j),Q( j), j = 0, 1 . . . , n (so that P = P(n) and
Q = Q(n)).

(b) For an integer t ≥ 1, say that the element (qi, pi) is in the class t of σ if
P(i)

1,t = pi (where P(i)
j,k denotes the entry of P(i) in row i, column j), and

denote this relation by γσ(qi, pi) = t.
As a warm-up problem, show that γσ(qi, pi) = 1 if and only if pi =

min(p1, . . . , pi).

(c) If σ′ =

(
q′1 ... q′m
p1 ... p′m

)
denotes σ with the columns corresponding to class 1

elements removed, show that for any t and i, γσ′ (q′i , p′i ) = t if and only if
γσ(q′i , p′i ) = t + 1.

(d) Show that for any t, the class t elements can be labeled (qi1 , pi1 ), . . .,
(qik , pik ), where qi1 < . . . < qik and pi1 > . . . > pik .

(e) With the notation of part (d) above for the class t elements, show that
P1,t = pik and Q1,t = qi1 , and that the planar permutation σ′ associated
with the “decapitated” tableaux P′ and Q′, obtained from P and Q respec-
tively by deleting their first rows, is the union over all class numbers t of
the columns

( qi2 ... qik
pi1 ... pik−1

)
.

(f) Show that for an element (q, p) of σ, γσ(q, p) = t if and only if t is
the largest number of indices i1, . . . , it such that pi1 < . . . < pit = and
qi1 < . . . < qit = q. (That is, the class number of (q, p) is the maximal
length of an increasing subsequence of σ that ends in (q, p).)

(g) Deduce from (f) that class number is symmetric in the q’s and p’s, in the
sense that γσ(q, p) = γσ−1 (p, q).

(h) Let P−1 and Q−1 denote the insertion and recording tableaux associated
by the Robinson–Schensted algorithm with the inverse permutation σ−1.
Conclude from the observations in (d), the first part of (e) and (g) that
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for all class numbers t we have P1,t = Q−1
1,t and Q1,t = P−1

1,t . That is,
Theorem 1.10(b) is true at least for the first row of P and Q.

(i) Combine this with the second part of (e) to conclude by induction that the
analogous statement is true for all the rows of P and Q and thus finish the
proof of Theorem 1.10(b).

1.11 (a) (K) A permutation σ ∈ Sn is called an involution if σ2 = id (the identity
permutation). Show that the number of Young tableaux with n cells is
equal to the number of involutions in Sn.

(b) (KK) Denote the number of involutions in Sn by In. Show that

In =

bn/2c∑
k=0

n!
2kk!(n − 2k)!

(1.60)

(c) (KK) Show that the exponential generating function of the sequence In

is
∞∑

n=0

Inxn

n!
= ex+x2/2.

(d) (K) Show that In = E(Xn) where X is a random variable with a normal
distribution X ∼ N(1, 1).

(e) (KKK) (Chowla–Herstein–Moore [25]) Use (1.60) to show that In has
the asymptotic behavior

In = (1 + o(1))
1
√

2

(n
e

)n/2
e
√

n−1/4 as n→ ∞. (1.61)

1.12 (KKK) If λ, µ are two partitions such that the Young diagram of µ is con-
tained in the Young diagram of λ, the difference between the two Young
diagrams is called a skew Young diagram and denoted λ \ µ. A skew Young
tableau of shape λ \ µ is a filling on the integers 1, 2, . . . , |λ \ µ| = |λ| − |µ| in
the cells of the skew diagram λ \ µ following the same monotonicity rules as
for an ordinary Young tableau, that is, the entries along each row and column
are increasing.
Prove the fact, first proved by Aitken [1] (then rediscovered by Feit [39]; see
also [71, Exercise 19, pp. 67, 609] and [125, Corollary 7.16.3, p. 344]), that
the number dλ\µ of skew Young tableaux of shape λ \ µ is given by

dλ\µ = |λ \ µ|!
k

det
i, j=1

(
1

(λi − i − µ j + j)!

)
where k is the number of parts of λ, µ j is interpreted as 0 for j greater than
the number of parts of µ and 1/r! is defined as 0 for r < 0.
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1.13 (K) Let p(n) be the number of partitions of n. Show that there exists a con-
stant c > 0 such that the inequality p(n) > ec

√
n holds for all n ≥ 1.

1.14 (K) For n ∈ N, let c(n) denote the number of ordered partitions (also called
compositions) of n, that is, ways of expressing n as a sum of positive inte-
gers, where different orders are considered distinct representations. Prove
that c(n) = 2n−1, and deduce trivially that p(n) ≤ 2n−1.

1.15 A strict partition of n is a partition into parts that are distinct. Define

q(n, k) = number of strict partitions of n into k parts,

q(n) =

⌊√
2n

⌋∑
k=1

q(n, k) = number of strict partitions of n,

Q(n) =

n∑
k=1

q(n).

(a) (KK) Prove that q(n, k) ≤ 1
k!

(
n+k−1

k−1

)
for all n, k.

(b) (KK) Deduce that there exist constants C1,C2 > 0 such that the inequal-
ity Q(n) ≤ C1eC2

√
n holds for all n ≥ 1.

(c) (KK) Prove that p(n) ≤ Q(n)2, and therefore by part (b) above p(n)
satisfies the upper bound p(n) ≤ C2

1e2C2
√

n for all n ≥ 1.
Hint: Find a way to dissect the Young diagram of a partition of n into two
diagrams encoding strict partitions.

1.16 (a) (K) Define the generating function F(z) = 1+
∑∞

n=1 p(n)zn. It is traditional
to define p(0) = 1, so this can also be written as F(z) =

∑∞
n=0 p(n)zn.

Deduce from the previous problem that the power series converges in the
region |z| < 1. Prove that in this range Euler’s product formula holds:

F(z) =

∞∏
k=1

1
1 − zk .

(b) (KK) Show that if 0 < x < 1 then we have log F(x) ≤ π2

6
x

1−x . (You may
need to use the fact that

∑∞
n=1 n−2 = π2/6; see Exercise 1.18.)

(c) (KK) Show that for real x satisfying 0 < x < 1 we have p(n) < x−nF(x).
Using the bound above for F(x), find a value of x (as a function of n)
that makes this a particularly good bound, and deduce that the bound
p(n) ≤ eπ

√
2n/3 holds for all n ≥ 1.

1.17 (a) (K) Prove that the integral (1.18) converges absolutely for any f ∈ F .
(b) (K) Prove that if h : R→ R is a Lipschitz function with compact support

then the integral

Q(h) = − 1
2

∫ ∞

−∞

∫ ∞

−∞

log |s − t| h′(t)h′(s) dt ds
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converges absolutely.
1.18 (KK) Verify (1.45) by reducing it, via integration by parts, a substitution

and some additional massaging, to the integral evaluation

−

∫ π/2

0
log(sin(t)) dt = 1

2π log(2), (1.62)

which can then be verified by expanding the function − log
(
1 − e2it

)
in pow-

ers of e2it and integrating termwise. As a nice corollary to the evaluation
(1.62), obtain the famous identity

∑∞
n=1 n−2 = π2/6, first proved by Euler in

1735.
1.19 (a) (KK) Prove (1.50) and (1.52). Note that (1.52) is an improper integral.

(b) (KK) If you are familiar with the Euler gamma function, prove the fol-
lowing generalizations of (1.50) and (1.52):∫ ∞

0
eiuuα−1 du = eπiα/2Γ(α),∫ ∞

0
(eiu − 1)uα−2 du =

−ieπiα/2Γ(α)
1 − α

,

(0 < α < 1).

1.20 (KK) In the notation of the proof of Lemma 1.21, let f1(x) = f (x)e−x,
h1(x) = h(x)e−x. Convince yourself that h1 ∈ L1(R) (and therefore has a
well-defined Fourier transform), then show, using a modified (and more rig-
orous) version of the computations in the proof, that ĥ(s) = f̂ (s) for all s ∈ R.
Conclude that h(x) = f (x) almost everywhere, as claimed in the proof.

1.21 (KKK) (Romik [107]) For each n ≥ 1, let σn be a uniformly random
permutation in Sn, and let Xn denote the number of bumping operations
that are performed when applying the Robinson–Schensted algorithm to σn.
Show that as n → ∞ we have with asymptotically high probability that
Xn = (1 + o(1))κn3/2 for some constant κ. Find a connection between the
constant κ and the limit shape Ω of Plancherel-random Young diagrams, and
use it to show that κ = 128

27π2 .
1.22 (KK) A Markov chain (more precisely, discrete state-space Markov chain)

is a sequence of random variables X1, X2, . . . taking values in some countable
setZ (called the state space of the chain), that has the property that for any
n ≥ 1 and x1, . . . , xn+1 ∈ Z, the relation

P(Xn+1 = xn+1 | X1 = x1, . . . , Xn = xn) = P(Xn+1 = xn+1 | Xn = xn)

holds, provided the left-hand side makes sense, that is, the conditioning event
has positive probability. The motto to remember for a Markov chain is “con-
ditioned on the present, the future is independent of the past,” that is, if we
are given the value Xn of the chain at time n then the conditional probability
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distribution of the next value Xn+1 (and, by induction, all subsequent values)
is known and does not depend on the history of the sequence prior to time n.
This conditional distribution is often given a notation such as

pn(x, y) = P(Xn+1 = y | Xn = x) (x, y ∈ Z),

and referred to as the transition matrix, or transition kernel, of the chain.
(An especially common and well-understood class of Markov chain are the
so-called time-homogeneous ones in which pn(·, ·) does not depend on n,
but time-inhomogeneous chains also appear frequently in many situations.)
Prove that the Plancherel growth process defined in Section 1.19 is a Markov
chain. Note that the transition kernel is given explicitly by the right-hand
side of (1.56). In particular this means that one can randomly “grow” a
Plancherel-random partition of order n, without using random permutations
at all, by starting with the trivial diagram of order 1, and then repeatedly re-
placing the current diagram µ by a new diagram λ such that µ↗ λ, where λ
is sampled according to the transition probabilities given in (1.56). The next
exercise shows an algorithm for efficiently sampling from the probability
distribution given by these transition probabilities without actually having to
compute these probabilities.

1.23 (KKK) (Greene–Nijenhuis–Wilf [51]) Prove that the following “inverse
hook walk” can be used to simulate the “growth” steps of the Plancherel
growth step – that is, given the partition λ(n−1) = µ in the (n − 1)th step
of the process, we can choose randomly a Young diagram λ ` n such that
µ ↗ λ with the transition probabilities being given by (1.56). The inverse
hook walk is defined as follows:

(a) Start from a cell with positive coordinates (i, j) lying outside the Young
diagram of µ. It can be any cell as long as i > µ1 and j > µ′1, so that the
inverse hook walk will have a positive probability of reaching any of the
external corners of µ.

(b) Now perform an inverse hook walk, repeatedly replacing the current cell
with a uniformly random cell from the inverse hook of the current cell.
The inverse hook is defined as the set of cells lying to the left of the
current cell, or above it, and being still outside the Young diagram of µ.

(c) The walk terminates when it reaches a cell c that is the only one in its
inverse hook. These cells are exactly the external corners of µ. Let λ =

µ ∪ {c}.
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The Baik–Deift–Johansson theorem

Chapter summary. Twenty years after the seminal works of Logan–Shepp
and Vershik–Kerov, who showed that the maximal length L(σn) of an in-
creasing subsequence in a uniformly random permutation of order n is typ-
ically about 2

√
n, Baik, Deift, and Johansson proved a remarkable theorem

concerning the limiting distribution of the fluctuations of L(σn) from this
typical value. One particularly exciting aspect of the result is the appear-
ance of the Tracy–Widom distribution from random matrix theory. In
this chapter we will prove this celebrated result. To this end, we will study
some elegant techniques such as the use of determinantal point processes
–a particularly nice class of random sets – and some interesting facts about
classical special functions, the Bessel functions and the Airy function.

2.1 The fluctuations of L(σn) and the Tracy–Widom distribution

Having proved in the previous chapter that the first-order asymptotic be-
havior of L(σn), the maximal length of an increasing subsequence in a uni-
formly random permutation of order n, is given by (2 + o(1))

√
n (both in

the typical case and on the average), the natural next step is to ask how far
we can expect L(σn) to fluctuate from this asymptotic value, that is, what
exactly is hiding inside the “o(1)” term. Note that these fluctuations can
be separated into two parts: first, the deterministic deviation `n − 2

√
n of

the mean value of L(σn) from 2
√

n; and second, the random fluctuations
L(σn)−`n of L(σn) around its mean, whose size can be measured, for exam-
ple, by looking at the standard deviation (Var(L(σn)−`n))1/2 of this random
variable. These two sources of fluctuation are conceptually distinct, in the

79
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sense that there seems to be no obvious a priori reason to assume that they
scale similarly with n, although it turns out that in fact they do.

Although the question of the fluctuations of L(σn) is of clear interest, for
a while no further progress in this direction was made following the works
of Logan–Shepp and Vershik–Kerov. Starting in the early 1990s, however,
the problem started attracting a great deal of attention, and over several
years various bounds on the size of the fluctuations were derived by sev-
eral authors1 using a variety of ingenious methods. These bounds were not
sharp enough to provide an understanding of how the fluctuations scale as
a function of n. However, some evidence pointed to the correct scale being
of order n1/6: this was put forward as a conjecture by Odlyzko and Rains
[94], based on numerical evidence and a suggestive analytic bound from the
Vershik–Kerov paper. The same conjecture was made independently by J.
H. Kim [67], who in 1996 managed to prove that with high probability the
positive part of the fluctuations L(σn) − 2

√
n could not be of greater mag-

nitude than O(n1/6). Odlyzko and Rains’s computational data also made it
apparent that the distribution of L(σn) does not become symmetric around
its mean value as n grows large; thus, any naive hope of finding a limiting
Gaussian distribution for L(σn) seemed unwarranted.

The breakthrough came with the work of Jinho Baik, Percy A. Deift, and
Kurt Johansson [11], who in the late 1990s found a remarkable limiting law
for the fluctuations, thus not only settling the question of the scale of the
fluctuations, which turned out to be indeed of order n1/6, but also proving
a much more precise result concerning their limiting distribution. The ex-
istence and precise nature of this result came as a surprise, as it revealed a
deep structure and a connection between this problem in the combinatorics
of random permutations and the theory of random matrices, integrable sys-
tems, and related topics in probability and mathematical physics.

To formulate Baik, Deift, and Johansson’s result, we need to define the
limiting distribution, called the Tracy–Widom distribution and denoted
F2. This distribution function, along with several closely related random
processes and distribution functions, was studied by Craig A. Tracy and
Harold Widom in the 1990s in connection with the asymptotic behavior
of the largest eigenvalues of random matrices. To define it, first, let Ai(x)
denote the Airy function, an important special function of mathematical
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analysis, defined by

Ai(x) =
1
π

∫ ∞

0
cos

(
1
3 t3 + xt

)
dt, (x ∈ R). (2.1)

(It is not difficult to see that the integral converges for all real x as an
improper integral, and defines a smooth function; other properties of Ai(x)
are discussed in the following sections.) Next, we define the Airy kernel
A : R × R→ R, by

A(x, y) =


Ai(x) Ai′(y) − Ai′(x) Ai(y)

x − y if x , y,

Ai′(x)2 − x Ai(x)2 if x = y.
(2.2)

(The values on the diagonal make A(·, ·) continuous, by L’Hôpital’s rule
and the differential equation satisfied by Ai(x); see (2.8).) We now define
F2 : R→ R by the formula

F2(t) = 1 +

∞∑
n=1

(−1)n

n!

∫ ∞

t
. . .

∫ ∞

t

n
det
i, j=1

(
A(xi, x j)

)
dx1 . . . dxn. (2.3)

Although the formula defining F2 seems complicated at first sight, it has
a more conceptual interpretation as a Fredholm determinant – a kind of
determinant defined for certain linear operators acting on an infinite-
dimensional vector space – which leads to the more compact notation
F2(t) = det

(
I − A| L2(t,∞)

)
. It is not difficult to show using standard facts

about the Airy function that the integrals and infinite series in (2.3) con-
verge (see Lemma 2.25 on p. 119), but the fact that the expression on the
right-hand side defines a probability distribution function is nontrivial.

Theorem 2.1 The function F2 is a distribution function.

We will prove Theorem 2.1 in Section 2.10, as part of a deeper analy-
sis of F2 and its properties. The main result of the analysis, which yields
Theorem 2.1 as an easy corollary, is a remarkable structure theorem, due
to Tracy and Widom, that represents F2 in terms of the solution to a certain
ordinary differential equation, the Painlevé II equation.

We are ready to state the celebrated Baik–Deift–Johansson theorem,
whose proof is our main goal in this chapter.
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Figure 2.1 The density function f2(t) = F′2(t) associated with the
Tracy–Widom distribution.

Theorem 2.2 (The Baik–Deift–Johansson theorem) For each n ≥ 1, let
σn denote a uniformly random permutation of order n. Then for any x ∈ R
we have that

P
(

L(σn) − 2
√

n
n1/6 ≤ x

)
→ F2(x) as n→ ∞. (2.4)

That is, the scaled fluctuations n−1/6(L(σn)−2
√

n) converge in distribution
to F2.

Fig. 2.1 shows the graph of the probability density function f2(t) =

F′2(t).2

2.2 The Airy ensemble

The Tracy–Widom distribution originally arose as the limiting distribution
of the largest eigenvalue of a random matrix chosen from the so-called
Gaussian Unitary Ensemble (or GUE), a natural model in random matrix
theory for a random Hermitian matrix (see box on p. 84). Tracy and Widom
also studied the distributions of the second-largest eigenvalue, third-largest,
and so on. Collectively the largest eigenvalues of a GUE random matrix
converge after scaling to a random point process on R called the Airy en-
semble. Baik, Deift and Johansson recognized that Theorem 2.2 can be
generalized to include quantities analogous to the largest eigenvalues of a
GUE matrix other than the maximal one. The correct object to consider
turns out to be random partitions chosen according to Plancherel measure.
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Recall that the length λ(n)
1 of the first row of such a Plancherel-random par-

tition λ(n) is equal in distribution to L(σn). Baik et al. proved also [12] that
the length λ(n)

2 of the second row of λ(n) converges in distribution after scal-
ing to the second-largest element of the Airy ensemble, and conjectured
that more generally, for each k ≥ 1, the joint distribution of the lengths of
the first k rows of λ(n) converges after scaling to the largest k elements in
the Airy ensemble. This conjecture was given three different proofs soon
afterwards, one by Andrei Okounkov [95],3 and two other roughly equiva-
lent ones found independently by Alexei Borodin, Grigori Olshanski, and
Andrei Okounkov [19] and by Kurt Johansson [63].

In this chapter, our primary goals will be to prove Theorems 2.1 and
2.2. However, we will aim higher and actually end up proving the stronger
result on convergence of the scaled lengths of the first rows of a Plancherel-
random partition to the Airy ensemble. This will require a bit more back-
ground and preparatory work, but in this way we will get a better picture
of the mathematical structure that underlies these remarkable asymptotic
phenomena. In particular, a key element in the proof is the use of the con-
cept of a determinantal point process. These processes (which are a type
of random point process, another concept we will define more properly)
have appeared in recent years in connection with an increasing number
of problems in combinatorics, probability, and statistical physics, so it is
worthwhile to add them to our arsenal of mathematical tools.

To state the precise result, we need some additional definitions. The Airy
ensemble is defined in terms of the Airy kernel, defined in (2.2), accord-
ing to the following general recipe. Define a random point process on
R to be any random locally finite subset X of R. (There is a formal way
to define such objects using standard measure-theoretic concepts, but for
our purposes it will be enough to consider X as a kind of random variable
taking values in the set of subsets of R, such that one may ask questions
of the form “what is the probability that exactly k points of X fall in an
interval I ⊆ R?” for an arbitrary nonnegative integer k and subinterval I of
R.) For such a random point process, for each n ∈ N we define its n-point
correlation function ρ(n)

X : Rn → [0,∞) by

ρ(n)
X (x1, . . . , xn) = lim

ε↓0

[
(2ε)−n P

 n⋂
j=1

{∣∣∣X ∩ [x j − ε, x j + ε]
∣∣∣ = 1

} ], (2.5)
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Random matrix theory and the Gaussian Unitary Ensemble

The mapping from a square matrix to its eigenvalues is an interesting func-
tion. Random matrix theory studies the effects that this function has on
matrices chosen at random in some simple or natural way. That is, given
a random matrix whose entries have some given joint distribution, what can
we say about the joint distribution of the eigenvalues, and about their asymp-
totic behavior? Usually the measure on the entries of the matrix is a fairly
simple one, for example, they are taken as i.i.d. samples from some distri-
bution. If one is interested in matrices from one of the well-behaved families
of matrices, such as Hermitian or symmetric matrices, a standard trick is to
condition the matrix of i.i.d. samples to lie in the family; e.g., in the case of
symmetric matrices this means that only the entries on the main diagonal
and above it are taken as i.i.d. samples, and then the values of the entries
below the diagonal are dictated by the symmetry condition.

A particularly nice and well-behaved random matrix model is the
Gaussian Unitary Ensemble, or GUE. In this case, one takes the entries
on the main diagonal to be i.i.d. N(0, 1) (standard Gaussian) random vari-
ables; independently the entries above the diagonal are i.i.d. complex Gaus-
sian random variables of type N(0, 1

2 ) + iN(0, 1
2 ) (i.e., each of the real and

imaginary part is an N(0, 1
2 ) r.v., and they are independent); and each entry

below the diagonal is the complex conjugate of the corresponding entry in
the reflected position above the diagonal. This results in a random Hermitian
matrix, with the nice combination of properties that its entries are indepen-
dent (modulo the Hermitian constraint) and its distribution is invariant under
the action of the unitary group by conjugation.

It can be shown that the vector of real eigenvalues (ξ1, . . . , ξn) (consid-
ered with a randomized order) of a random GUE matrix of order n has joint
density function

fn(x1, . . . , xn) =
1
Zn

∏
1≤i< j≤n

(xi − x j)2 exp

−1
2

n∑
i=1

x2
i

 ,
where Zn = (2π)n/2 ∏n−1

k=1(k!). An analysis of this explicit formula, and other
techniques, can be used to reveal much information about the asymptotic
behavior of the GUE eigenvalues. See [4] for a good introduction to this
field.

if the limit exists. The correlation function ρ(n)
X is similar in nature to a

probability density in that it measures the relative likelihood of finding a
point of the process simultaneously in the vicinity of each of the points
x1, . . . , xn. The 1-point correlation function ρ(1)

X (or sometimes the asso-
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ciated measure ρ(1)
X (x) dx) is called the intensity of the process. If these

limits exist almost everywhere for all n ≥ 1, then, under some mild tech-
nical conditions, it is known that the correlation functions characterize the
distribution of the random set X (see [121]). In this case we say that X is
an absolutely continuous point process.

An absolutely continuous determinantal point process is a special kind
of absolutely continuous point process for which the correlation functions
can be expressed as determinants of a certain form. More precisely, an
absolutely continuous point process X is called determinantal if there is a
function K : R × R → R (called the correlation kernel of the process)
such that for all n ≥ 1 we have

ρ(n)
X (x1, . . . , xn) =

n
det
i, j=1

(
K(xi, x j)

)
, (x1, . . . , xn ∈ R). (2.6)

The Airy ensemble is the determinantal process XAiry whose correlation
kernel is the Airy kernel A(x, y). Of course, one must become convinced
that such an object exists and is unique—that is, that the determinants of
the form (2.6) in the case when K(x, y) = A(x, y) are indeed the n-point
correlation functions of a unique random point process; we discuss this in
more detail in Section 2.11. In particular, it can be shown that the Airy
ensemble almost surely has a maximal element. Therefore, for notational
convenience, rather than consider it as a set of unlabeled elements, we label
its (random) elements in decreasing order starting with the largest one, as
follows:

XAiry =
{
ζ1 > ζ2 > ζ3 > . . .

}
. (2.7)

With this preparation, we are ready to state the strengthened version
of the Baik–Deift–Johansson theorem that was proved by Borodin, Ok-
ounkov, Olshanski, and Johansson.

Theorem 2.3 (Edge statistics for Plancherel measure4) For each n ≥ 1,
let λ(n) denote a random partition chosen according to Plancherel mea-
sure of order n, let λ(n)

j denote the length of its jth row, and denote λ̄(n)
j =

n−1/6(λ(n)
j − 2

√
n
)
. Then for each k ≥ 1, we have the convergence in distri-

bution
(λ̄(n)

1 , . . . , λ̄(n)
k )

d
−−→ (ζ1, . . . , ζk) as n→ ∞.

Our approach to the proofs of Theorems 2.2 and 2.3 follows those of
Borodin–Okounkov–Olshanski [19] and Johansson [63]. The Airy function
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The Airy function

The Airy function was introduced to mathematics by Sir George Biddell
Airy, an English 19th century astronomer and mathematician, who is known
among other things for establishing in 1851 the prime meridian (the 0◦ lon-
gitude line), based at the Royal Observatory in Greenwich, England. He dis-
covered the function while analyzing the mathematics of the phenomenon of
rainbows; the formula he derived and published in an 1838 paper, describing
approximately the oscillations of the intensity of light of a given wavelength
near the caustic (the curve in the rainbow where the light of that wavelength
appears), is essentially the square of the Airy function, Ai(x)2, in an appro-
priate coordinate system. The Airy function has many other applications in
mathematical analysis, the theory of differential equations, optics, quantum
physics, and other fields. Its fundamental property is the relation

Ai′′(x) = x Ai(x). (2.8)

That is, Ai(x) is a solution of the second-order ordinary differential equation
y′′(x) = x y(x), known as the Airy differential equation (see Exercise 2.15).

-10 -5 5
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The behavior of the Airy function near x = 0 George Airy

and kernel will play a crucial role in the analysis. We discuss some of
the properties of these functions in the following sections. See the box for
some additional background on the history of the Airy function and its
importance in mathematics.

2.3 Poissonized Plancherel measure

Theorems 2.2 and 2.3 are asymptotic results, but the first key element in
their proof is an exact identity relating Plancherel measure to determinan-
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tal point processes. To formulate this identity, we need to first replace the
family of finite-order Plancherel measures with an averaged-out version of
them called Poissonized Plancherel measure, which we define as follows.
Let θ > 0 be a continuous positive parameter (roughly, it will have the same
role as that played by the discrete parameter n). Denote the set ∪∞n=0P(n)
of all integer partitions (including the trivial empty partition of order 0) by
P∗. The Poissonized Plancherel measure with parameter θ is a measure Pθ

on the set P∗, assigning to a partition λ the probability

Pθ(λ) = e−θ
θ|λ|d2

λ

(|λ|!)2 .

To verify that this is indeed a probability measure, observe that

Pθ (P∗) =

∞∑
n=0

Pθ(P(n)) =

∞∑
n=0

e−θ
θn

n!

∑
λ`n

d2
λ

n!

 =

∞∑
n=0

e−θ
θn

n!
= 1.

This computation also illustrates the fact, immediate from the definition,
that Pθ is simply a “Plancherel measure with a Poisson-random n” (or, in
more technical probabilistic language, it is “a mixture of the Plancherel
measures of all orders with Poisson weights e−θθn/n!”). That is, we can
sample a random partition λ〈θ〉 with distribution Pθ in a two-step experi-
ment, by first choosing a random variable N with the Poisson distribution
Poi(θ), and then, conditioned on the event that N = n, choosing λ〈θ〉 to
be a Plancherel-random partition of order n. This idea also ties in nicely
with Hammersley’s approach to the study of the maximal increasing sub-
sequence length discussed in Section 1.4 (see Exercise 2.1).

Note also that when θ is large, the random order N of the partition is
with high probability close to θ (since N has mean θ and variance θ). So, at
least intuitively it seems plausible that many reasonably natural asymptotic
results we might prove for the Poissonized Plancherel-random partition λ〈θ〉

will also hold true for the original Plancherel-random λ(n). Indeed, for our
context we will be able to make such a deduction using a nice trick of
“de-Poissonization”; see Section 2.9.

It now turns out that the Poissonized Plancherel-random partition λ〈θ〉

can be encoded in terms of a determinantal point process, using the concept
of Frobenius coordinates. Let λ ∈ P(n) be a partition. Define numbers
p1, . . . , pd by

p j = λ j − j,
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where d is the largest j ≥ 1 for which λ j − j is nonnegative. Graphically,
p j is the number of cells in the jth row of the Young diagram of λ to the
right of the main diagonal. Note that the p j form a decreasing sequence.
Similarly, define another decreasing sequence of numbers q1 > . . . > qd ≥

0, where q j is the number of cells in the jth column of λ below the diagonal,
formally given by

q j = λ′j − j.

The fact that there are equally many q j as p j is easy to see (the number
d is the size of the so-called Durfee square of λ, that is, the maximal k
such that a square of dimensions k × k leaning against the top-left corner
of the Young diagram fits inside it). Together, the p j and q j are called the
Frobenius coordinates of λ. It is customary to write the vector of Frobe-
nius coordinates in the form (p1, . . . pd | q1, . . . , qd). Clearly the Frobenius
coordinates determine the partition λ (see also Exercise 2.13).

For our purposes, it will be more convenient to use the following variant
of the Frobenius coordinates. Denote Z′ = Z − 1

2 . The set of modified
Frobenius coordinates is defined by

Fr(λ) =
{
p1 + 1

2 , . . . , pd + 1
2 ,−q1 −

1
2 , . . . ,−qd −

1
2

}
⊂ Z′. (2.9)

One rationale for adding 1
2 to each of the p j and q j to get half-integer

values is that this has the geometric interpretation of including the Young
diagram cells lying on the main diagonal, each of which is broken up into
two equal halves, one being assigned to p j and the other to q j. Thus for
example we have the identity |λ| =

∑d
j=1

(
p j + 1

2

)
+

∑d
j=1

(
q j + 1

2

)
, which

will play a small role later on. Fig. 2.2 is an illustration of the Frobenius
coordinates for the diagram λ = (4, 4, 3, 1, 1), whose Frobenius coordinates
are (3, 2, 0 | 4, 1, 0).

The hook-length formula (Theorem 1.12), which played a crucial role
in our analysis of the asymptotic behavior of Plancherel-random partitions
in the previous chapter, will be essential here as well. What we need is
a different version of it that expresses dλ, the number of standard Young
tableaux of shape λ, as a determinant involving the Frobenius coordinates.
We derive it as a corollary to two other auxiliary representations for dλ.



2.3 Poissonized Plancherel measure 89

p1 = 3

p2 = 2

p3 = 0

q1
=

4
q2

=
1
q3

=
0

Figure 2.2 A Young diagram and its Frobenius coordinates.

Lemma 2.4 If λ ∈ P(n) has m parts, then, with the convention that λi = 0
if i > m, for any k ≥ m we have

dλ
|λ|!

=

∏
1≤i< j≤k(λi − λ j + j − i)∏

1≤i≤k(λi + k − i)!
. (2.10)

Proof First note that it is enough to prove the claim for k = m, since it
is easy to see that the right-hand side of (2.10) stays constant for k ≥ m.
Therefore, by the hook-length formula, we need to prove that

∏
(i, j)∈λ

hλ(i, j) =

∏
1≤i≤m(λi + m − i)!∏

1≤i< j≤m(λi − λ j + j − i)
. (2.11)

We claim that for any 1 ≤ i ≤ m, the equality

λi∏
j=1

hλ(i, j) =
(λi + m − i)!∏

i< j≤m(λi − λ j + j − i)
(2.12)

holds; this clearly implies (2.11) by multiplying over i = 1, . . . ,m. To see
why (2.12) is true, note that the largest hook-length in the ith row of λ
is λi + m − i, so that the left-hand side of (2.12) is equal to (λi + m − i)!
divided by the product of the hook-lengths that are missing from that row.
It is not difficult to see that these missing hook-lengths consist exactly of
the numbers (λi +m− i)−λm, (λi +m− i)−(λm−1 +1), . . . , (λi +m− i)−(λi+1 +

m − j − 1). This list accounts exactly for the denominator in (2.12). �
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−→ D

λR

λB

Figure 2.3 A Young diagram is broken up into its Durfee square
and two smaller “right” and “bottom” Young diagrams.

Lemma 2.5 If λ = (p1, . . . , pd | q1, . . . , qd) in Frobenius coordinates, then
we have

dλ
|λ|!

=

∏
1≤i, j≤d(pi − p j)(qi − q j)∏

1≤i, j≤d(pi + q j + 1)
∏d

i=1(pi!qi!)
. (2.13)

Proof Divide the Young diagram of λ into three shapes: the Durfee square
D of size d×d leaning against the top-left corner, and the smaller Young di-
agrams λR and λB leaning against D from the right and bottom, respectively
(Fig. 2.3).

Now compute the product of reciprocals of the hook numbers

dλ
|λ|!

=
∏

(i, j)∈λ

hλ(i, j)−1

separately over the cells of the three shapes D, λR and λB, as follows. The
contribution from D is exactly∏

1≤i, j≤d

(pi + q j + 1)−1,

since for 1 ≤ i, j ≤ d we have that hλ(i, j) = pi + q j + 1. The contribu-
tion from λR can be computed by applying (2.10) to that partition, whose
parts satisfy (λR)i = λi − d, and whose hook-lengths are the same as the
corresponding hook-lengths for λ. This gives∏

(i, j)∈λR

hλ(i, j)−1 =

∏
1≤i< j≤d(pi − p j)∏d

i=1 pi!
.
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In a similar way, the contribution from λB is given by the analogous ex-
pression ∏

1≤i< j≤d(qi − q j)∏d
i=1 qi!

,

and combining these products gives the claim. �

Next, we need a classical determinant identity from linear algebra. A
proof idea is suggested in Exercise 2.2.

Lemma 2.6 (The Cauchy determinant identity)

n
det
i, j=1

(
1

xi + y j

)
=

∏
1≤i< j≤n(x j − xi)(y j − yi)∏

1≤i, j≤n(xi + y j)
. (2.14)

By combining Lemmas 2.5 and 2.6, we get the following determinantal
form of the hook-length formula in Frobenius coordinates.

Corollary 2.7 We have

dλ
|λ|!

=
d

det
i, j=1

(
1

(pi + q j + 1)pi!q j!

)
. (2.15)

The identity (2.15) has useful implications for Poissonized Plancherel
measure. We will show later that when the Young diagram is encoded us-
ing the modified Frobenius coordinates, the resulting process is a type of
determinantal point process – a discrete version of the “absolutely contin-
uous” determinantal point processes described in the previous section. The
relevant background on determinantal point processes is presented in the
next section. For now, we can formulate a result that already illustrates this
idea to some extent. Define a function Lθ : Z′ × Z′ → R by

Lθ(x, y) =


0 if xy > 0,

1
x − y ·

θ(|x|+|y|)/2(
|x| − 1

2

)
!
(
|y| − 1

2

)
!

if xy < 0. (2.16)

Proposition 2.8 Let λ ∈ P∗. Let Fr(λ) = {x1, x2, . . . , xs} be the modified
Frobenius coordinates of λ. Then we have

Pθ(λ) = e−θ
s

det
i, j=1

(
Lθ(xi, x j)

)
. (2.17)
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Proof Let (p1, . . . , pd | q1, . . . , qd) be the usual Frobenius coordinates of
λ, related to the modified coordinates by

{x1, . . . , xs} =
{
p1 + 1

2 , . . . , pd + 1
2 ,−q1 −

1
2 , . . . ,−qd −

1
2

}
(so in particular s = 2d). By Corollary 2.7 we have

Pθ(λ) = e−θ
θ|λ|d2

λ

(|λ|!)2 = e−θθ|λ|
(

d
det
i, j=1

( 1
(pi + q j + 1)pi!q j!

))2

,

so we need to verify the identity

θ|λ|
(

d
det
i, j=1

( 1
(pi + q j + 1)pi!q j!

))2

=
s

det
i, j=1

(
Lθ(xi, x j)

)
.

Since Lθ(x, y) = 0 if sgn(x) = sgn(y), we see that the matrix (Lθ(xi, x j))i, j

can be written as the block matrix

(
Lθ(xi, x j)

)s

i, j=1
=


0

(
−Lθ

(
pi+

1
2 ,−q j−

1
2

))d

i, j=1(
Lθ

(
p j+

1
2 ,−qi−

1
2

))d

i, j=1
0


Therefore we can evaluate its determinant, making use of the fact that |λ| =∑d

i=1(pi + qi + 1), as follows:

s
det
i, j=1

(
Lθ(xi, x j)

)
= (−1)d2+d

(
det

(
Lθ

(
pi + 1

2 ,−q j −
1
2

) )d

i, j=1

)2

= θ
∑d

i=1

(
pi+

1
2

)
+
∑d

j=1

(
q j+

1
2

) (
d

det
i, j=1

( 1
(pi + q j + 1)pi!q j!

))2

= θ|λ|
(

d
det
i, j=1

( 1
(pi + q j + 1)pi!q j!

))2

,

which proves the claim. �

2.4 Discrete determinantal point processes

The goal of this section is to define and describe some of the basic proper-
ties of determinantal point processes whose elements lie in some countable
set. The subject can be treated in much greater generality.5 We start with the
even simpler case of a process with a finite set of possible values, where the
subject at its most basic level reduces to some elementary linear algebra.

Let Ω be a finite set. We consider square matrices with real entries whose
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rows and columns are indexed by elements of Ω. In contrast to the usual lin-
ear algebra notation, we denote such matrices as functions M : Ω×Ω→ R,
so that M(x, y) denotes the entry lying in the row with index x and the
column with index y, and use the word kernel instead of matrix. Kernels
will be denoted with boldface letters, for example, M,L,K, and so on. We
will also think of kernels as linear operators, acting on the space `2(Ω)
of complex-valued functions on Ω (which are identified with column vec-
tors) in the usual way by matrix multiplication. The notation ML denotes
the product of the kernels M and L, that is, the usual product of matrices,
equivalent to composition of linear operators. We use I to denote the iden-
tity matrix/operator acting either on the space `2(Ω) or on an appropriate
subspace of `2(Ω) that will be clear from the context.

A random point process in Ω (or simply point process) is a random
subset X of Ω, that is, a random variable taking values in the set of subsets
of Ω.6 We refer to Ω as the underlying space of X. Given the point process
X, define its correlation function by

ρX(A) = P(A ⊆ X), (A ⊆ Ω). (2.18)

(As a point of terminology, it is sometimes customary to define for each
n ≥ 1, in analogy with (2.5), the function

ρ(n)
X (x1, . . . , xn) = P(x1, . . . , xn ∈ X) = ρX({x1, . . . , xn}) (x1, . . . , xn ∈ Ω),

referred to as the n-point correlation function of the process, or the cor-
relation function of order n; thus the mapping A 7→ ρX(A) combines the
correlation functions of all orders.)

We say that X is determinantal if there exists a kernel K : Ω × Ω → R,
called the correlation kernel of X, such that for any A = {x1, . . . , xs} ⊆ Ω,
we have that

ρX(A) =
s

det
i, j=1

(
K(xi, x j)

)
, (2.19)

where we adopt the convention that the determinant of an empty matrix
is 1. Note that the right-hand side does not depend on the labeling of the el-
ements of A. We denote by KA the submatrix (K(x, y))x,y∈A. In the language
of linear operators, if we think of K as a linear operator on `2(Ω), then
KA corresponds to its restriction to the copy of `2(A) embedded in `2(Ω).
With this notation, the determinant on the right-hand side of (2.19) can be
written simply as det(KA).
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In practice, the distribution of a finite point process is often given not
in terms of its correlation function but in terms of a formula for the prob-
ability of individual configurations. We say that the point process X has a
determinantal configuration kernel if there is a normalization constant
Z > 0 and a kernel L : Ω × Ω → R, called the configuration kernel of X,
such that for any subset A = {x1, . . . , xs} ⊆ Ω, we have

P(X = A) =
1
Z

s
det
i, j=1

(
L(xi, x j)

)
=

1
Z

det(LA). (2.20)

By summing (2.20) over all subsets of Ω, we find that the normalization
constant must satisfy

Z =
∑
A⊆Ω

det(LA) = det(I + L) (2.21)

(the second equality is a trivial, though perhaps not widely known, obser-
vation about determinants). In particular, this implies that det(I + L) must
be nonzero, so I + L is invertible.

It turns out that if a point process has a determinantal configuration ker-
nel, then it is determinantal (the converse is not true – see Exercise 2.3),
and there is a simple relationship between the correlation and configura-
tion kernels. This property is one of the key features that makes the study
of determinantal point processes so fruitful; its precise formulation is as
follows.

Proposition 2.9 If a point process X has a determinantal configuration
kernel L, then it is determinantal and its correlation kernel is given by

K = L(I + L)−1. (2.22)

Proof Let K be given by (2.22), and let (tx)x∈Ω denote a family of indeter-
minate variables indexed by the elements of Ω. We will prove the identity∑

A⊆Ω

ρX(A)
∏
x∈A

tx =
∑
A⊆Ω

det(KA)
∏
x∈A

tx, (2.23)

equating two polynomials in the set of indeterminates (tx)x∈Ω. This will
prove the claim by comparing coefficients. To prove (2.23), observe that
by the definition of ρX(A), the left-hand side can be rewritten as∑

B⊆Ω

P(X = B)
∏
x∈B

(1 + tx) =
∑
B⊆Ω

1
Z

det(LB)
∏
x∈B

(1 + tx). (2.24)
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Defining a square matrix D whose rows and columns are indexed by ele-
ments of Ω by D(x, x) = tx and D(x, y) = 0 for x , y (i.e., D is the diagonal
matrix whose entries are the indeterminates tx), and denoting D′ = I + D,
we see that the right-hand side of (2.24) is equal to

1
Z

∑
B⊆Ω

det
(
(D′L)B

)
=

det(I + D′L)
det(I + L)

=
det(I + L + DL)

det(I + L)
. (2.25)

Since K = L(I + L)−1, we have that (I + DK)(I + L) = I + L + DL, so,
by the multiplicativity of the determinant, the last expression in (2.25) is
equal to det(I + DK). This in turn can be expanded to give the right-hand
side of (2.23), proving the claim. �

Note that if a configuration kernel L exists, the kernels K and L con-
tain exactly the same information about the process X, since (2.22) can be
inverted to give L = K(I−K)−1. However, in practice K encodes the prob-
abilities of some interesting events associated with X in a more accessible
way. The relation (2.19) is one example of this fact, and we give several
more examples. In Propositions 2.10, 2.11 and 2.12, X will denote a deter-
minantal point process with correlation kernel K. The following formula is
in some sense dual to (2.19) (see Exercises 2.3 and 2.5).

Proposition 2.10 Let A ⊆ Ω, and denote Ac = Ω \ A. We have

P(X ⊆ A) = det(I −KAc ).

Proof By the inclusion–exclusion principle, we have that

P(X ⊆ A) = 1 − P
(
∪x∈Ac

{
x ∈ X

})
= 1 −

∑
x∈Ac

P(x ∈ X) +
∑
{x,y}⊆Ac

P({x, y} ⊆ X) − . . .

= 1 +

|Ω|∑
k=1

(−1)k

 ∑
B⊆Ac, |B|=k

det(KB)


= 1 +

∑
∅(B⊆Ac

(−1)|B| det(KB) = det(I −KAc ). �

More generally, we have the following formula for the distribution of
the number of points of X occurring inside a set A ⊆ Ω.
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Proposition 2.11 For any A ⊆ Ω and n ≥ 0, we have that

P(|X ∩ A| = n) =
(−1)n

n!
dn

dxn
∣∣∣x=1

det(I − xKA). (2.26)

Proof Letting s = −x, we have

det(I + sKA) =
∑
B⊆A

det(KB)s|B| =
∑
B⊆A

P(B ⊆ X ∩ A)s|B|

=
∑
E⊆A

P(X ∩ A = E)(1 + s)|E| =
|A|∑

n=0

P(|X ∩ A| = n)(1 + s)n.

(2.27)

So, we have shown that det(I − xKA) =
∑|A|

n=0 P(|X ∩ A| = n)(1 − x)n, which
implies (2.26). �

Continuing in even greater generality, the joint distribution of the num-
bers of points of X falling in several disjoint sets can also be expressed in
terms of K. First, we introduce a small bit of additional notation: if A ⊂ Ω,
let PA : Ω ×Ω→ R denote the kernel given by

PA(x, y) =

1 if x = y ∈ A,

0 otherwise.
(2.28)

That is, PA is a projection operator to the subspace of `2(Ω) spanned by the
coordinates in A.

The following result is an easy generalization of Proposition 2.11 and its
proof is left to the reader (Exercise 2.6).

Proposition 2.12 Let k ≥ 1. For any disjoint subsets A1, . . . , Ak ⊆ Ω and
integers n1, . . . , nk ≥ 0, we have

P
(
|X ∩ A1| = n1, . . . , |X ∩ Ak| = nk

)
=

(−1)N

N!
∂n1+...+nk

∂xn1
1 . . . ∂xnk

k

∣∣∣x1=...=xk=1

det

I − k∑
j=1

x jPA j ·K · PA1∪...∪Ak

 ,
where N = n1 + . . . + nk.

This concludes our summary of the basic facts regarding determinantal
point processes in the simplest case of a finite underlying space. Next, we
consider determinantal point processes that are random subsets of a count-
able set Ω. In this case a kernel M : Ω × Ω → R can be thought of as an



2.4 Discrete determinantal point processes 97

infinite matrix. As before, we say that X is a random point process in Ω if
X is a random subset of Ω (i.e., a random variable taking values in {0, 1}Ω,
or equivalently a collection of random variables (Yx)x∈Ω where Yx = 1 if
and only if x ∈ X). If X is a point process, we define the correlation func-
tion ρX(·) of X by ρX(A) = P(A ⊆ X) as before (where A is any finite subset
of Ω), and say that X is determinantal if there exists a kernel K : Ω×Ω→ R
such that (2.19) holds for any finite subset A = {x1, . . . , xs} ⊂ Ω. As before,
we say that X has a determinantal configuration kernel if there is a normal-
ization constant Z > 0 and a kernel L : Ω × Ω → R such that (2.20) holds
for any finite subset A = {x1, . . . , xs} ⊂ Ω, except that in this defintion we
make the added requirement that X be almost surely a finite set, so that we
can still express the normalization constant as Z =

∑
A⊂Ω, |A|<∞ det(LA).

Fortunately for us, much of the theory presented in the foregoing discus-
sion remains valid, but some care must be taken when interpreting some of
the standard linear-algebraic concepts in this infinite-dimensional setting.
In particular, for the second equality in (2.21) to make sense (where the
summation is now understood to range over finite subsets of Ω), one must
have a well-defined notion of the determinant of an infinite matrix. One
possible solution is to take this equality as the definition of the determinant
of I + L, and to keep the notation det(I + L) for this new determinant con-
cept. This may seem a bit contrived, but it turns out that it is in fact quite
natural and leads to the elegant and extremely useful theory of Fredholm
determinants. The full theory of these determinants is subtle and relies on
deep ideas from operator theory, but we present here a minimal discussion
of Fredholm determinants that is adequate for our relatively limited needs.7

One elementary result we need is Hadamard’s inequality, a basic in-
equality from linear algebra.

Lemma 2.13 (Hadamard’s inequality) (a) If M = (mi, j)n
i, j=1 is a Hermi-

tian positive-semidefinite matrix, then

det(M) ≤
n∏

i=1

mi,i. (2.29)

(b) If M is any n × n square matrix whose column vectors are denoted



98 The Baik–Deift–Johansson theorem

v1, . . . , vn, then

| det(M)| ≤
n∏

j=1

‖v j‖2 ≤ nn/2
n∏

j=1

‖v j‖∞. (2.30)

Proof (a) For i = 1, . . . , n, let ei denote the ith standard basis vector in
Cn. Note that mi,i = e>i Mei ≥ 0. In particular, if M is singular then (2.29)
holds, since det(M) = 0. Next, assume that M is nonsingular. In this case
M is positive-definite and mi,i > 0 for i = 1, . . . , n. Let D be the diagonal
matrix with entries 1/

√
mi,i, i = 1, . . . , n. Let M′ = DMD. Then M′ is also

Hermitian and positive-definite (in particular, it is diagonalizable and has
positive eigenvalues), and its diagonal entries are m′i,i = 1. Let λ1, . . . , λn be
the eigenvalues of M′. We have

∑
i λi = tr M′ =

∑
i m′i,i = n. It follows that

det(M′) =

n∏
i=1

λi ≤

1
n

n∑
i=1

λi

n

=

(
1
n

tr M′

)n

= 1,

On the other hand, det(M′) = det(D)2 det(M) = det(M)/
∏

i mi,i, so we get
(2.29).

(b) Defining P = M∗M, we have that P is Hermitian and positive-
semidefinite, and its diagonal entries are pi,i = ‖vi‖

2
2. The inequality (2.29)

applied to P now gives

| det(M)|2 = det(P) ≤
n∏

i=1

pi,i =

n∏
i=1

‖vi‖
2
2,

which gives (2.30). �

Fix some orderingω1, ω2, . . . of the elements of Ω. We consider the class
E of kernels T : Ω × Ω → C (we shall see that there is some advantage to
considering complex-valued kernels) whose entries satisfy the bound

|T(ωi, ω j)| ≤ Ce−c(i+ j) (2.31)

for some constants C, c > 0 (which may depend on T but not on i, j). If
T is in the class E, we say it has exponential decay. Trivially, kernels in
E are bounded linear operators on the Hilbert space `2(Ω). If S,T ∈ E, it
is immediate to check that the operators S + T, ST and λS (where λ is an
arbitrary complex number) also have exponential decay.
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For a kernel T ∈ E, we define the Fredholm determinant of I + T by

det(I + T) =
∑

A⊂X, |A|<∞

det(TA), (2.32)

provided that the sum converges absolutely, which we claim it does. This
can be written equivalently as

det(I + T) =

∞∑
k=0

∑
A⊂X, |A|=k

det(TA)

=

∞∑
k=0

1
k!

∑
x1∈Ω

∑
x2∈Ω

. . .
∑
xk∈Ω

k
det
i, j=1

(
T(xi, x j)

)
=

∞∑
k=0

1
k!

 ∞∑
m1=1

. . .

∞∑
mk=1

k
det
i, j=1

(
T(ωmi , ωm j )

) . (2.33)

To see that for a kernel with exponential decay the Fredholm determinant
is well-defined, note that by (2.31) and Hadamard’s inequality (2.30) we
have ∣∣∣∣∣∣ k

det
i, j=1

(
T(ωmi , ωm j )

)∣∣∣∣∣∣ = e−2c
∑n

j=1 m j

∣∣∣∣∣∣ k
det
i, j=1

(
ec(mi+m j)T(xi, x j)

)∣∣∣∣∣∣
≤ kk/2Cke−2c

∑k
j=1 m j ,

so that
∞∑

k=0

1
k!

 ∞∑
m1=1

. . .

∞∑
mk=1

∣∣∣∣∣∣ k
det
i, j=1

(
T(ωmi , ωm j )

)∣∣∣∣∣∣
 ≤ ∞∑

k=0

Ckkk/2

k!

 ∞∑
m=1

e−2cm

k

< ∞

which shows that we indeed have absolute convergence.
If T is a kernel with no nonzero entries outside of the first n rows and

columns, then the sum on the right-hand side of (2.32) is a finite sum, and
by standard linear algebra it coincides with the ordinary matrix determi-
nant detn

i, j=1(δi j +T(ωi, ω j)) (where δi j is the Kronecker delta symbol). This
shows that the Fredholm determinant is a natural extension of the familiar
determinant from linear algebra. Note that some authors define the Fred-
holm determinant to be the quantity that in our notation would be written
as det(I − T), and, to add further potential for confusion, may refer to this
quantity (inconsistently) as the “Fredholm determinant of T” or “Fredholm
determinant associated with T.”

In the proof of Proposition 2.9, we used the multiplicativity property
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of ordinary determinants. We will need the analogue of this property for
Fredholm determinants.

Lemma 2.14 (Multiplicativity of Fredholm determinants) If S,T ∈ E
then we have

det(I + S + T + ST) = det(I + S) det(I + T). (2.34)

Proof For each n ≥ 1 denote by Pn the projection operator P{ω1,...,ωn} (in
the notation of (2.28)). Then PnSPn is the matrix obtained from S by zero-
ing out all entries except in the first n rows and columns. Denote

En = {S ∈ E : S = PnSPn}.

We start by noting that if S,T ∈ Em for some m ≥ 1 then (2.34) holds by
the multiplicativity of ordinary matrix determinants.

Next, assume that S ∈ Em, T ∈ E. Denote Tn = PnTPn. We have

det(I + Tn) =
∑

A⊆{ω1,...,ωn}

det(TA) −−−→
n→∞

det(I + T),

and similarly

det(I+S + Tn + STn) =
∑

A⊆{ω1,...,ωn}

det((S + Tn + STn)A)

=
∑

A⊆{ω1,...,ωn}

det((S + T + ST)A) −−−→
n→∞

det(I + S + T + ST)

where the second equality is valid for n ≥ m. Combining these facts with
the observation that (again due to the multiplicativity of finite matrix deter-
minants)

det(I + S + Tn + STn) = det(I + S) det(I + Tn)

gives (2.34).
Finally, to prove (2.34) in the general case S,T ∈ E, denote Sm = PmSPm.

Then Sm ∈ Em so by the case proved above we have

det(I + Sm + T + SmT) = det(I + Sm) det(I + T) −−−→
n→∞

det(I + S) det(I + T).
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On the other hand, we can write

det(I + Sm + T + SmT)

=
∑

A⊂N, |A|<∞
det((Sm + T + SmT)A)

=
∑

A⊆{1,...,m}

det((Sm + T + SmT)A) +
∑

A⊆N, |A|<∞
A*{1,...,m}

det((Sm + T + SmT)A)

=
∑

A⊆{1,...,m}

det((S + T + ST)A) +
∑

A⊆N, |A|<∞
A*{1,...,m}

det((Sm + T + SmT)A).

In the last expression, the first sum converges to det(I + S + T + ST) as
m → ∞, so if we can show that the second sum tends to 0 the result will
follow. Indeed, the kernels Sm +T+SmT have exponential decay uniformly
in m, that is, there exist constants C, c > 0 such that for any i, j ≥ 1, the
(ωi, ω j)-entry of this kernel is bounded in absolute value by Ce−c(i+ j). It
therefore follows using Hadamard’s inequality as before that∑

A⊆N, |A|<∞
A*{1,...,m}

| det((Sm + T + SmT)A)|

≤

∞∑
k=1

kk/2

k!
k

∞∑
j1=m+1

∞∑
j2,..., jk=1

Cke−2c
∑k

d=1 jd

=

∞∑
k=1

kk/2+1

k!
Ck

 ∞∑
j=1

e−2c j


k−1

·

∞∑
j=m+1

e−2c j.

The summation over k is a convergent sum, and it is multiplied by an ex-
pression that tends to 0 as m→ ∞, as claimed. �

We can now extend Proposition 2.9 to the countable setting.

Proposition 2.15 If X is a point process in a countable set Ω with a
determinantal configuration kernel L : Ω × Ω → R, L has exponential
decay, and I + L is an invertible operator in `2(Ω), then X is determinantal
and its correlation kernel is given by (2.22).

Before starting the proof, note that the assumption that I+L is invertible
is unnecessary, since it can be shown that (as with ordinary determinants)
that already follows from the fact that Z = det(I + L) is nonzero. However,
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we did not prove such an implication in the context of Fredholm determi-
nants, and for our purposes the extra assumption will not be an impediment.

Proof We follow the same reasoning that was used in the proof of Propo-
sition 2.9, except that rather than take (tx)x∈Ω to be a set of indeterminates,
we let tx = 1 for x ∈ E and tx = 0 for x ∈ Ω \ E, where E is an arbi-
trary finite subset of Ω. All the steps of the proof remain valid, with the
only modification being that the summation in (2.24) is taken over all finite
subsets B ⊂ Ω. In that case the algebraic manipulations of the proof all
involve sums that are easily seen to be absolutely convergent, and we can
use Lemma 2.14 in the last step (with S = DK, a kernel with only finitely
many nonzero entries, and T = L) where previously the multiplicativity of
the determinant was used. This establishes that (2.23) holds for the substi-
tution tx = χE(x), or in other words that∑

A⊆E

ρX(A) =
∑
A⊆E

det(KA)

for any finite E ⊂ Ω. It is easy to see that this implies that ρX(E) = det(KE)
for all finite E ⊂ Ω, by induction on |E|. �

Propositions 2.10, 2.11, and 2.12 also have analogues that hold in the
case of determinantal processes on a countable space. Note that if T ∈ E
then we have

det(I + xT) =
∑

A⊂X, |A|<∞

x|A| det(TA),

so the fact that this sum converges absolutely for any complex x implies
that det(I + xT) is an entire function of x.

Proposition 2.16 If X is a determinantal point process in a countable set
Ω with correlation kernel K, and K has exponential decay, then for any
A ⊆ Ω we have the identity of entire functions

det(I − xKA) =

∞∑
n=0

P(|X ∩ A| = n)(1 − x)n, (x ∈ C).

Consequently, we have for all n ≥ 0 that

P(|X ∩ A| = n) =
(−1)n

n!
dn

dxn
∣∣∣x=1

det(I − xKA).
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Proof The proof consists simply of going through the computation in
Proposition 2.11 carefully and checking that all the steps are meaningful
and valid in the present context. �

The following analogue of Proposition 2.12 is proved using similar rea-
soning to that used in the proof above, starting from the proof of Proposi-
tion 2.12 that you will construct in Exercise 2.6. The details are omitted.

Proposition 2.17 Let k ≥ 1, and let A1, . . . , Ak ⊆ Ω be disjoint. Under
the assumptions of Proposition 2.16 above, the expression

det

I − k∑
j=1

x jPA j ·K · PA1∪...∪Ak

 ,
defines an entire function of the complex variables x1, . . . , xn, and we have
the identity

det
(
I−

k∑
j=1

x jPA j ·K · PA1∪...∪Ak

)

=
∑

n1,...,nk≥0

P

 k⋂
j=1

{|X ∩ A j| = n j}

 (1 − x1)n1 . . . (1 − xk)nk .

Consequently, for any integers n1, . . . , nk ≥ 0 we have that

P
(
|X ∩ A1| = n1, . . . , |X ∩ Ak| = nk

)
=

(−1)N

N!
∂n1+...+nk

∂xn1
1 . . . ∂xnk

k

∣∣∣x1=...=xk=1

det

I − k∑
j=1

x jPA j ·K · PA1∪...∪Ak

 ,
where N = n1 + . . . + nk.

2.5 The discrete Bessel kernel

We now consider Proposition 2.8 again in light of the discussion in the
previous section. The set {x1, . . . , xs} on the right-hand side of (2.17) has
equally many positive and negative elements, since it is the set of modi-
fied Frobenius coordinates of a Young diagram. It is easy to see that for
any set {x1, . . . , xs} ⊂ Z′ without this property, the determinant in (2.17)
will be equal to 0. It follows that the set of modified Frobenius coordinates
Fr(λ〈θ〉) of a random Young diagram λ〈θ〉 chosen according to Poissonized
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Plancherel measure with parameter θ forms a point process in Z′ with de-
terminantal configuration kernel Lθ(·, ·) given by (2.16). Note that Lθ is
trivially seen to have exponential decay (with respect to the ordering of the
elements of Z′ according to increasing distance from 0). In particular, the
Fredholm determinant det(I + L) is well defined, and, by (2.17) and the
preceding comments, is given by

det(I + Lθ) =
∑

A⊂Z′, |A|<∞
det((Lθ)A) = eθ.

So, considering the general theory we developed in the previous section,
we see that to gain better insight into the behavior of this point process,
we need to identify the corresponding kernel Kθ = Lθ(I + Lθ)−1 whose de-
terminants will describe the correlation function of this process, in accor-
dance with Proposition 2.15. This family of kernels was found by Borodin,
Okounkov, and Olshanski, and a variant of it was found independently by
Johansson. It is defined in terms of Bessel functions Jα(z), so we begin by
recalling the definition of these classical special functions; see the box on
p. 106 for additional background.

Let Γ(t) denote the Euler gamma function (for readers unfamiliar with
this function, its definition and basic properties are reviewed in Exercise 2.7).
Let α ∈ R. The Bessel function of order α is the analytic function of a
complex variable z defined by the power series expansion

Jα(z) =

( z
2

)α ∞∑
m=0

(−1)m(z/2)2m

m! Γ(m + α + 1)
, (z ∈ C). (2.35)

We will care only about values of z that are positive real numbers, but
in fact it is easy to see that with the standard interpretation of the power
function zα, Jα(z) is analytic on the complex plane with a branch cut at the
negative real line.

Recall that for n ∈ N we have Γ(n) = (n− 1)!, so in the case when α = n
is an integer we can write (2.35) as

Jn(z) =

( z
2

)n ∞∑
m=max(−n,0)

(−1)m(z/2)2m

m! (m + n)!
, (z ∈ C). (2.36)

It follows in particular that we have the identity

J−n(z) = (−1)nJn(z), (z ∈ C, n ∈ Z), (2.37)
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relating the Bessel functions of positive and negative integer orders.
Note that Jα(z) is in fact a function of two variables, α and z, although

because of how it often arises in applications it is more common to think
of it as a one-parameter family (Jα(z))α∈R of functions of one variable. For
our purposes actually the dependence on α will be equally important to
the dependence on z. We denote J′α(z) = ∂

∂z Jα(z) and J̇α(z) = ∂
∂α

Jα(z) (the
analytic dependence of Jα(z) on α is also not difficult to establish). As a
further notational shortcut, in what follows we denote Jx = Jx(2

√
θ), and

similarly J′x = J′x(2
√
θ), J̇x = J̇x(2

√
θ).

Define the discrete Bessel kernel with parameter θ > 0 as the function
Jθ : Z × Z→ R given by

Jθ(s, t) =


√
θ

JsJt+1 − Js+1Jt
s − t if s , t,

√
θ
(
J̇sJs+1 − Js J̇s+1

)
if s = t.

(2.38)

It will be convenient to consider Jθ(·, ·) to be defined also for noninteger
real arguments. With such a definition Jθ becomes a continuous function
on R × R, by L’Hôpital’s rule.

Next, we define another variant of the discrete Bessel kernel, denoted
Kθ : Z′ × Z′ → R, by

Kθ(x, y) = sgn(x)x− 1
2 sgn(y)y+

1
2 Jθ(x − 1

2 , y −
1
2 ). (2.39)

A short computation using (2.37) gives the more explicit expression

Kθ(x, y)=



√
θ

J
|x|− 1

2
J
|y|+ 1

2
− J

|x|+ 1
2

J
|y|− 1

2
|x| − |y| if xy > 0, x , y,

√
θ sgn(x)

(
J̇
|x|− 1

2
J
|x|+ 1

2
− J

|x|− 1
2

J̇
|x|+ 1

2

)
if x = y,

√
θ

J
|x|− 1

2
J
|y|− 1

2
+ J

|x|+ 1
2

J
|y|+ 1

2
x − y if xy < 0.

(2.40)

The following claim is easy, and we will verify it shortly after recalling
some standard facts about the Bessel functions.

Lemma 2.18 For each θ > 0, the kernel Kθ has exponential decay.

We are now ready to state one of the most important results of this
chapter.
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The Bessel functions

The family of Bessel functions Jα(z) was defined in the 18th century by
Daniel Bernoulli – son of Johann Bernoulli, mentioned in the previous chap-
ter in connection with the brachistochrone problem – and generalized and
studied systematically by the German 19th century astronomer and math-
ematician Friedrich Wilhelm Bessel (who is also remembered today as the
first person to accurately estimate the distance of Earth to a star other than
the Sun).

The Bessel functions are solutions of the second-order linear differential
equation

x2y′′ + xy′ + (x2 − α2)y = 0, (2.41)

and are more precisely called Bessel functions of the first kind, since
in the literature there are actually several families of Bessel functions, de-
noted Jα(z), Yα(z), Iα(z), and Kα(z). Bessel functions appear prominently in
several places in mathematical physics and the theories of ordinary and par-
tial differential equations. In particular, they arise perhaps most naturally in
the study of several of the well-known second-order linear partial differential
equations (the Laplace equation, the wave equation and the heat equation)
on a cylindrical domain. For more information, see [22], [73], [145].
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The Bessel functions J0(t), J1(t), and J2(t) Friedrich Bessel

Theorem 2.19 For each θ > 0, we have the operator relation

Kθ = Lθ(I + Lθ)−1. (2.42)

Consequently, the point process Fr(λ〈θ〉) is determinantal with correlation
kernel Kθ and its correlation function is given by

ρFr(λ〈θ〉)(A) = det
x,y∈A

(
Kθ(x, y)

)
, (A ⊂ Z′, |A| < ∞). (2.43)

The proof of Theorem 2.19 is a somewhat involved computation that
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reduces to well-known identities satisfied by the Bessel functions. We re-
call the relevant facts we need from the theory of the Bessel functions in
the following lemma.

Lemma 2.20 The Bessel functions Jα(z) satisfy the following relations:

∂

∂z
Jα(2z) = −2Jα+1(2z) +

α

z
Jα(2z) = 2Jα−1(2z) −

α

z
Jα(2z), (2.44)

Jα+1(2z) =
α

z
Jα(2z) − Jα−1(2z), (2.45)

Jα(2z) = (1 + o(1))
zα

Γ(α + 1)
as α→ ∞ with z > 0 fixed, (2.46)

J̇α(2z) = O
(

zα

Γ(α + 1)

)
as α→ ∞ with z > 0 fixed, (2.47)

sin(πα)
πz

= Jα(2z)J1−α(2z) + J−α(2z)Jα−1(2z), (2.48)

Jα(2z) =
1

Γ(α)

∞∑
m=0

1
m + α

zm+α

m!
Jm(2z), (z , 0), (2.49)

Jα−1(2z) =
zα−1

Γ(α)
−

1
Γ(α)

∞∑
m=0

1
m + α

zm+α

m!
Jm+1(2z), (z , 0), (2.50)

Proof The equality of the left-hand side of (2.44) to the other two ex-
pressions in that equation follows easily by equating coefficients of z in
the power series expansions of the respective expressions. Equating these
two expressions for ∂

∂z Jα(2z) yields the recurrence relation (2.45). Rela-
tion (2.46) is simply the claim that the first summand in the infinite series
defining Jα(2z) is asymptotically the dominant term when z is a fixed posi-
tive number and α→ ∞; this follows from the fact that

Γ(m + α + 1) = (α + 1)(α + 2) . . . (α + m)Γ(α + 1) ≥ αmΓ(α + 1),

so the contribution to Jα(2z) from the summands corresponding to values
m ≥ 1 in (2.35) is bounded by the initial term corresponding to m = 0, mul-
tiplied by

∑∞
m=1(z2/α)m = z2

α−z2 . Similarly, to investigate the asymptotics of
J̇α(2z), differentiate the series in (2.35) termwise with respect to α (which
is easily justified due to the rapid convergence of both the original series
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and of the series of derivatives), to obtain that

J̇α(2z) = log zJα(2z) − zα
∞∑

m=0

Γ′(α + m + 1)z2m

m!Γ(α + m + 1)2

= log zJα(2z) − zα
∞∑

m=0

z2m

m!Γ(α + m + 1)
ψ(α + m + 1),

where ψ(x) = Γ′(x)/Γ(x) is the logarithmic derivative of the gamma func-
tion. Now recall that ψ(x) = log x + O(1) as x → ∞ (Exercise 2.7), to
conclude easily (using similar reasoning to that used above) that the term
log zJα(2z) and the first term corresponding to m = 0 in the infinite sum,
both growing as O(zα/Γ(α + 1)) as a function of α, are the dominant con-
tributions in the limit as α→ ∞, which proves (2.47).

Next, identity (2.48) can be seen using (2.44) to be equivalent to

−
sin(πα)
πz

= Jα(2z)J′−α(2z) − J′−α(2z)Jα−1(2z) (2.51)

A proof of this is outlined in Exercise 2.8.
Next, to verify (2.49), rewrite the right-hand side by expanding each

term Jm(2z) into a power series, to get

zα

Γ(α)

∞∑
m=0

∞∑
k=0

(−1)k

(m + α)k!m!(m + k)!
z2(m+k)

=
zα

Γ(α)

∞∑
n=0

 n∑
m=0

(−1)n+m

(m + α)m!(n − m)!n!

 z2n.

Comparing this to the power series expansion of the left-hand side of (2.49),
we see that it is enough to prove for each n ≥ 0 the finite summation iden-
tity

n∑
m=0

(−1)m

m + α

(
n
m

)
=

n! Γ(α)
Γ(α + n + 1)

=
n!

α(α + 1) . . . (α + n)
. (2.52)

This is not difficult to prove and is left to the reader (Exercise 2.9).
Finally, to prove (2.50), first prove the much simpler identity

∞∑
n=0

zn

n!
Jn(2z) = 1, (2.53)

(Exercise 2.10). Next, multiply the right-hand side of (2.50) by Γ(α) and
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rewrite it as

zα−1−
∑
m=0

1
m + α

zm+α

m!
Jm+1(2z)

= zα−1 − zα−1
∞∑

n=1

n
n + (α − 1)

zn

n!
Jn(2z)

= zα−1 − zα−1
∞∑

n=1

(
1 − (α − 1)

1
n + (α − 1)

)
zn

n!
Jn(2z)

= zα−1

1 − ∞∑
n=0

zn

n!
Jn(2z) + J0(2z)


+ (α − 1)zα−1

 ∞∑
n=0

1
n + (α − 1)

zn

n!
Jn(2z) −

1
α − 1

J0(2z)

 .
Applying (2.49) and (2.53), we get (2.50). �

Proof of Lemma 2.18 As with the case of Lθ, the claim that Kθ has ex-
ponential decay refers to an ordering of the elements of Z′ according to
increasing distance from 0, so we need to show that

|Kθ(x, y)| ≤ Ce−c(|x|+|y|)

for all x, y ∈ Z′ and constants C, c > 0 (that may depend on θ). This is easy
to check using the formulas for Lθ and Kθ, the asymptotic relations (2.46),
(2.47) and the rapid growth of the gamma function. �

Proof of Theorem 2.19 Throughout the proof, we denote z =
√
θ and for

simplicity omit the subscript θ from various quantities, for example, writing
K instead of Kθ and L in place of Lθ. Our goal is to prove that K = L(I +

L)−1, or, equivalently that

K + KL − L = 0 = K + LK − L. (2.54)

It is not difficult to check that these two equations are equivalent (see Ex-
ercise 2.14; note that for infinite-dimensional operators the relation ST = I
does not generally imply that TS = I, but here one can use the symmetries
of L and K), so we prove the first one. When z = 0 (i.e., θ = 0), K = L = 0
(the zero kernel), so this holds. Therefore, it is enough to verify that

(K + KL − L)′ = K′ + K′L + KL′ − L′ = 0, (2.55)

where a prime denotes differentiation with respect to z. (The concept of
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differentiating an operator may be slightly confusing, so some clarification
is in order. Here, we think of K and L as matrices, and differentiation acts
on each entry; it is easy to convince oneself that the rule for differentiating
a product of matrices is (KL)′ = KL′ + K′L, in analogy with the usual rule
for differentiating a product of functions.)

We therefore have to compute each of the quantities appearing in (2.55).
This is a straightforward but somewhat tedious computation, relying heav-
ily on Lemma 2.20. We include it for completeness, but the impatient
reader should not feel too bad about skipping ahead. For L, we have im-
mediately that

L′(x, y) =


0 if xy > 0,

sgn(x) z|x|+|y|−1(
|x| − 1

2

)
!
(
|y| − 1

2

)
!

if xy < 0. (2.56)

Next, for K, consider first the case when xy > 0. Making use of the rela-
tions (2.44) (and recalling also that Jα is shorthand for Jα(2

√
θ) = Jα(2z)),

we have that

K′(x, y) =
d
dz

z J
|x|− 1

2
J
|y|+ 1

2

|x| − |y|

 =

J
|x|− 1

2
J
|y|+ 1

2

|x| − |y|

+
z

|x| − |y|

−2J
|x|+ 1

2
+
|x| − 1

2

z
J
|x|− 1

2

 J
|y|+ 1

2

+J
|x|− 1

2

2J
|y|− 1

2
−
|y| + 1

2

z
J
|y|+ 1

2

 − 2J
|x|− 1

2
−
|x| + 1

2

z
J
|x|+ 1

2

 J
|y|− 1

2

−J
|x|+ 1

2

−2J
|y|+ 1

2
+
|y| − 1

2

z
J
|y|− 1

2


= J

|x|− 1
2

J
|y|+ 1

2
+ J

|x|+ 1
2

J
|y|− 1

2
. (2.57)

In the case when xy < 0, using a similar computation one may verify that

K′(x, y) = sgn(x)
(
J
|x|− 1

2
J
|y|− 1

2
− J

|x|+ 1
2

J
|y|+ 1

2

)
. (2.58)

Next, using (2.57) and (2.58) we proceed to evaluate K′L, a matrix whose
entries are given by

(K′L)(x, y) =
∑
t∈Z′

K′(x, t)L(t, y).
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Again we divide into cases according to whether x and y have the same
sign. Assume that xy > 0, then

(K′L)(x, y) =
∑

t∈Z′, tx>0

sgn(x)
t − y

z|t|+|y|(
|t| − 1

2

)
!
(
|y| − 1

2

) (
J
|x|− 1

2
J
|t|− 1

2
− J

|x|+ 1
2

J
|t|+ 1

2

)

= −
z|y|+

1
2(

|y| − 1
2

)
!

J
|x|− 1

2

∞∑
m=0

1
m + |y| + 1

2

zm

m!
Jm

−J
|x|+ 1

2

∞∑
m=0

1
m + |y| + 1

2

zm

m!
Jm+1

 .

By (2.49) and (2.50), this is equal to

(K′L)(x, y) =
z|y|−

1
2(

|y| − 1
2

)
!
J
|x|+ 1

2
− J

|x|− 1
2

J
|y|+ 1

2
− J

|x|+ 1
2

J
|y|− 1

2
. (2.59)

Assume now that xy < 0; in this case we can write in a similar fashion that

(K′L)(x, y) =
∑

t∈Z′, tx>0

1
t − y

z|t|+|y|(
|t| − 1

2

)
!
(
|y| − 1

2

)
!

(
J
|x|− 1

2
J
|t|+ 1

2
+ J

|x|+ 1
2

J
|t|− 1

2

)

=
z|y|+

1
2(

|y| − 1
2

)
!

J
|x|− 1

2

∞∑
m=0

sgn(x)
m + |y| + 1

2

zm

m!
Jm+1

+J
|x|+ 1

2

∞∑
m=0

sgn(x)
m + |y| + 1

2

zm

m!
Jm


= sgn(x)

J
|x|+ 1

2
J
|y|+ 1

2
− J

|x|− 1
2

J
|y|− 1

2
+

z|y|−
1
2(

|y| − 1
2

)
!
J
|x|− 1

2

 . (2.60)

Finally, the last quantity to compute in (2.55) is KL′. Again, if xy > 0, we



112 The Baik–Deift–Johansson theorem

have

(KL′)(x, y) = −
∑

t : tx<0

sgn(x)
x − t

z|t|+|y|(
|t| − 1

2

)
!
(
|y| − 1

2

)
!

(
J
|x|− 1

2
J
|t|− 1

2
+ J

|x|+ 1
2

J
|t|+ 1

2

)

= − sgn(x)
z|y|+

1
2(

|y| − 1
2

)
!

J
|x|− 1

2

∞∑
m=0

sgn(x)
m + |x| + 1

2

zm

m!
Jm

+J
|x|+ 1

2

∞∑
m=0

sgn(x)
m + |x| + 1

2

zm

m!
Jm+1


= −

z|y|+
1
2(

|y| − 1
2

)
!

J
|x|− 1

2

(
|x| − 1

2

)
!

z|x|+
1
2

J
|x|+ 1

2

+J
|x|+ 1

2

1
z
−

(
|x| − 1

2

)
!

z|x|+
1
2

J
|x|− 1

2




= −
z|y|+

1
2(

|y| − 1
2

)
!
J
|x|+ 1

2
. (2.61)

In the other case when xy < 0, we have

(KL′)(x, y) =
∑
tx>0

sgn(x)
|x| − |t|

z|t|+|y|(
|t| − 1

2

)
!
(
|y| − 1

2

)
!

(
J
|x|− 1

2
J
|t|+ 1

2
+ J

|x|+ 1
2

J
|t|− 1

2

)
,

with the understanding that for the term corresponding to t = x, the sin-
gularity that appears is resolved by replacing 1

|x|−|t| (J
|x|− 1

2
J
|t|+ 1

2
+ J

|x|+ 1
2

J
|t|− 1

2
)

with the limit of this expression as t → x. This is justified by the fact
that K(x, x) = limt→x K(x, t), a consequence of the continuity of Jθ(·, ·) that
was noted earlier. In other words, we can write (KL′)(x, y) as a limit of
perturbed values of the form

(KL′)(x, y) = − sgn(x)
z|y|+

1
2(

|y| − 1
2

)
!

× lim
ε→0

J
|x|− 1

2

∞∑
k=0

1

k −
(
|x| − 1

2

)
+ ε

zk

k!
Jk+1

−J
|x|+ 1

2

∞∑
k=0

1

k −
(
|x| − 1

2

)
+ ε

zk

k!
Jk

 .
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This can now be evaluated using (2.49) and (2.50), to give

(KL′)(x, y)

= − sgn(x)
z|y|+

1
2(

|y| − 1
2

)
!

lim
ε→0

[
J
|x|− 1

2

(
1
z
− Γ

(
ε − |x| + 1

2

)
z|x|−

1
2−ε J

−|x|− 1
2

)

−J
|x|+ 1

2
Γ
(
ε − |x| + 1

2

)
z|x|−

1
2−ε J

−|x|+ 1
2

]

= − sgn(x)
z|y|+

1
2(

|y| − 1
2

)
!

1
z

J
|x|− 1

2
− lim

α→|x|− 1
2

(
Γ(−α) (JαJ−α−1 + J−αJα+1)

) .
To evaluate the limit, note that, by (2.48), we have

Γ(−α) (JαJ−α−1 + J−αJα+1)

= Γ(−α)
1
πz

sin(−πα)

=
Γ(−α)

z Γ(−α)Γ(α + 1)
=

1
Γ(α + 1)

→
1(

|x| − 1
2

)
!z

as α→ |x| − 1
2 .

(Actually, the full power of (2.48) isn’t really used here, but rather the fact
that the right-hand side of (2.48) is equal to (πzΓ(α)Γ(1 − α))−1, which can
be proved without reference to the identity Γ(α)Γ(1−α) = π sin(πα)−1; see
Exercise 2.8.) So we get finally that

(KL′)(x, y) = − sgn(x)
z|y|−

1
2(

|y| − 1
2

)
!

J
|x|− 1

2
−

z|x|−
1
2(

|x| − 1
2

)
!

 . (2.62)

To conclude the proof, it is now straightforward to combine the results of
our computation above, namely, (2.56), (2.59), (2.60), (2.61), and (2.62),
and verify that (2.55) holds. �

It is worth taking a short pause at this point to look back at the results
we proved and appreciate their significance. Theorem 2.19, and in partic-
ular (2.43), is the main exact (as opposed to asymptotic) result that, when
combined with the tools that we developed for working with determinantal
point processes, enables us to launch an attack on Theorems 2.2 and 2.3.
The next part of the proof, which we undertake in the next few sections,
is a detailed asymptotic analysis of the quantities appearing in these exact
results.
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We conclude this section by proving an infinite sum representation of
the kernel Jθ that will be useful later on. Although the “original” discrete
Bessel kernel Jθ defined in (2.38) played no role until now except in being
used to define its (somewhat less elegant) variant Kθ, it will be more con-
venient to work with for the purpose of the asymptotic analysis. The kernel
Jθ also has a more direct combinatorial significance, which is not needed
for our purposes but is discussed in Exercise 2.13.

Proposition 2.21 For s, t ∈ R we have

Jθ(s, t) =

∞∑
m=1

Js+mJt+m. (2.63)

Proof It is easy to check (with the help of (2.47)) that the right-hand side
of (2.63) is, like the left-hand side, continuous on the diagonal s = t; so
it is enough to prove the identity under the assumption s , t. Using the
recurrence (2.45), we have

Jθ(s + 1, t + 1) − Jθ(s, t) (2.64)

=
z

s − t
(Js+1Jt+2 − Js+2Jt+1) −

z
s − t

(JsJt+1 − Js+1Jt)

=
z

s − t

[
Js+1

(
t + 1

z
Jt+1 − Jt

)
−

(
s + 1

z
Js+1 − Js

)
Jt+1

− JsJt+1 + Js+1Jt

]
= −Js+1Jt+1. (2.65)

Consequently, we have that

Jθ(s, t) = Js+1Jt+1 + Jθ(s + 1, t + 1)

= Js+1Jt+1 + Js+2Jt+2 + Jθ(s + 2, t + 2)

= . . . =

N∑
m=1

Js+mJt+m + Jθ(s + N, t + N) (for any N ≥ 1). (2.66)

The asymptotics of the term Jθ(s + N, t + N) as N → ∞ can be determined
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using (2.46), which gives that

Jθ(s + N, t + N) =
z

s − t
(Js+N Jt+N+1 − Js+N+1Jt+N)

=
zs+t+2N+2

s − t

(
1 + o(1)

(s + N)!(t + N + 1)!
−

1 + o(1)
(s + N + 1)!(t + N)!

)
= (1 + o(1))

zs+t+2N+2

(s + N + 1)!(t + N + 1)!
.

This last quantity tends to 0 as N → ∞, so we get (2.63). �

2.6 Asymptotics for the Airy function and kernel

In what follows, we will need some results on the asymptotic behavior of
the Airy function Ai(x), its derivative Ai′(x), and the Airy kernel A(x, y) for
large positive arguments. Recall that we defined the Airy function in terms
of the integral representation (2.1); this representation involves a condi-
tionally convergent integral that is somewhat difficult to work with, so we
start by proving another more convenient representation.

Lemma 2.22 The integral on the right-hand side of (2.1) converges as
an improper integral for any x ∈ R. The function Ai(x) it defines has the
equivalent representation

Ai(x) =
1

2π

∫ ∞

−∞

exp
(
1
3

(a − it)3 + x(−a + it)
)

dt (2.67)

where i =
√
−1 and a > 0 is an arbitrary positive number. Furthermore,

Ai(x) is a smooth function and for any j ≥ 1 its jth derivative Ai( j)(x) is
given by

Ai( j)(x) =
1

2π

∫ ∞

−∞

(−a + it) j exp
(
1
3

(a − it)3 + x(−a + it)
)

dt. (2.68)

Proof Considering x ∈ R as a fixed number, define an analytic function
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f (z) = exp
(
xz − 1

3 z3
)
. For any M > 0 we have that

∫ M

0
cos

(
1
3 t3 + xt

)
dt

=
1
2

∫ M

0
exp

(
− 1

3 (it)3 + x(it)
)

dt +
1
2

∫ M

0
exp

(
− 1

3 (−it)3 + x(−it)
)

dt

=
1
2i

∫
[−iM,iM]

f (z) dz,

where the last integral is a complex contour integral and where [ξ, ζ] de-
notes the line segment connecting two complex numbers ξ and ζ. Thus, the
right-hand side of (2.1) can be rewritten as

1
π

∫ ∞

0
cos

(
1
3 t3 + xt

)
dt

=
1

2πi

∫ i∞

i(−∞)
f (z) dz := lim

M→∞

1
2πi

∫
[−iM,iM]

f (z) dz, (2.69)

provided that the limit exists. It is also immediate to see that the right-hand
side of (2.67) can be similarly written as the contour integral

1
2π

∫ ∞

−∞

exp
(
1
3

(a − it)3 + x(−a + it)
)

dt

=
1

2πi

∫ −a+i∞

−a−i∞
f (z) dz := lim

M→∞

1
2πi

∫
[−a−iM,−a+iM]

f (z) dz, (2.70)

again provided that the limit exists. But note that if z = s + it then

| f (z)| = exp Re
(
xz − 1

3 z3
)

= exp
(
xs − 1

3 s3 + st2
)
, (2.71)

which in the case s = −a < 0 immediately implies that the integral in
(2.70) converges absolutely. Furthermore, by applying Cauchy’s theorem
to the contour integral of f (z) over the rectangular contour with corners
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−a ± iM,±iM, we see that∣∣∣∣∣∣
∫

[−iM,iM]
f (z) dz −

∫
[−a−iM,−a+iM]

f (z) dz

∣∣∣∣∣∣
≤

∫ 0

−a
| f (s − iM)| ds +

∫ 0

−a
| f (s + iM)| ds

= 2
∫ 0

−a
exp

[
s
(
x − 1

3 s2 + M2
)]

ds

≤ 2
∫ 0

−∞

exp
[
s
(
x + M2

)]
ds =

1
M2 + x

−−−−→
M→∞

0.

This implies that the limit in (2.69) exists and is equal to (2.70). Finally,
since it can be seen using (2.71) that for any j ≥ 1 the partial derivative

∂ j

∂x j exp
(
xz − 1

3 z3
)

= z j exp
(
xz − 1

3 z3
)

is absolutely integrable on the contour {Im z = −a}, the dominated con-
vergence theorem justifies differentiation under the integral sign in (2.67),
proving (2.68). �

Lemma 2.23 (Asymptotics of the Airy function and its derivative) The
Airy function Ai(x) and its derivative Ai′(x) have the following asymptotics
as x→ ∞:

Ai(x) = (1 + o(1))
1

2
√
π

x−1/4e−
2
3 x3/2

, (2.72)

Ai′(x) = (1 + o(1))
1

2
√
π

x1/4e−
2
3 x3/2

. (2.73)

Proof Since we are interested in large values of x, assume x > 0. Start by
rewriting the integral (2.67) (interpreted as a contour integral as in (2.69))
in a way that highlights the way the integrand scales as x grows; by making
the substitution z =

√
x w we see that

Ai(x) =
1

2πi

∫ −a+i∞

−a−i∞
exp

(
xz − 1

3 z3
)

dz

=

√
x

2πi

∫ −ax−1/2+i∞

−ax−1/2−i∞
exp

(
x3/2w − 1

3 x3/2w3
)

dw

=

√
x

2πi

∫ −1+i∞

−1−i∞
exp

(
x3/2g(w)

)
dw, (2.74)

where in the last step we define g(w) = w − 1
3 w3 and choose the value of a
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(which up to now was allowed to be an arbitrary positive number) to be
a =
√

x. The reason this choice makes sense is that g(w) has a critical point
at w = −1, and choosing the contour of integration so as to pass through
this point results in an integral that can be easily estimated for large x;
indeed, g(w) can be expanded in a (finite) power series around the critical
point as

g(w) = − 2
3 + (w + 1)2 − 1

3 (w + 1)3.

Substituting this into (2.74) results in the improved (for asymptotic pur-
poses) representation

Ai(x) =

√
x

2π
exp

(
− 2

3 x3/2
) ∫ ∞

−∞

exp
(
x3/2((it)2 − 1

3 (it)3
)

dt

=

√
x

2π
exp

(
− 2

3 x3/2
)

x−3/4
∫ ∞

−∞

exp
(
−u2 + 1

3 ix−3/4u3
)

du.

By the dominated convergence theorem, the last integral converges as
x → ∞ to

∫ ∞
−∞

e−u2
du =

√
π, so we get that the Airy function behaves

asymptotically as

(1 + o(1))
1

2
√
π

x−1/4,

as claimed in (2.72). The proof of (2.73) is similar and is left to the reader
(Exercise 2.16). �

Lemma 2.24 For some constant C > 0 the bound

A(x, y) ≤ C exp−(x3/2+y3/2) . (2.75)

holds for all x, y > 0.

Proof Since A(·, ·) is continuous, it is enough to verify (2.75) for x , y.
If |x − y| > 1 then this follows immediately from the definition of A(x, y)
together with the relations (2.72) and (2.73). If |x − y| ≤ 1, use the mean-
value theorem to write

A(x, y) = Ai(x)
(
Ai′(y) − Ai′(x)

x − y

)
− Ai′(x)

(
Ai(y) − Ai(x)

x − y

)
= Ai(x) Ai′′(x̃) − Ai′(x) Ai′(x̄),

where x̃ = αx + (1− α)y, x̄ = βx + (1− β)y for some 0 ≤ α, β ≤ 1. Because
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of the Airy differential equation (2.8), this can be written as

x̃ Ai(x) Ai(x̃) − Ai′(x) Ai′(x̄).

Now again use (2.72) and (2.73) to conclude that (2.75) holds for a suitable
constant C. �

As a first application of (2.75), we can now justify an important claim
we made at the beginning of the chapter.

Lemma 2.25 The series of integrals defining F2(t) in (2.3) converges ab-
solutely.

Proof Note that for any fixed t ∈ R the bound (2.75) actually holds, pos-
sibly with a larger constant C depending on t, for all x, y ≥ t. This implies
that for x1, . . . , xn ≥ t we have (using also (2.30)) that∣∣∣∣∣ n

det
i, j=1

(
A(xi, x j)

)∣∣∣∣∣ = exp

−2
n∑

j=1

x3/2
j

 ∣∣∣∣∣ n
det
i, j=1

(
ex3/2

i +x3/2
j A(xi, x j)

)∣∣∣∣∣
≤ nn/2Cn exp

−2
n∑

j=1

x3/2
j

 , (2.76)

and therefore that, for some C1 > 0 (again depending on t), we have∣∣∣∣∣∫ ∞

t
. . .

∫ ∞

t

n
det
i, j=1

(
A(xi, x j)

)
dx1 . . . dxn

∣∣∣∣∣ ≤ nn/2Cn
1

for all n ≥ 1. Since n! ≥ (n/e)n, that proves absolute convergence of the
series on the right-hand side of (2.3). �

2.7 Asymptotics for Jθ
The goal of this section is to prove the following asymptotic result, which
will be another key ingredient in the proof of Theorem 2.3.

Theorem 2.26 (Asymptotics for the discrete Bessel kernel)

(a) Let z =
√
θ as before. For x, y ∈ R we have

z1/3Jθ(2z + xz1/3, 2z + yz1/3)→ A(x, y) as z→ ∞, (2.77)

where the converegence is uniform as x, y range over a compact subset
of R.
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(b) There exist constants Z,C, c > 0 such that for all x, y > 0 and z > Z we
have

z1/3
∣∣∣∣Jθ(2z + xz1/3, 2z + yz1/3)

∣∣∣∣ ≤ Ce−c(x+y). (2.78)

For the proof, we rely on the following version of a classical result,
sometimes referred to as Nicholson’s approximation (although its rigor-
ous formulation is due to G. N. Watson), relating the Airy function to the
asymptotics of a Bessel function Jα(z) where the order α is close to the
argument z. The proof of this asymptotic result requires an elaborate study
of integral representations of the Bessel functions, so we do not include it
here. See [19, Section 4] and [145] for the details.8

Theorem 2.27 (Nicholson’s approximation for Bessel functions)

(a) For x ∈ R, we have

z1/3J2z+xz1/3 (2z)→ Ai(x) as z→ ∞,

uniformly as x ranges over a compact subset of R.

(b) There exist constants Z,C, c > 0 such that for all z > Z and x > 0 we
have

z1/3
∣∣∣∣J2z+xz1/3 (2z)

∣∣∣∣ ≤ Ce−cx.

We also need the following integral representation of the Airy kernel,9

analogous to the representation (2.63) for the kernel Jθ.

Lemma 2.28 For any x, y ∈ R we have

A(x, y) =

∫ ∞

0
Ai(x + t) Ai(y + t) dt. (2.79)

Proof By continuity arguments it is clearly enough to prove the claim
when x , y. In this case, using the Airy differential equation Ai′′(u) =
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u Ai(u) we have

∂

∂t
A(x + t, y + t) =

1
x − y

∂

∂t

(
Ai(x + t) Ai′(y + t) − Ai′(x + t) Ai(y + t)

)
=

1
x − y

(
Ai(x + t) Ai′′(y + t) − Ai′′(x + t) Ai(y + t)

)
=

1
x − y

(
(y + t) Ai(x + t) Ai(y + t) − (x + t) Ai(x + t) Ai(+t)

)
= −Ai(x + t) Ai(y + t), (2.80)

(compare with (2.65)). Therefore we can write

A(x, y) = A(x + T, y + T ) −
∫ T

0

∂

∂t
A(x + t, y + t) dt

= A(x + T, y + T ) +

∫ T

0
Ai(x + t) Ai(y + t) dt,

and letting T → ∞ (in analogy with the limit argument N → ∞ applied to
(2.66)) gives the claim, using (2.75). �

Proof of Theorem 2.26 Throughout the proof we denote x̃ = 2z + xz1/3

and ỹ = 2z + yz1/3. We first prove (2.78). Let Z,C, c be the constants in
Theorem 2.27(b). Then we have

z1/3
∣∣∣∣Jθ(x̃, ỹ)

∣∣∣∣ =

∣∣∣∣∣∣∣z−1/3
∞∑

m=1

(
z1/3Jx̃+m

) (
z1/3Jỹ+m

)∣∣∣∣∣∣∣
≤ z−1/3

∞∑
m=1

(
Ce−c(x+mz−1/3)

) (
Ce−c(y+mz−1/3)

)
= C2e−c(x+y)z−1/3

∞∑
m=1

qm, (2.81)

where q = exp(−2cz−1/3). Since q = 1 − 2cz−1/3 + O(z−2/3), we have that∑∞
m=1 qm = q/(1 − q) = (2c)−1z1/3 + O(1), and hence (2.78) follows from

(2.81) after relabelling C.
Next, we prove (2.77). Fix a large number T > 0 whose value will be



122 The Baik–Deift–Johansson theorem

specified later, and denote T̃ = bTz1/3c. We have∣∣∣∣z1/3Jθ(x̃, ỹ) − A(x, y)
∣∣∣∣

=

∣∣∣∣∣∣∣z−1/3
∞∑

m=1

(
z1/3Jx̃+m

) (
z1/3Jỹ+m

)
−

∫ ∞

0
Ai(x + t) Ai(y + t) dt

∣∣∣∣∣∣∣
≤ E1 + E2 + E3 + E4, (2.82)

where E1, E2, E3 and E4 are quantities defined by

E1 =

∣∣∣∣∣∫ ∞

T
Ai(x + t) Ai(y + t) dt

∣∣∣∣∣ = |A(x + T, y + T )| ,

E2 = z1/3

∣∣∣∣∣∣∣
∞∑

m=T̃+1

Jx̃+mJỹ+m

∣∣∣∣∣∣∣ = z1/3
∣∣∣Jθ(x̃ + T̃ , ỹ + T̃ )

∣∣∣ ,
E3 =

∣∣∣∣∣∣∣z−1/3
T̃∑

m=1

Ai(x + mz−1/3) Ai(y + mz−1/3)−
∫ T

0
Ai(x + t) Ai(y + T ) dt

∣∣∣∣∣∣∣ ,
E4 =

∣∣∣∣∣∣∣z−1/3
T̃∑

m=1

(
z1/3Jx̃+m

) (
z1/3Jỹ+m

)
−z−1/3

T̃∑
m=1

Ai(x + mz−1/3) Ai(y + mz−1/3)

∣∣∣∣∣∣∣ .
Each of the Ei can now be bounded in a fairly straightforward manner. For
E1, by (2.75) we have

E1 ≤ C exp
(
−(x + T )3/2 − (y + T )3/2

)
,

which, under the assumption that z → ∞ as x, y range over a compact set,
can be made arbitrarily small by picking T to be a sufficiently large number.
For E2 we can use (2.78) to get the bound

E2 ≤ C exp
[
−c (x + y + 2T )

]
which has similar properties. Next, the sum in E3 is a Riemann sum for the
integral

∫ T

0
Ai(x + t) Ai(y + t) dt, so E3 → 0 as z → ∞ with T fixed, and it

is easy to see that the convergence is uniform as x, y range over a compact
set. Finally, Theorem 2.27(i) implies that E4 → 0 as z → ∞ with T fixed,
again with the required uniformity.

Combining the preceding estimates we see that given any ε > 0, by
fixing T to be a large enough number we get a bound for the left-hand side
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of (2.82) of the form ε + E3 + E4, where E3 + E4 → 0 as z→ ∞ uniformly
on compacts in x and y. This proves (2.77). �

2.8 The Tracy–Widom limit law for Poissonized Plancherel
measure

In this section we prove the following version of Theorem 2.2 for the length
of the first row of a random Young diagram chosen according to Pois-
sonized Plancherel measure.

Theorem 2.29 For each θ > 0, let λ〈θ〉 denote a random partition chosen
according to Poissonized Plancherel measure with parameter θ, let λ〈θ〉1

denote the length of its first row. Then for any t ∈ R we have

P
(
λ〈θ〉1 ≤ 2

√
θ + tθ1/6

)
→ F2(t) as θ → ∞, (2.83)

where F2 is the Tracy–Widom distribution defined in (2.3). That is, the
family of random variables θ−1/6(λ〈θ〉1 − 2

√
θ
)

converges in distribution to
F2 as θ → ∞.

Recall that we still do not know the fact, claimed in Theorem 2.1, that
F2 is a distribution function. What we prove here is the relation (2.83). The
separate claim about convergence in distribution will follow once we prove
Theorem 2.1 in Section 2.10, using unrelated methods.

Note that λ〈θ〉1 is equal in distribution to L(σN), the maximal length of an
increasing subsequence in a permutation σN that was chosen in a two-step
experiment, where we first choose a Poisson random variable N ∼ Poi(θ),
and then draw a uniformly random permutation of order N. Thus, the state-
ment of Theorem 2.29 comes very close to explaining Theorem 2.2, and
indeed in the next section we will show how Theorem 2.2 can be de-
duced from it using a relatively simple “de-Poissonization” trick. Simi-
larly, later we will formulate and prove an analogue of Theorem 2.3 for
Poissonized Plancherel measure, and deduce Theorem 2.3 from it using
de-Poissonization.

To start our attack on Theorem 2.29, observe that, by Theorem 2.19
and Proposition 2.16, the probability on the left-hand side of (2.83) can be
written as a Fredholm determinant. More precisely, fixing t ∈ R and letting
(Aθ)θ>0 be the family of subintervals of R given by Aθ = (2

√
θ + tθ1/6,∞),
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we have that

P
(
λ〈θ〉1 ≤ 2

√
n + tn1/6

)
= P

(
Fr(λ〈θ〉1 ) ⊆ Z′ \ Aθ

)
= det

(
I − (Kθ)Z′∩Aθ

)
= 1 +

∞∑
n=1

(−1)n

n!

∑
x1∈Z′∩Aθ

. . .
∑

xn∈Z′∩Aθ

n
det
i, j=1

(
Kθ(xi, x j)

)
. (2.84)

We want to prove that this expression converges to F2(t), whose definition
in (2.3) is finally starting to make sense. It is convenient to replace Kθ(x, y)
by its simpler variant Jθ(x, y), noting that by (2.39), we have Kθ(x, y) =

Jθ(x − 1
2 , y −

1
2 ) for positive x, y (which is the range we are considering,

since, for any fixed t, Aθ ⊂ (0,∞) if θ is large enough). So the Fredholm
determinant in (2.84) can be replaced by

det
(
I − (Jθ)Z∩Aθ

)
= 1 +

∞∑
n=1

(−1)n

n!

∑
x1∈Z∩Aθ

. . .
∑

xn∈Z∩Aθ

n
det
i, j=1

(
Jθ(xi, x j)

)
, (2.85)

with negligible asymptotic effect. Furthermore, by Theorem 2.26, the fam-
ily of kernels Jθ(·, ·) converges to the Airy kernel A(·, ·), after appropriate
scaling, as θ → ∞. So, it seems intuitively plausible that the n-dimensional
sums appearing in the Fredholm determinant in (2.85) should behave like
Riemann sums that converge to the n-dimensional integrals in the definition
of F2(t), and that the infinite series of such convergent Riemann-like sums
should also converge to the corresponding infinite series of integrals. In-
deed, we shall soon confirm this intuition rigorously by making careful use
of the asymptotic bounds and estimates that were derived in the previous
section.

The following continuity estimate for determinants will be useful.

Lemma 2.30 For a square matrix M = (mi, j)n
i, j=1 of real numbers, denote

‖M‖∞ = max1≤i, j≤n |mi, j|. If M = (mi, j)n
i, j=1,M

′ = (m′i, j)
n
i, j=1 are two square

matrices of order n, then we have∣∣∣∣ det(M) − det(M′)
∣∣∣∣ ≤ n1+n/2 max(‖M‖∞, ‖M′‖∞)n−1‖M − M′‖∞. (2.86)

Proof Denote by r j and r′j the jth column vector of M and M′, respec-
tively. Define a sequence of matrices A1, A2, . . . , An by writing each A j as
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a list of column vectors, namely

A1 = ( r1 − r′1 r2 r3 . . . rn ),
A2 = ( r′1 r2 − r′2 r3 . . . rn ),
A3 = ( r′1 r′2 r3 − r′3 . . . rn ),

...

An = ( r′1 r′2 r′3 . . . rn − r′n ).

By the additivity property of the determinant with respect to columns, we
see that

det(M) − det(M′) =

n∑
j=1

det(A j),

since the right-hand side becomes a telescopic sum. By Hadamard’s in-
equality (2.30), for each 1 ≤ j ≤ n we have∣∣∣∣ det(A j)

∣∣∣∣ ≤ nn/2‖r j − r′j‖∞
∏

1≤i≤n, i, j

max(‖r j‖∞, ‖r′j‖∞)

≤ nn/2‖M − M′‖∞max(‖M‖∞, ‖M′‖∞)n−1,

and this yields (2.86) on summing over 1 ≤ j ≤ n. �

Proof of Theorem 2.29 Fix t ∈ R. Denote t̃ = 2
√
θ + tθ1/6, and for any

numbers v < w with v ∈ R and w ∈ R ∪ {∞}, denote

jn(v,w) =
∑

v<x1<w

. . .
∑

v<xn<w

n
det
i, j=1

(
Jθ(xi, x j)

)
, (2.87)

an(v,w) =

∫ w

v
. . .

∫ w

v

n
det
i, j=1

(
Aθ(xi, x j)

)
dx1 . . . dxn,

where the sums in (2.87) are over integer values, and for convenience we
suppress the dependence on θ of the quantities t̃, jn(v,w) and an(v,w). From
the discussion so far, we see that the theorem will follow if we show that∑∞

n=1
1
n! | jn(t̃,∞) − an(t,∞)| → 0 as θ → ∞. As a first step, fixing n ≥ 1, we

will derive a bound for | jn(t̃,∞) − an(t,∞)|, being careful to keep track of
the dependence on n of the various quantities.

The computation is structurally similar to the one in the proof of Theo-
rem 2.26 in the previous section. Fix a number T > max(t, 0) that will be
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specified later, and denote T̃ = 2
√
θ + Tθ1/6. We then have that

| jn(t̃,∞)− an(t,∞)|

≤ |an(T,∞)| + | jn(T̃ ,∞)| + | jn(t̃, T̃ ) − an(t,T )|. (2.88)

For the first summand in this expression, (2.75) gives using Hadamard’s
inequality that

|an(T,∞)| ≤
∫ ∞

T
. . .

∫ ∞

T
Cne−2

∑n
j=1 x3/2

i
n

det
i, j=1

(
ex3/2

i +x3/2
j A(xi, x j)

)
dx1 . . . dxn

≤

(
C

∫ ∞

T
e−2x3/2

dx
)n

nn/2 ≤ Cne−nT nn/2. (2.89)

Next, for | jn(T̃ ,∞)|, using (2.78) gives in a similar fashion that

| jn(T̃ ,∞)| ≤
∑
x1>T̃

. . .
∑
xn>T̃

θ−n/6Cnnn/2 exp

−2cθ−1/6
n∑

j=1

(x j − 2
√
θ)


≤ Cnnn/2

θ−1/6
∑

m≥Tθ1/6

e−2cθ−1/6m

 ,
and it can be readily checked that as θ grows large this is also bounded by
an expression of the form Cn

2e−2cnT nn/2 for some constant C2 > 0.
Next, to bound | jn(t̃, T̃ ) − an(t,T )|, which is where the approximation of

an integral by a sum comes into play, decompose this quantity further by
writing

| jn(t̃, T̃ ) − an(t,T )| ≤ | jn(t̃, T̃ ) − rn(t,T )| + |rn(t,T ) − an(t,T )|, (2.90)

where we denote

rn(t,T ) = θ−n/6
∑

t̃<x1<T̃

. . .
∑

t̃<xn<T̃

n
det
i, j=1

A  xi − 2
√
θ

θ1/6 ,
x j − 2

√
θ

θ1/6

 .
Note that rn(t,T ) is a true Riemann sum for the n-dimensional integral
an(t,T ), where on each axis the interval [t,T ] is partitioned into intervals
of length θ−1/6. Thus, we have that

|rn(t,T ) − an(t,T )| ≤ (T − t)n

×max
{
|D(x) − D(y)| : x, y ∈ [t,T ]n, ‖x − y‖2 <

√
n θ−1/6

}
,

where we use the notation D(x) = detn
i, j=1

(
A(xi, x j)

)
. This can be made
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more explicit by using (2.86), which translates this into the bound

|rn(t,T ) − an(t,T )| ≤ Mn−1 (T − t)n n1+n/2
(√

n θ−1/6
)
∆ (2.91)

where M = maxx,y∈[t,T ] |A(x, y)| and ∆ = maxx,y∈[t,T ] |∇A(x, y)|. The impor-
tant thing to note is that M and ∆ depend on t and T but not on n.

The last term to bound is | jn(t̃, T̃ ) − rn(t,T )|. This is where the conver-
gence of the Bessel kernel to the Airy kernel comes in; Theorem 2.26 gives

| jn(t̃, T̃ ) − rn(t,T )| ≤ Cn(T − t)nnn/2+1ε(θ), (2.92)

where ε(θ)→ 0 as θ → ∞ (and does not depend on n).
Combining the bounds we derived in (2.88)–(2.92), and tidying up by

combining the various constants, we get the bound

| jn(t̃,∞) − an(t,∞)|

≤ C(t)ne−cnT + nn/2+3M(t,T )nθ−1/6 + M(t,T )nε(θ), (2.93)

where ε(θ) → 0 as θ → ∞, C(t) > 0 depends on t but not on T, n or θ, and
M(t,T ) > 0 depends on t and T but not on n or θ.

Now multiply (2.93) by 1/n! and sum over n ≥ 1, to get
∞∑

n=1

1
n!
| jn(t̃,∞) − an(t,∞)| ≤

(
exp

(
C(t)e−cT

)
− 1

)
+ Q(t,T )

(
θ−1/6 + ε(θ)

)
,

for some Q(t,T ) > 0. Choosing T > 0 to be a sufficiently large number,
the first summand can be made arbitrarily small – smaller than some δ > 0,
say. Letting θ go to∞ then shows that

lim sup
θ→∞

∞∑
n=1

1
n!
| jn(t̃,∞) − an(t,∞)| ≤ δ.

Since δ was arbitrary, this proves our claim that
∞∑

n=1

1
n!
| jn(t̃,∞) − an(t,∞)| → 0 as θ → ∞,

and therefore finishes the proof. �

2.9 A de-Poissonization lemma

For each θ > 0, let Nθ denote a random variable with the Poisson distribu-
tion Poi(θ). Recall that Nθ has mean θ and variance θ. Therefore we have
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that

f (θ) := P
(
|Nθ − θ| ≥ 3

√
θ log θ

)
→ 0 as θ → ∞, (2.94)

since, for example, by Chebyshev’s inequality this probability is bounded
by (9 log θ)−1 (the rate of convergence is immaterial for our purposes, but
in case you care, Exercise 2.19 suggests an improved bound).

To deduce Theorem 2.2 from Theorem 2.29, we use the following simple
de-Poissonization lemma due to Johansson [63].

Lemma 2.31 Let P1 ≥ P2 ≥ P3 ≥ . . . be a nonincreasing sequence of
numbers in [0, 1]. Denote

θn = n − 4
√

n log n, φn = n + 4
√

n log n.

Then for any n ≥ 1 we have that

e−φn

∞∑
m=0

φm
n

m!
Pm − f (φn) ≤ Pn ≤ e−θn

∞∑
m=0

θm
n

m!
Pm + f (θn). (2.95)

Proof It is easy to check that n < φn − 3
√
φn log φn. Therefore we have

that

e−φn

∞∑
m=0

φm
n

m!
Pm = e−φn

∑
0≤m≤n

φm
n

m!
Pm + e−φn

∑
m>n

φm
n

m!
Pm

≤ e−φn
∑

0≤m≤n

φm
n

m!
· 1 +

e−φn
∑
m>n

φm
n

m!

 Pn

≤ f (φn) +

e−φn
∑
m≥0

φm
n

m!

 Pn = f (φn) + Pn,

which proves the first inequality in the chain (2.95). Similarly, for the sec-
ond inequality, observe that n > θn +3

√
θn log θn, and that therefore we can

write

e−θn

∞∑
m=0

θm
n

m!
Pm = e−θn

∑
0≤m<n

θm
n

m!
Pm + e−θn

∑
m≥n

θm
n

m!
Pm

≥ e−θn
∑

0≤m≤n

θm
n

m!
Pn

≥

e−θn
∑
m≥0

θm
n

m!
− f (θn)

 Pn = Pn − Pn f (θn)

≥ Pn − f (θn),
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which proves the claim. �

Lemma 2.32 Let σn denote for each n ≥ 1 a uniformly random permuta-
tion in Sn. For any t ∈ R we have

P(L(σn) ≤ t) ≥ P(L(σn+1) ≤ t). (2.96)

Proof One can obtain σn+1 by starting with σn and inserting the value
n + 1 at a uniformly random position with respect to the existing values
σn(1), . . . , σn(n). Such an insertion can only create longer increasing sub-
sequences than the ones already present in σn, which means that under
this coupling of σn and σn+1 we have that L(σn+1) ≥ L(σn). This implies
the event inclusion {L(σn+1) ≤ t} ⊆ {L(σn) ≤ t}, which immediately gives
(2.96). �

Proof of Theorem 2.2 As with the analogous claim we showed for Pois-
sonized Plancherel measure, we prove (2.4), which will prove the theorem
modulo Theorem 2.1, which is proved separately in the next section.

Let λ(n) denote as before a random Young diagram chosen according to
Plancherel measure of order n, and let λ〈θ〉 denote a random Young diagram
chosen according to Poissonized Plancherel measure with parameter θ. For
t ∈ R, denote Pn(t) = P

(
λ(n)

1 ≤ t
)

(the distribution function of λ(n)
1 ), and

denote Qθ(t) = P
(
λ〈θ〉1 ≤ t

)
(the distribution function of λ〈θ〉1 ). By the defi-

nition of Poissonized Plancherel measure as a Poisson mixture of ordinary
Plancherel measures, we have

Qθ(t) = e−θ
∞∑

n=0

θn

n!
Pn(t). (2.97)

By Lemma 2.32, for fixed t the sequence P1(t), P2(t), . . . is nonincreasing.
Therefore we can deduce from Lemma 2.31 that

Qφn (t̃) − f (φn) ≤ Pn(t̃) ≤ Qθn (t̃) + f (θn), (2.98)

where we denote t̃ = 2
√

n + tn1/6. But by Theorem 2.47, both of the terms
Qθn and Qφn sandwiching the Pn-term in (2.98) converge to F2(t) as n→ ∞
(one can check easily that the fact that n is used for the scaling of the
arguments rather than θn and φn does not matter). So, we get the same limit
for Pn(t̃), and the theorem is proved. �
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2.10 An analysis of F2

Having proved (2.4), the main claim of Theorem 2.2, we now take a closer
look at the function F2, since no treatment of this important result concern-
ing the limiting fluctuations of L(σn) would be complete without a deeper
understanding of the function describing these limiting fluctuations and its
properties. First and most importantly, we need to prove the assertion from
Theorem 2.1 that F2 is a distribution function; without this knowledge, the
convergence in Theorem 2.2 is not equivalent to convergence in distribution
of the scaled fluctuations n−1/6(L(σn) − 2

√
n), and in particular this leaves

room for the possibility that the unscaled fluctuations L(σn) − 2
√

n are of
an order of magnitude bigger than n1/6. Note that it is easy to see from the
definition of F2 that it is a smooth function, and that F2(t) → 1 as t → ∞
(see Lemma 2.34). It also follows from Theorem 2.2 that 0 ≤ F2(t) ≤ 1 for
all t and that F2 is a nondecreasing function of t, but for these facts too it
would be preferable to have a direct and shorter proof that does not rely on
the complicated algebraic, analytic, and combinatorial investigations that
went into proving Theorem 2.2. The missing fact required to deduce that
F2 is a distribution function is that F2(t)→ 0 as t → −∞.

In addition to this immediate and clearly formulated goal, the analysis is
also driven by a more vague desire to better understand how to fit this new
function F2 into the taxonomy of the various special functions of mathe-
matical analysis. Can it be expressed in some simple way in terms of known
functions? (Here, “simple” is used as a subjective term that is not precisely
defined. For example, F2 is defined in terms of the Airy function, but the
definition involves an infinite summation of multidimensional integrals, so
one can reasonably argue it is not very simple – in particular, from a com-
putational standpoint.) This question is of theoretical and also of practical
significance, since, for example, it has a bearing on the important problem
of evaluating F2 numerically to high precision.

To answer these questions, we prove the following result, due to Tracy
and Widom [136], that represents F2 in terms of a certain special function
that arises in the theory of differential equations, the Painlevé II transcen-
dent (see box on the opposite page for some background related to this
terminology). This representation implies Theorem 2.1 as an immediate
corollary.
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The Painlevé transcendents

The theory of Painlevé transcendents was developed around the year 1900
by Paul Painlevé, a French mathematician and human rights activist, who
later went on to other notable achievements, entering his country’s politics
and going on to hold various ministerial positions in the French government
including two short terms as prime minister of France in 1917 and 1925. The
problem leading to the Painlevé transcendents concerned the classification
of solutions to second-order differential equations of the form y′′ = R(y, y′, t),
where R is a rational function. Painlevé showed that the elements of a nat-
ural class of solutions of this equation, consisting of those solutions whose
only movable singularities are poles, could each be transformed into one of
fifty different canonical forms. He was further able to show that 44 of these
canonical forms consisted of functions that could be expressed in terms
of known special functions, leaving six whose solutions required the intro-
duction of new functions. These six “fundamentally new” solutions became
known as the Painlevé transcendents, and have since made occasional
appearances in various areas of analysis, mathematical physics and other
fields. The equations giving rise to them are known as the Painlevé I–VI
equations.

(PI) y′′=6y2+x

(PII) y′′=2y3+xy+α

(PIII) y′′= 1
y (y′)2− 1

x y′+ αy2+β
x +γy3+ δ

y

(PIV) y′′= 1
2y (y′)2+ 3

2 y3+4xy2+2(x2−α)y+
β
y

(PV) y′′=
(

1
2y + 1

y−1

)
(y′)2− 1

x y′+ (y−1)2

x2

(
αy+

β
y

)
+
γy
x +

δy(y+1)
y−1

(PVI) y′′= 1
2

(
1
y + 1

y−1 + 1
y−x

)
(y′)2−

(
1
x + 1

x−1 + 1
y−x

)
y′

+
y(y−1)(y−x)

x2(x−1)2

(
α+

βx
y2 +

γ(x−1)
(y−1)2

+
δx(x−1)
(y−x)2

)
The six Painlevé equations Paul Painlevé

Theorem 2.33 Let q : R → R be the unique solution of the Painlevé II
equation

q′′(t) = tq(t) + 2q(t)3 (2.99)

that has the asymptotic behavior

q(t) = (1 + o(1)) Ai(t) as t → ∞. (2.100)
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Then we have the representation

F2(t) = exp
(
−

∫ ∞

t
(x − t)q(x)2 dx

)
, (t ∈ R). (2.101)

Note that the theorem contains the statement that a function q(t) satis-
fying (2.99) and (2.100) is unique. We shall define q(t) using an explicit
expression and prove that it satisfies these conditions, but the fact that they
determine it uniquely is a known result from the theory of Painlevé equa-
tions (see [57]) that we will not prove. Furthermore, it should be noted that
the general form of the Painlevé II equation is

y′′(x) = 2y(x)3 + xy(x) + α,

where α is an arbitrary constant, so that (2.99) represents the special case
α = 0 of the equation.

Proof of Theorem 2.1 Write (2.101) as F2(t) = exp
(
−

∫ ∞
−∞

U(x, t)q(x)2 dx
)
,

where U(x, t) = (x − t)1[t,∞)(x). The fact that U(x, t) ≥ 0 implies that
0 ≤ F2(t) ≤ 1 for all t. The fact that U(x, t) is nonincreasing in t implies
that F2(t) is nondecreasing. To check that F2(t) → 0 as t → −∞, ob-
serve that for t < 0 we have that F2(t) ≤ exp

(
−|t|

∫ ∞
0

q(x)2 dx
)
. By (2.100),∫ ∞

0
q(x)2 dx > 0, so the result follows. �

The analysis required for the proof of Theorem 2.33 will consist of a
sequence of claims about a set of auxiliary functions that we now define.
Our exposition follows that of [4]. Introduce the notation

detA

 x1 . . . xn

y1 . . . yn

 =
n

det
i, j=1

(
A(xi, y j)

)
.

We make the following definitions (including F2 again for easy reference):

F2(t) = 1 +

∞∑
n=1

(−1)n

n!

∫ ∞

t
. . .

∫ ∞

t
detA

 x1 . . . xn

x1 . . . xn

 dx1 . . . dxn,
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H(x, y, t) = A(x, y) +

∞∑
n=1

(−1)n

n!

∫ ∞

t
. . .

∫ ∞

t
detA

 x x1 . . . xn

y x1 . . . xn

 dx1 . . . dxn

= H(y, x, t),

R(x, y, t) =
H(x, y, t)

F2(t)
= R(y, x, t),

Q(x, t) = Ai(x) +

∫ ∞

t
R(x, y, t) Ai(y) dy,

P(x, t) = Ai′(x) +

∫ ∞

t
R(x, y, t) Ai′(y) dy,

q(t) = Q(t, t) = Ai(t) +

∫ ∞

t
R(t, y, t) Ai(y) dy,

p(t) = P(t, t) = Ai′(t) +

∫ ∞

t
R(t, y, t) Ai′(y) dy,

u(t) =

∫ ∞

t
Q(x, t) Ai(x) dx

=

∫ ∞

t
Ai(x)2 dx +

∫ ∞

t

∫ ∞

t
R(x, y, t) Ai(x) Ai(y) dx dy,

v(t) =

∫ ∞

t
Q(x, t) Ai′(x) dx

=

∫ ∞

t
Ai(x) Ai′(x) dx +

∫ ∞

t

∫ ∞

t
R(x, y, t) Ai(x) Ai′(y) dx dy

=

∫ ∞

t
P(x, t) Ai(x) dx.

Fix t ∈ R. If K : R × R → R is a kernel decaying sufficiently fast as
its arguments tend to +∞, we can think of it as a linear operator acting on
functions f ∈ L2[t,∞) by

(K f )(x) =

∫ ∞

t
K(x, y) f (y) dy.

We shall use this interpretation for the Airy kernel A(·, ·), and denote the
corresponding operator on L2[t,∞) by At, to emphasize the dependence
on t. As we will see later, for fixed t the functions Ht = H(·, ·, t) and Rt =

R(·, ·, t) also have a natural interpretation as linear operators on L2[t,∞), so
it makes sense to think of them as kernels, similarly to A(·, ·), and denote
them using boldface letters. Note that operators K,M : R × R → R on
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L2[t,∞) can be multiplied according to the usual formula

(KM)(x, y) =

∫ ∞

t
K(x, z)M(z, y) dz,

and that this multiplication has the usual properties of matrix multiplica-
tion.

Lemma 2.34 The sums and integrals in the preceding definitions all con-
verge absolutely, and uniformly on compacts, as do all of their partial
derivatives. Consequently, they are smooth functions where they are de-
fined and partial differentiation operators can be applied termwise and
under the integral sign. Furthermore, we have the following bounds which
hold asymptotically as t → ∞:

F2(t) = 1 − O
(
e−t) ,

H(x, y, t) = A(x, y) + O
(
e−x−y−t) (uniformly for x, y ≥ 0),

q(t) =
(
1 + O

(
e−t)) Ai(t).

Proof The convergence claims follow using Lemma 2.30 in combination
with Hadamard’s inequality (2.30) and the bound (2.75), in a similar way
to how we showed that the series defining F2(t) converges (Lemma 2.25).
To get the asymptotic bounds one looks also at the dependence of each of
the terms on t. For example, for F2(t) we have using (2.76) that

|F2(t) − 1| ≤
∞∑

n=1

Cnnn/2

n!

(∫ ∞

t
e−2x3/2

dx
)n

≤

∞∑
n=1

Cnen

nn/2 e−nt = O(e−t).

Similarly, for H(x, y, t) we have that

|H(x, y, t) − A(x, y)| ≤
∞∑

n=1

(n + 1)(n+1)/2Cn+1

n!
e−2x3/2−2y3/2

(∫ ∞

t
e−2u3/2

du
)n

≤ e−x−y
∞∑

n=1

(n + 1)(n+1)/2Cn+1

n!
e−nt,

and this is O(e−x−y−t) uniformly for x, y ≥ 0. The estimate for |q(t) − Ai(t)|
is proved similarly and is omitted. �

Lemma 2.35
d
dt

(
log F2(t)

)
=

F′2(t)
F2(t)

= R(t, t, t) =
H(t, t, t)

F2(t)
.
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Proof For n ≥ 1 denote

∆n(t) =

∫ ∞

t
. . .

∫ ∞

t
detA

 x1 . . . xn

x1 . . . xn

 dx1 . . . dxn,

Hn(x, y, t) =

∫ ∞

t
. . .

∫ ∞

t
detA

 x x1 . . . xn

y x1 . . . xn

 dx1 . . . dxn,

and denote ∆0(t) = 1, H0(x, y, t) = Ai(x, y), so that we have F2(t) =∑∞
n=0

(−1)n

n! ∆n(t) and H(x, y, t) =
∑∞

n=0
(−1)n

n! Hn(x, y, t). Clearly it will be enough
to prove that ∆′n(t) = −nHn−1(t, t, t) for n ≥ 1. This is obvious for n = 1.
For n ≥ 2, observe that ∆′n(t) is equal to

−

n∑
j=1

"
[t,∞)n−1

detA

 x1 . . . x j−1 t x j+1 . . . xn

x1 . . . x j−1 t x j . . . xn

 dx1 . . . dx j−1 dx j+1 . . . dxn,

and that each of the integrals in this sum is equal to Hn−1(t, t, t). �

Lemma 2.36 R(x, y, t) satisfies the integral equations

R(x, y, t) − A(x, y) =

∫ ∞

t
A(x, z)R(z, y, t) dz

=

∫ ∞

t
R(x, z, t)A(z, y) dz. (2.102)

Equivalently, in the language of linear operators we have the operator
identities

Rt − At = AtRt = RtAt. (2.103)

Proof By the symmetries A(y, x) = A(x, y) and R(y, x, t) = R(x, y, t), the
two equations in (2.102) are equivalent, so we prove the first one, in the
equivalent form

H(x, y, t) − F2(t)A(x, y) =

∫ ∞

t
A(x, z)H(z, y, t) dz.

The left-hand side can be written as
∑∞

n=0
(−1)n

n! (Hn(x, y, t) − A(x, y)∆n(t)),
and the right-hand side as

∑∞
m=0

(−1)m

m!

∫ ∞
t

A(x, z)Hm(z, y, t) dz, in the notation
of the previous lemma; so it will be enough to show that

Hn(x, y, t) − A(x, y)∆n(t) = −n
∫ ∞

t
A(x, z)Hn−1(z, y, t) dz (2.104)

holds for any n ≥ 1. Note that, by expanding the determinant appearing in
Hn(x, y, t) on the left-hand side of (2.104) by minors along the first row, one
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gets a term canceling out A(x, y)∆n(t) from the first column, plus additional
terms, which we can write as

Hn(x, y, t) − A(x, y)∆n(t)

=

n∑
j=1

(−1) j
∫ ∞

t
. . .

∫ ∞

t
A(x, x j)detA

 x1 x2 . . . x j x j+1 . . . xn

y x1 . . . x j−1 x j+1 . . . xn

 dx1 . . . dxn

= −

n∑
j=1

∫ ∞

t
. . .

∫ ∞

t
A(x, x j)detA

 x j x1 . . . x j−1 x j+1 . . . xn

y x1 . . . x j−1 x j+1 . . . xn

 dx1 . . . dxn

= −

n∑
j=1

∫ ∞

t
A(x, x j)Hn−1(x j, y, t) dx j

= −n
∫ ∞

t
A(x, x j)Hn−1(z, y, t) dz,

proving the claim. �

Denote by I the identity operator on L2[t,∞) (omitting the dependence
on t). By elementary manipulations, (2.103) can be rewritten in the equiv-
alent form

(I + Rt)(I − At) = (I − At)(I + Rt) = I (2.105)

which means that I + Rt and I − At are two-sided inverses of each other.
Knowing that they are invertible, we can also write

Rt = At(I − At)−1, A = Rt(I + Rt)−1.

For this reason, in the theory of Fredholm determinants Rt is called the
resolvent of At. Note also that the proof of Lemma 2.36 only used the way
R(·, ·, ·) was defined in terms of the kernel A(·, ·) and not any information
about any of its specific properties, so an analogous resolvent relation holds
in much greater generality; see [74], [120] for more details on the general
theory.

Lemma 2.37
∂

∂t
R(x, y, t) = −R(x, t, t)R(t, y, t).

Proof Denote rt(x, y) = ∂
∂t R(x, y, t). Starting with the first identity in
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(2.102), we have that

rt(x, y) =
∂

∂t

(∫ ∞

t
A(x, z)R(z, y, t) dz

)
= −A(x, t)R(t, y, t) +

∫ ∞

t
A(x, z)rt(z, y) dz,

or, in operator notation,

(
(I − At)rt

)
(x, y) = Bt(x, y),

where Bt(x, y) = −A(x, t)R(t, y, t). Now using the relation (2.105), by mul-
tiplying this equation on the left by the operator I + Rt we transform it
into

rt(x, y) =
(
(I + Rt)Bt

)
(x, y)

= −A(x, t)R(t, y, t) −
∫ ∞

t
R(x, z, t)A(z, t)R(t, y, t) dz

= −R(t, y, t)
(
A(x, t) +

∫ ∞

t
R(x, z, t)A(z, t) dz

)
= −R(x, t, t)R(t, y, t),

using (2.102) once again in the last step. �

Lemma 2.38

R(x, y, t) =


Q(x, t)P(y, t) − Q(y, t)P(x, t)

x − y if x , y,(
∂
∂x Q(x, t)

)
P(x, t) − Q(x, t)

(
∂
∂x P(x, t)

)
if x = y.

Proof It is enough to prove the claim for the case x , y, since the case
x = y follows from it by taking the limit as y→ x and applying L’Hôpital’s
rule. Consider the kernels R̃t(·, ·), Ãt(·, ·) defined by

R̃t(x, y) = (x − y)R(x, y, t),

Ãt(x, y) = (x − y)A(x, y) = Ai(x) Ai′(y) − Ai′(x) Ai(y),

(the subscript t on Ãt(·, ·) emphasizes that we consider it as a kernel



138 The Baik–Deift–Johansson theorem

corresponding to an operator acting on L2[t,∞)). We have that

(
R̃tAt + RtÃt

)
(x, y) =

∫ ∞

t
R̃t(x, z)A(z, y) dz +

∫ ∞

t
Rt(x, z)Ã(z, y) dz

=

∫ ∞

t
Rt(x, z)A(z, y)(x − z + z − y) dz

= (x − y)
∫ ∞

t
R(x, z, t)A(z, y) dz

= (x − y)(R(x, y, t) − A(x, y)) = (R̃t − Ãt
)
(x, y).

In other words, we have the operator identity R̃tAt + RtÃt = R̃t − Ã. Multi-
plying this identity from the left by I+R, rearranging terms and simplifying
using (2.103) yields the relation

R̃t = Ãt + ÃtR + RÃt + ÃtRÃt = (I + Rt)Ã(I + Rt).

Evaluating this kernel identity for given x, y gives

(x − y)R(x, y, t) = R̃t(x, y) = Ãt(x, y) +

∫ ∞

t
R(x, z, t)Ãt(z, y) dz

+

∫ ∞

t
Ãt(x, z)R(z, y, t) dz

+

∫ ∞

t

∫ ∞

t
R(x, z, t)Ãt(z,w)R(w, y, t) dw dz.

One can now easily verify that this is equal to Q(x, t)P(y, t) − Q(y, t)P(x, t)
using the definitions of Q(x, t), P(x, t), and Ãt(x, y). �

Lemma 2.39

∂

∂t
Q(x, t) = −R(x, t, t)Q(t, t),

∂

∂t
P(x, t) = −R(x, t, t)P(t, t).
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Proof

∂

∂t
Q(x, t) = −R(x, t, t) Ai(t) +

∫ ∞

t

∂

∂t
(x, y, t) Ai(y) dy

= −R(x, t, t) Ai(t) −
∫ ∞

t
R(x, t, t)R(t, y, t) Ai(y) dy

= −R(x, t, t)
(
Ai(t) +

∫ ∞

t
R(t, y, t) Ai(y) dy

)
= −R(x, t, t)Q(t, t).

The verification for the second equation is similar and is omitted. �

Lemma 2.40
∂

∂x
R(x, y, t) +

∂

∂y
R(x, y, t) = R(x, t, t)R(t, y, t) − Q(x, t)Q(y, t).

Proof Denote by ∂x+y the differential operator ∂
∂x + ∂

∂y , and let ρt(x, y) =

∂x+yR(x, y, t). An easy computation, which is equivalent to (2.80), gives that
∂x+yA(x, y) = −Ai(x) Ai(y). This gives, applying ∂x+y to the first equality
in (2.102), that

ρt(x, y) + Ai(x) Ai(y) = ∂x+y (R(x, y, t) − A(x, y))

=

∫ ∞

t

(
∂

∂x
A(x, z)

)
R(z, y, t) dz +

∫ ∞

t
A(x, z)

(
∂

∂y
R(z, y, t)

)
dz

=

∫ ∞

t

((
∂

∂x
+
∂

∂z

)
A(x, z)

)
R(z, y, t) dz

+

∫ ∞

t
A(x, z)

((
∂

∂z
+
∂

∂y

)
R(z, y, t)

)
dz

−

∫ ∞

t

[(
∂

∂z
A(x, z)

)
R(z, y, t) + A(x, z)

(
∂

∂z
R(z, y, t)

)]
dz

=

∫ ∞

t
−Ai(x) Ai(z)R(z, y, t) dz +

∫ ∞

t
A(x, z)ρt(z, y) dz

−

∫ ∞

t

∂

∂z
(A(x, z)R(z, y, t)) dz

= −Ai(x)(Q(y, t) − Ai(y)) +

∫ ∞

t
A(x, z)ρt(z, y) dz + A(x, t)R(t, y, t).

Cancelling out the common term Ai(x) Ai(y) and rearranging the remaining
terms, we get in operator notation the relation

(I − At)ρt = Ct,
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where Ct(x, y) = −Ai(x)Q(y, t)+A(x, t)R(t, y, t). Multiplying this by I+Rt

and using (2.105), we get that

ρt(x, y) =
(
(I + Rt)Ct

)
(x, y)

= −Ai(x)Q(y, t) + A(x, t)R(t, y, t)

+

∫ ∞

t
R(x, z, t)

(
− Ai(z)Q(y, t) + A(z, t)R(t, y, t)

)
dz

= R(t, y, t)
(
A(x, t) +

∫ ∞

t
R(x, z, t)A(z, t) dz

)
− Q(y, t)

(
Ai(x) +

∫ ∞

t
R(x, z, t) Ai(z) dz

)
= R(x, t, t)R(t, y, t) − Q(x, t)Q(y, t),

as claimed. �

Lemma 2.41

∂

∂x
Q(x, t) = P(x, t) + R(x, t, t)Q(t, t) − Q(x, t)u(t),

∂

∂x
P(x, t) = xQ(x, t) + R(x, t, t)P(t, t) + P(x, t)u(t) − 2Q(x, t)v(t).

Proof We use the statement and notation of the previous lemma, and an
integration by parts, and get that

∂

∂x
Q(x, t) = Ai′(x) +

∫ ∞

t

(
∂

∂x
R(x, y, t)

)
Ai(y) dy

= Ai′(x) +

∫ ∞

t
ρt(x, y) Ai(y) dy −

∫ ∞

t

(
∂

∂y
R(x, y, t)

)
Ai(y) dy

= Ai′(x) +

∫ ∞

t

(
R(x, t, t)R(t, y, t) − Q(x, t)Q(y, t)

)
Ai(y) dy

+ R(x, t, t) Ai(t) +

∫ ∞

t
R(x, y, t) Ai′(y) dy

= Ai′(x) + R(x, t, t)(Q(t, t) − Ai(t)) − Q(x, t)u(t)

+ R(x, t, t) Ai(t) + P(x, t) − Ai′(x)

= P(x, t) + R(x, t, t)Q(t, t) − Q(x, t)u(t).

For the second claim, we use similar calculations together with the Airy
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differential equation Ai′′(x) = x Ai(x), to write

∂

∂x
P(x, t) = Ai′′(x) +

∫ ∞

t

(
∂

∂x
R(x, y, t)

)
Ai′(y) dy

= x Ai(x) +

∫ ∞

t
ρt(x, y) Ai′(y) dy −

∫ ∞

t

(
∂

∂y
R(x, y, t)

)
Ai′(y) dy

= x Ai(x) +

∫ ∞

t

(
R(x, t, t) − R(t, y, t) − Q(x, t)Q(y, t)

)
Ai′(y) dy

+ R(x, t, t) Ai′(t) +

∫ ∞

t
R(x, y, t) Ai′′(y) dy

= x Ai(x) + R(x, t, t)(P(t, t) − Ai′(t)) − Q(x, t)v(t)

+ R(x, t, t) Ai′(t) +

∫ ∞

t
R(x, y, t) y Ai(y) dy.

To complete the computation, note that the last term can be written in the
form∫ ∞

t
R(x, y, t) y Ai(y) dy

= x
∫ ∞

t
R(x, y, t) Ai(y) dy −

∫ ∞

t
R(x, y, t) (x − y) Ai(y) dy

= x
(
Q(x, t) − Ai(x)

)
−

∫ ∞

t

(
Q(x, t)P(y, t) − Q(y, t)P(x, t)

)
Ai(y) dy

= x
(
Q(x, t) − Ai(x)

)
− Q(x, t)v(t) + P(x, t)u(t).

Combining these last two computation gives the claim. �

Lemma 2.42

q′(t) = p(t) − q(t)u(t),

p′(t) = tq(t) + p(t)u(t) − 2q(t)v(t).

Proof Combining Lemmas 2.39 and 2.41, we have that(
∂

∂x
+
∂

∂t

)
Q(x, t) = −Q(t, t)R(t, x, t) + P(x, t) + R(x, t, t)Q(t, t)

− Q(x, t)u(t) = P(x, t) − Q(x, t)u(t).

It follows that

q′(t) =
d
dt

Q(t, t) = P(t, t) − Q(t, t)u(t) = p(t) − q(t)u(t).
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Similarly, we have(
∂

∂x
+
∂

∂t

)
P(x, t) = −P(t, t)R(t, x, t) + xQ(x, t) + R(x, t, t)P(t, t)

+ P(x, t)u(t) − 2Q(x, t)v(t)

= xQ(x, t) + P(x, t)u(t) − 2Q(x, t)v(t),

which implies the claimed formula for p′(t) = d
dt P(t, t) on setting x = t. �

Lemma 2.43

u′(t) = −q(t)2,

v′(t) = −p(t)q(t).

Proof

u′(t) =
d
dt

(∫ ∞

t
Q(x, t) Ai(x) dx

)
= −Q(t, t) Ai(t) +

∫ ∞

t

(
∂

∂t
Q(x, t)

)
Ai(x) dx

= −q(t) Ai(t) +

∫ ∞

t
−Q(t, t)R(t, x, t) Ai(x) dx

= −q(t)
(
Ai(t)

∫ ∞

t
R(t, x, t) Ai(x) dx

)
= −q(t)2.

Similarly, we have

v′(t) =
d
dt

(∫ ∞

t
Q(x, t) Ai′(x) dx

)
= −q(t) Ai′(t) +

∫ ∞

t

(
∂

∂t
Q(x, t

)
Ai′(x) dx

= −q(t)
(
Ai′(t) +

∫ ∞

t
R(t, x, t) Ai′(x) dx

)
= −p(t)q(t). �

Lemma 2.44 q(t) satisfies the Painlevé II differential equation (2.99).

Proof Using the results of the last few lemmas we have

d
dt

(
u2 − 2v − q2

)
= 2uu′ − 2v′ − 2qq′

= 2u(−q2) + 2pq − 2q(p − qu) ≡ 0,
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so u2 − 2v − q2 is a constant function, which must be 0 since u, v, q→ 0 as
t → ∞. It follows that

q′′ = (p − qu)′ = p′ − q′u − qu′ = tq + pu − 2qv − (p − qu)u − q(−q2)

= tq + q3 + q(u2 − 2v) = tq + q3 + q3 = tq + 2q3. �

Lemma 2.45

(log F2(t))′′ = −q(t)2.

Proof By Lemmas 2.37 and 2.40 we have(
∂

∂x
+
∂

∂y
+
∂

∂t

)
R(x, y, t) = −Q(x, t)Q(y, t),

so we get that

(log F2(t))′′ =
d
dt

R(t, t, t) =

[(
∂

∂x
+
∂

∂y
+
∂

∂t

)
R(x, y, t)

]∣∣∣∣x=y=t
= −q(t)2. �

Proof of Theorem 2.33 We defined the function q(t) mentioned in the the-
orem explicitly and proved that it satisfies (2.99) and (2.100), so it remains
to prove the representation (2.101) for F2(t). Letting λ(t) = log F2(t), since
λ(t) = O(e−t) and λ′(t) = R(t, t, t) = O(e−t) as t → ∞ we get that

λ(t) = −

∫ ∞

t
λ′(y) dy =

∫ ∞

t

(∫ ∞

y
λ′′(x) dx

)
dy

=

∫ ∞

t
λ′′(x)

(∫ x

t
dy

)
dx = −

∫ ∞

t
(x − t)q(x)2 dx. �

2.11 Edge statistics of Plancherel measure

Our remaining goal in this chapter is to prove Theorem 2.3. In fact, in our
proof of the weaker Theorem 2.2 we already came very close to proving
Theorem 2.3, without noticing. A bit like the ending of a good detective
story, all that is needed now is a small additional refinement of our senses
(delivered perhaps in a dramatic speech by a colorful French-accented de-
tective), which will enable us to look back at the story so far and finally
make sense of the mystery.

The main missing piece in the picture is a better understanding of the
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Airy ensemble XAiry = (ζ1, ζ2, . . .), claimed in Theorem 2.3 to be the lim-
iting process to which the scaled largest rows of a Plancherel-random par-
tition λ(n) converge as n → ∞. We have not proved that it exists, let
alone described its properties. Doing so rigorously would actually require
a more detailed digression into the general theory of random point pro-
cesses, which is beyond the scope of this book. We merely quote the rele-
vant results here without proof and refer the interested reader to Sections
1 and 2 of [121] or Section 4.2 (especially Proposition 4.2.30) of [4] for
more details.10

To state the result, we use the concept of a Fredholm determinant of the
form I + T, where T is a kernel T : E × E → R for some Borel set E ⊆ R.
This is defined by

det(I + T) = 1 +

∞∑
n=1

1
n!

∫
E
. . .

∫
E

n
det
i, j=1

(
T(xi, x j)

)
dx1 . . . dxn,

provided the integrals and series converge absolutely. This is analogous
to our previous definition of Fredholm determinants for kernels acting on
`2(Ω) where Ω is a countable set. The general theory of Fredholm deter-
minants provides a unified framework for treating both of these scenarios
simultaneously, but we shall not consider these generalities here.

Theorem 2.46 (a) There exists a unique random point process XAiry on
R whose correlation functions ρ(n)

XAiry
: Rn → R (as defined by (2.5)) are

given by

ρ(n)
XAiry

(x1, . . . , xn) =
n

det
i, j=1

(
A(xi, x j)

)
, (x1, . . . , xn ∈ R).

(b) For any disjoint Borel sets E1, . . . , Ek ⊆ R, the function

det

I − k∑
j=1

z jPA j · A · PE1∪...∪Ek

 ,
is defined for any complex numbers z1, . . . , zk and is an entire function
of these variables.

(c) If E1, . . . , Ek ⊆ R are disjoint Borel sets, then for any nonnegative
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integers n1,. . .,nk we have that

P
( k⋂

j=1

{
|XAiry ∩ E j| = n j

})

=
(−1)N

n1! . . . nk!
∂N

∂zn1
1 . . . ∂znk

k

∣∣∣z1=...=zk=1

det

I − k∑
j=1

z jPA j · A · PE1∪...∪Ek

 .
(2.106)

Note that (2.106) implies in particular that

P
(
XAiry ⊆ (−∞, t)

)
= P

(∣∣∣XAiry ∩ [t,∞)
∣∣∣ = 0

)
= det

(
I − I[t,∞)A

)
= F2(t).

The event on the left-hand side is almost surely equal to the event that XAiry

has a maximal element ζ1 that satisfies ζ1 < t (the two events differ in the
zero-probability event that XAiry = ∅). So in particular we get that the Airy
ensemble almost surely has a maximal element, whose distribution is the
Tracy–Widom distribution F2(t).

Our tools are now sufficiently sharpened to prove Theorem 2.3. The
proof will use the same ideas as were used previously for the proof of
Theorem 2.2, with slightly more elaborate continuity arguments.

As before, we first prove an analogous version for Poissonized
Plancherel measure, and then use the de-Poissonization principle from
Lemma 2.31.

Theorem 2.47 For each θ > 0, let λ〈θ〉 denote a random partition chosen
according to Poissonized Plancherel measure with parameter θ, let λ〈θ〉j

denote the length of its jth row, and denote λ̄〈θ〉j = θ−1/6(λ〈θ〉j − 2
√
θ
)
. Then

for each k ≥ 1, we have the convergence in distribution

(λ̄〈θ〉1 , . . . , λ̄〈θ〉k )
d
−−→ (ζ1, . . . , ζk) as θ → ∞,

where {ζ1 > ζ2 > . . .} denote the elements of the Airy ensemble arranged
in decreasing order as in (2.7).

Proof Consider the first k of the “positive” Frobenius coordinates of λ〈θ〉,
namely

p〈θ〉j = λ〈θ〉j − j, j = 1, . . . , k,
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and define their rescaled counterparts p̄〈θ〉j = θ−1/6(p〈θ〉j − 2
√
θ). Clearly it

will be enough to prove that

(p̄〈θ〉1 , . . . , p̄〈θ〉k )
d
−−→ (ζ1, . . . , ζk) as θ → ∞. (2.107)

To do this, we consider events of a specific type associated with the random
process (p̄〈θ〉1 , . . . , p̄〈θ〉k ). Fix numbers t1 > t2 > . . . > tk in R, and define

Eθ =
{
p̄〈θ〉k ≤ tk < p̄〈θ〉k−1 ≤ tk−1 < . . . < p̄〈θ〉2 ≤ t2 < p̄〈θ〉1 ≤ t1

}
.

Similarly, let E be the analogous event for the largest elements (ζ1, . . . , ζk)
of the Airy ensemble, namely

E =
{
ζk ≤ tk < ζk−1 ≤ tk−1 < . . . < ζ2 ≤ t2 < ζ1 ≤ t1

}
.

It is not difficult to see that in order to prove the convergence in distri-
bution (2.107) it will be enough to show that

P(Eθ)→ P(E) as θ → ∞. (2.108)

The advantage of working with such events is that they can be expressed
in terms of the underlying determinantal point processes in a way that does
not refer to the labelling of specific elements of the process. More precisely,
if we denote by Yθ the process Fr(λ〈θ〉), then we have

E =
{
|XAiry ∩ (t1,∞)| = 0

}
∩

k⋂
j=2

{
|XAiry ∩ (t j, t j−1]| = 1

}
,

Eθ =
{
|Yθ ∩ (t̃1,∞)| = 0

}
∩

k⋂
j=2

{
|Yθ ∩ (t̃ j, t̃ j−1]| = 1

}
,

where as before we denote t̃ j = 2
√
θ + t jθ

1/6. But now we see that such a
representation fits perfectly with the framework that was presented in Sec-
tion 2.4 and with Theorem 2.46, since the probabilities of such events can
be expressed in terms of Fredholm determinants. Define intervals T1, . . . ,Tn

by T1 = (t1,∞) and T j = (t j, t j−1] for 2 ≤ j ≤ k. Similarly, denote
T̃1 = (t̃1,∞) and T̃ j = (t̃ j, t̃ j−1] for 2 ≤ j ≤ k. Denote T = ∪k

j=1T j = (tk,∞)
and T̃ = ∪k

j=1T̃ j = (t̃k,∞). Then, by (2.106) and Proposition 2.17, we have
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that

P(E) = (−1)k−1 ∂k−1

∂z2 . . . ∂zk

∣∣∣z1=...=zk=1
det

I − k∑
j=1

z jPT̃ j
· AT̃ · PT̃

 , (2.109)

P(Eθ) = (−1)k−1 ∂k−1

∂z2 . . . ∂zk

∣∣∣z1=...=zk=1
det

I − k∑
j=1

z jPT j ·Kθ · PT

 . (2.110)

It will therefore come as no surprise that the same methods and estimates
that we used previously in the proof of Theorem 2.29 will apply to prove
the convergence in this case. Here’s how to make the necessary changes.
Observe that the computations in the proof of Theorem 2.29 can be used
with little modification to show that

det

I − k∑
j=1

z jPT j KθPT

 −−−→θ→∞
det

I − k∑
j=1

z jPT̃ j
APT̃

 , (2.111)

for any complex numbers z1, . . . , zk, and that in fact the convergence is uni-
form if one assumes that |z j| ≤ ξ for some fixed ξ. Note also that, according
to Proposition 2.17 and Theorem 2.46, the convergence is of a family of
entire functions to another entire function. Now use a bit of complex anal-
ysis: if f (z1, . . . , zk) is an analytic function of several complex variables in
a neighborhood of a point p = (p1, . . . , pk) ∈ Ck, it follows by an iterative
use of the well-known Cauchy integral formula that its partial derivatives
at p can be expressed as multidimensional contour integrals, namely

∂N f (p)
∂zn1

1 . . . ∂znk
k

=

∏k
j=1 n j!

(2πi)k

∫
|z1−p1 |=ε

. . .

∫
|zk−pk |=ε

f (w1, . . . ,wk)∏k
j=1(w j − p j)n j+1

dw1 . . . dwk,

where ε is a small enough positive number and N =
∑k

j=1 n j. Applying
this to our setting gives the desired claim that P(Eθ) → P(E) as θ → ∞,
since the uniform convergence (2.111) implies convergence of the multi-
dimensional contour integrals. �

Proof of Theorem 2.3 We derive Theorem 2.3 from Theorem 2.47 in a
similar way to how Theorem 2.2 was derived from Theorem 2.29 in the
previous section. Again, we apply Lemma 2.31, but the quantities Pn(t)
and Qθ(t) are replaced by probabilities of events depending on the first k
rows of the random Young diagrams λ(n) and λ〈θ〉. Let x1, . . . , xk ∈ R, and
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for n ≥ k denote

Pn = Pn(x1, . . . , xk) = P
(
λ(n)

1 ≤ x1, λ
(n)
2 ≤ x2, . . . , λ

(n)
k ≤ xk

)
. (2.112)

Define Pn to be 1 for n ≤ k. Next, denote

Qθ = Qθ(x1, . . . , xk) := e−θ
∞∑

m=0

θm

m!
Pm

= P
(
λ〈θ〉1 ≤ x1, λ

〈θ〉
2 ≤ x2, . . . , λ

〈θ〉
k ≤ xk

)
.

Then, similarly to (2.97), we have that Qθ = e−θ
∑∞

n=0
θn

n! Pn, and, similarly
to (2.96), the sequence P1, P2, . . . is easily seen to be nonincreasing (Exer-
cise 2.20). Therefore Lemma 2.31 applies and we deduce that

Qφn (x̃1, . . . , x̃k) − f (φn) ≤ Pn(x̃1, . . . , x̃k) ≤ Qθn (x̃1, . . . , x̃k) + f (θn),

where we denote x̃i = 2
√

n + xin1/6. Now continue as in the proof of The-
orem 2.2. �

2.12 Epilogue: convergence of moments

We are close to the end of our journey into the study of the permuta-
tion statistic L(σ), and are almost ready to declare victory on the Ulam–
Hammersley problem, which has turned out to be quite formidable and
fascinating, in a way probably unsuspected by the story’s original protag-
onists. To close a circle with the discussion at the beginning of Chapter 1,
note, however, that we started out thinking about the average size of L(σn),
where σn is a uniformly random permutation, and only later switched to
thinking about its probability distribution. Looking back, we claimed in
(1.1) that `n = EL(σn) has the asymptotic behavior

`n = 2
√

n + cn1/6 + o(n1/6) as n→ ∞.

In light of our current understanding, it seems clear that the constant c is
none other than the expected value of the Tracy–Widom distribution F2,
that is,

c =

∫ ∞

−∞

x dF2(x),

which has been numerically evaluated [18] to equal −1.7710868074 . . . .
Still, from a rigorous point of view we have not actually proved this claim,
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since (as any probabilist worth her salt knows) convergence in distribution
of a sequence of random of variables does not in general imply convergence
of expectations.

The question is resolved by the following more general result proved by
Baik, Deift, and Johansson [11], which we quote without proof.

Theorem 2.48 (Convergence of moments for L(σn)) For any integer k ≥
1 we have

E
(

L(σn) − 2
√

n
n1/6

)k

→

∫ ∞

−∞

xk dF2(x) as n→ ∞.

From general facts of probability theory it follows that one can deduce
convergence of moments from convergence in distribution if one has suffi-
ciently uniform control of the decay rate of the tail of the distributions of
the converging sequence. In our case, it would not be too difficult to use
the bound (2.78) to obtain this type of control for the positive part of the
tail. However, it is not clear whether the approach we pursued in this chap-
ter could be used to obtain corresponding bounds for the negative part of
the tail. I leave this as an open problem to stimulate readers’ thinking. It
should be noted that Baik, Deift, and Johansson’s approach to proving The-
orems 2.2 and 2.48 was based on different ideas, starting from another re-
markable identity relating the distribution of the “Poissonization” of L(σn)
to the Bessel functions (see Exercise 2.21). Using advanced asymptotic
analysis techniques they were able to prove the following tail bounds for
the distributions of the scaled random variables Xn = n−1/6(L(σn) − 2

√
n ):

P(Xn ≥ t) ≥ 1 −Ce−ct3/5
(T < t < n5/6 − 2n1/3),

P(Xn ≤ t) ≤ Cec|t|3 (−2n1/3 < t < −T ),

for some constants T,C, c > 0. Combining this with the convergence in
distribution of Xn to F2, standard techniques can be used to deduce conver-
gence of moments.

Exercises

2.1 (K) If λ〈θ〉 denotes a random Young diagram chosen according to Pois-
sonized Plancherel measure Pθ, show that the length λ〈θ〉1 of its first row is
equal in distribution to the random variable Y0,

√
θ where Ys,t is defined in

(1.5) (Section 1.4).
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2.2 (KK) Prove the Cauchy determinant identity (2.14). There are many proofs;
one relatively easy one involves performing a simple elementary operation
on columns 2 through n of the matrix, extracting factors common to rows
and columns and then performing another simple elementary operation on
rows 2 through n.

2.3 Let X be a determinantal point process in a finite set Ω, and let K : Ω×Ω→ R
denote its correlation kernel.

(a) (K) Show that the complementary point process Xc = Ω \ X is determi-
nantal and identify its correlation kernel.

(b) (KK) Show that X has a configuration kernel if and only if I − K is
invertible. In the case when X has a configuration kernel L, identify the
configuration kernel of the complementary process Xc.

2.4 (K) Let Ω be a finite or countable set. Let p : Ω → [0, 1] be a function.
Define a point process X on Ω by specifying that each x ∈ Ω is in X with
probability p(x), or not in X with the complementary probability 1 − p(x),
independently for all x (that is, in measure-theoretic language, the distribu-
tion of X is a product measure on {0, 1}Ω). Show that X is determinantal and
find its correlation kernel. Identify when X has a configuration kernel and
find its configuration kernel when it has one.

2.5 (a) (KKK) Let M = (mi, j)n
i, j=1 denote a square matrix, and recall that its

adjugate matrix adj(M) is the matrix whose (i, j)th entry is (−1)i+ j times
the ( j, i)-minor of M. Let A ⊆ {1, . . . , n}, and denote Ac = {1, . . . , n} \ A.
Prove the following identity due to Jacobi:

det((adj(M))A) = det(M)|A|−1 det(MAc ) (2.113)

(where the meaning of the notation ME is the same as in Section 2.4). In
the case when M is invertible, because of the well-known relation M−1 =

(det(M))−1 adj(M), this can be written in the equivalent form

det(MA) = det(M) det((M−1)Ac ).

(b) (KKK) Deduce from Jacobi’s identity and Proposition 2.10 a new proof
of Proposition 2.9.

2.6 (K) Prove Proposition 2.12.
2.7 (KKK) The Euler gamma function is defined by

Γ(t) =

∫ ∞

0
e−xxt−1 dx (t > 0).

Prove or look up (e.g., in [5]) the proofs of the following properties it satis-
fies:
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(a) Γ(n + 1) = n! for integer n ≥ 0.

(b) Γ(t + 1) = t Γ(t) for t > 0.

(c) Γ(1/2) =
√
π.

(d) Γ(t) has the infinite product representation

Γ(t)−1 = teγt
∞∏

n=1

(
1 +

t
n

)
e−t/n,

where γ = lim
n→∞

(
1 +

1
2

+
1
3

+ . . . +
1
n
− log n

)
is the Euler–Mascheroni

constant.

(e) ψ(t) :=
Γ′(t)
Γ(t)

= −γ +

∞∑
n=0

(
1

n + 1
−

1
n + t

)
for t > 0.

(f) Γ(t) = (1 + o(1))

√
2π
t

( t
e

)t
as t → ∞.

(g) ψ(t) = log t + O(1) as t → ∞. (Hint: Find a formula for ψ(t) when t is an
integer).

(h) Γ(t) can be analytically continued to a meromorphic function on C with
simple poles at 0,−1,−2, . . . and no zeroes.

(i)
π

Γ(t)Γ(1 − t)
= sin(πt) for all t ∈ C.

2.8 (KK) Prove (2.51), by first using the fact that Jα(z), J−α(z) are solutions of
the Bessel differential equation (2.41) to show that

∂

∂z

[
z
(
Jα(2z)J′−α(2z) − J′−α(2z)Jα−1(2z)

) ]
= 0.

This implies that the left-hand side of (2.51) is of the form g(α)/z for some
function g(α). Then examine the asymptotic behavior of the left-hand side of
(2.51) as z → 0, to infer that for noninteger values of α (and hence by con-
tinuity also for integer values) g(α) = −(Γ(α)Γ(1 − α))−1, which is equal to
− 1
π sin(πα) by a classical identity for the gamma function (see Exercise 2.7).

2.9 (KK) Prove (2.52). It is helpful to first prove and then use the following
“binomial inversion principle”: If (an)n≥0 and (bn)n≥0 are two sequences such
that an =

∑n
k=0(−1)k

(
n
k

)
bk for all n, then (bn)n can be obtained from (an)n

using the symmetric expression bn =
∑n

k=0(−1)k
(
n
k

)
ak.

2.10 (KK) Prove (2.53).
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2.11 (K) Show that

J1/2(z) =

√
2
πz

sin z,

J−1/2(z) =

√
2
πz

cos z.

2.12 (KK) Prove the following identities involving Bessel functions Jn(z) of in-
teger order:

exp
[

z
2

(
t −

1
t

)]
=

∞∑
n=−∞

Jn(z)tn,

cos(z sin θ) = J0(z) + 2
∞∑

n=1

J2n(z) cos(2nθ),

sin(z sin θ) = 2
∞∑

n=0

J2n+1(z) sin((2n + 1)θ),

cos(z cos θ) = J0(z) + 2
∞∑

n=1

(−1)nJ2n(z) cos(2nθ),

sin(z cos θ) = 2
∞∑

n=0

(−1)nJ2n+1(z) sin((2n + 1)θ),

Jn(z) =
1
π

∫ π

0
cos (z sin θ − nθ) dθ (n ∈ Z).

2.13 Let λ = (λ1, . . . , λk) be an integer partition, with its Frobenius coordinates
being denoted by Fr(λ) =

{
p1 + 1

2 , . . . , pd + 1
2 ,−q1 −

1
2 , . . . ,−qd −

1
2

}
as in

(2.9). Denote

D(λ) = {λ j − j | j = 1, 2, . . .},

with the convention that λ j = 0 if j > k.

(a) (KK) Show that Fr(λ) = (D(λ) + 1
2 )4{− 1

2 ,−
3
2 , . . .}, where A4B = (A \

B) ∪ (B \ A) denotes the symmetric difference of sets.

(b) (KKKK) Show that if λ〈θ〉 denotes a Young diagram chosen according
to Poissonized Plancherel measure Pθ, then D(λ〈θ〉) is a determinantal
point process and its correlation kernel is Jθ(·, ·).

2.14 (K) Verify that the two relations in (2.54) are equivalent. Use the fact that L
and K have the symmetries L(x, y) = −L(y, x) = −L(−x,−y) and K(x, y) =

−K(y, x) = −K(−x,−y).
2.15 (a) (K) Use (2.67) to show that the Airy function Ai(x) satisfies the Airy

differential equation (2.8).
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(b) (K) Express Ai(0) and Ai′(0) in terms of the Euler gamma function, and
use these expressions and the Airy differential equation (2.8) to obtain the
power series expansion of Ai(x) around x = 0.

2.16 (K) Prove (2.73).
2.17 (K) Show that the Airy function has the following representation in terms

of Bessel functions.

Ai(x) =


1
3
√

x
(
I−1/3

(
2
3 x3/2

)
− I1/3

(
2
3 x3/2

))
if x ≥ 0,

1
3
√
−x

(
J−1/3

(
2
3 (−x)3/2

)
+ J1/3

(
2
3 (−x)3/2

))
if x ≤ 0.

Here, Iα(z) denotes a modified Bessel function of order α (see Exercise 2.21
for the definition).

2.18 (K) Use (2.28) to show that the Airy kernel A(·, ·) is a positive-semidefinite
kernel, in the sense that for any x1, . . . , xk ∈ R, the matrix (A(xi, x j))n

i, j=1 is
a positive-semidefinite matrix.

2.19 (KKK) Show that f (θ) defined in (2.94) satisfies

f (θ) ≤ C θ−α

for some constants C, α > 0.
2.20 (K) Prove that for fixed x1, . . . , xn, Pn defined in (2.112) is nonincreasing as

a function of n.
2.21 (KKK) The goal of this exercise is to present another remarkable identity

relating the distribution of the maximal increasing subsequence length in a
random permutation and the Bessel functions. This identity, due to Ira M.
Gessel [47], was the starting point of Baik, Deift, and Johansson’s approach
to determining the limiting distribution of L(σ) in the seminal paper [11].
To formulate the identity, let σn denote as before a uniformly random per-
mutation of order n. Let

Fn(t) = P(L(σn) ≤ t)

denote the cumulative distribution function of L(σn), and for θ > 0 let

Gθ(t) = e−θ
∞∑

n=0

θn

n!
Fn(t)

denote the “Poissonized average” of the distribution functions Fn(t). As we
have seen before, Gθ(t) can itself be thought of as the distribution function
of λ〈θ〉1 , the length of the first row of a Young diagram chosen according to
Poissonized Plancherel measure Pθ.
One other definition we need is that of the modified Bessel functions. For
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α ∈ R, the modified Bessel function of the first kind of order α is defined by

Iα(z) =

( z
2

)α ∞∑
m=0

(z/2)2m

m! Γ(m + α + 1)
.

(Trivially, Iα(·) is related to Jα(·) by Iα(z) = (−i)αJα(iz).)

Theorem 2.49 (The Gessel–Bessel identity) For integer t ≥ 1, the distri-
bution function Gθ(t) can be expressed as

Gθ(t) = e−θ
t−1
det
j,k=0

(
I j−k(2

√
θ)

)
. (2.114)

Note that the entries of the matrix on the right-hand side are constant along
diagonals. A matrix with this property is called a Toeplitz matrix.
Below we outline the steps required to prove (2.114). This elegant proof is
due to Baik, Deift, and Johansson [11].

(a) Express Fn(t) as a sum over Young diagrams, where, crucially, instead of
restricting the length of the first row to be at most t, impose the restriction
on the length of the first column (or, which is the same thing, on the
number of rows).

(b) The sum will involve the ubiquituous function dλ enumerating Young
tableaux of given shape. Express this factor using one of the variants
(2.10) we derived for the hook-length formula, and manipulate it to bring
it to the form

Fn(t) = n!
t∑

r=1

1
r!

∑
s1,...,sr≥1

s1+...+sr=n+r(r−1)/2

∏
1≤ j<k≤r

(s j − sk)2
r∏

j=1

1
(s j!)2 .

(c) Show that in the Poissonized average the annoying constraint in the r-fold
summation disappears, so that we end up with the representation

Gθ(t) = e−θ
1 +

t∑
r=1

θ−r(r−1)/2Hr(θ)

 (2.115)

where

Hr(θ) =
1
r!

∞∑
s1,...,sr=1

∏
1≤ j<k≤r

(s j − sk)2
r∏

j=1

θs j

(s j!)2 .

(d) Show that Hr(θ) can be rewritten as

Hr(θ) =
r−1
det
j,k=0

 ∞∑
s=1

s j+k θs

(s!)2
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(e) Prove that if q0(x), q1(x), . . . is any sequence of monic polynomials such
that deg q j = j, then

Hr(θ) =
r−1
det
j,k=0

 ∞∑
s=1

q j(s)qk(s)
θs

(s!)2


(f) Use the above identity with q0(x) = 1 and q j(x) = x(x − 1) . . . (x − j + 1)

to show that

Hr(θ) = θr(r−1)/2
[

r−1
det
j,k=0

(
I j−k(2

√
θ)

)
−

r−2
det
j,k=0

(
I j−k(2

√
θ)

)]
,

and combine this with (2.115) to get (2.114).

2.22 (KKKK) Develop a proof of Nicholson’s approximation for Bessel func-
tions (Theorem 2.27) that does not rely on the difficult (and seemingly in-
complete) details given in Section 8.43 of Watson’s book [145]. Here is a
suggested approach. First, prove that the asymptotic relations

Jα(α) = (1 + o(1))
Γ( 1

3 )

22/331/6π
α−1/3,

J′α(α) = (1 + o(1))
31/6Γ( 2

3 )

21/3π
α−2/3,

hold as α→ ∞; this is less difficult – see, for example, Section 8.2 of [145].
Next, observe that in the case α = 2z + xz1/3, the recurrence relation (2.45)
takes the form

Jα+1(2z) − 2Jα(2z) + Jα−1(2z) = xz−2/3Jα(2z).

The left-hand side is a discrete second derivative, so this relation is imme-
diately seen to be a discrete approximation to the Airy differential equa-
tion (2.8). Combine these observations with the evaluations of Ai(0),Ai′(0)
from Exercise 2.15 to obtain the result (or, at least, a reasonably convinc-
ing heuristic explanation of why one should expect to see the Airy function
emerging in this asymptotic regime).

2.23 (KKKKK) Find a guess-free proof of Theorem 2.19, that is, a proof which
derives the correct expression for Kθ = Lθ(I+Lθ)−1 without having to know
it in advance.

2.24 (KKKK) Prove Theorem 2.48.
2.25 (a) (K) If M = (mi, j)n

i, j=1 is a square matrix, define submatrices MNW, MNE,
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MSW, MSE, MNESW by

MNW = (mi, j)2≤i, j≤n,

MNE = (mi, j)2≤i≤n, 1≤ j≤n−1,

MSW = (mi, j)1≤i≤n−1, 2≤ j≤n,

MSE = (mi, j)1≤i, j≤n−1,

MNESW = (mi, j)2≤i, j≤n−1.

Show that a special case of Jacobi’s identity (2.113) from Exercise 2.5
gives the relation

|M| · |MNESW| = |MNW| · |MSE| − |MNE| · |MSW| (2.116)

(where | · | denotes the determinant of a matrix).
(b) (KK) The above identity gives rise to Dodgson’s condensation method,

a method for computing determinants discovered by Charles L. Dodgson
(better known by his nom de plume Lewis Carroll) in 1866. The method
works by recursively computing a pyramid of numbers (dk

i, j)1≤k≤n, 1≤i, j≤n+1−k

that has the entries of M at its base k = 1 and the determinant of M at the
apex k = n. The general term dk

i, j of the pyramid is defined by

dk
i, j = det(mp,q)i≤p≤i+k−1, j≤q≤ j+k−1.

Prove using (2.116) that the numbers in each successive layer can be com-
puted recursively for k ≥ 2 by

dk
i, j =

dk−1
i, j dk−1

i+1, j+1 − dk−1
i+1, jd

k−1
i, j+1

dk−2
i+1, j+1

,

assuming that no divisions by zero occur and with the convention that
d0

i, j = 1.

Note: Dodgson’s condensation method is not a particularly useful method
for computing determinants, but underlying it is a remarkable structure
involving a family of combinatorial objects known as alternating sign
matrices, discovered by David P. Robbins and Howard Rumsey in the
early 1980s; see [21] for more information.
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Erdős–Szekeres permutations and square
Young tableaux

Chapter summary. We continue our study of longest increasing subse-
quences in permutations by considering a special class of permutations
called Erdős–Szekeres permutations, which have the property that their
longest monotone subsequence is the shortest possible and are thus
extremal cases demonstrating sharpness in the Erdős–Szekeres theorem.
These permutations are related via the Robinson–Schensted correspon-
dence to an especially well-behaved class of standard Young tableaux, the
square Young tableaux. We use the tools developed in Chapter 1 to an-
alyze the behavior of random square Young tableaux, and this leads us to
an interesting result on the limiting shape of random Erdős–Szekeres per-
mutations. We also find a mysterious arctic circle that appears when we
interpret some of the results as describing the asymptotic behavior of a
certain interacting particle system.

3.1 Erdős–Szekeres permutations

In the previous two chapters we studied the statistical behavior of the per-
mutation statistic L(σ) for a typical permutation σ chosen at random from
among all permutations of given order. In this chapter we focus our at-
tention instead on those permutations σ whose behavior with regard to
longest increasing subsequences, or more precisely longest monotone sub-
sequences, is atypical in the most extreme way possible. We refer to these
permutations as Erdős–Szekeres permutations,1 because of their role as
extremal cases demonstrating the sharpness in the Erdős–Szekeres theo-
rem (Theorem 1.2). For integers m, n ≥ 1, we call a permutation σ ∈ SN an
(m, n)-Erdős–Szekeres permutation if N = mn, L(σ) = n and D(σ) = m
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(where D(σ) denotes the maximal length of a decreasing subsequence as
in Section 1.1). Denote the set of (m, n)-Erdős–Szekeres permutations by
ESm,n. The most interesting case is when m = n. In this case we call a
permutation σ ∈ ESn,n simply an Erdős–Szekeres permutation, and denote
the set of such permutations by ESn. Note that these permutations have a
natural max–min property: they minimize the maximal length of a mono-
tone subsequence. The requirement that the order of the permutation be a
perfect square may seem somewhat arbitrary but gives the set of Erdős–
Szekeres permutations a very nice structure that enables analyzing them in
great detail, as we shall see later.

The fact that ESm,n is nonempty follows from the example given im-
mediately after the Erdős–Szekeres theorem, but we can say much more
than that. Let σ ∈ ESm,n, and let (λ, P,Q) be the Young diagram and pair
of Young tableaux associated to σ by the Robinson–Schensted correspon-
dence. By the properties of the Robinson–Schensted algorithm proved in
Section 1.7, we know that λ1, the length of the first row of λ, is equal
to L(σ) = n, and that the length λ′1 of the first column of λ is equal to
D(σ) = m. Furthermore, since |λ| = N = mn = λ′1λ1 is the product of the
lengths of its first row and first column, λ must be the m × n rectangular
Young diagram, which we denote by �m,n.

Conversely, if P and Q are two Young tableaux whose shape is �m,n, then
the permutation associated with (�m,n, P,Q) via the Robinson–Schensted
correspondence is of size mn, and satisfies L(σ) = n, D(σ) = m, so it is an
(m, n)-Erdős–Szekeres permutation. We have proved the following.

Theorem 3.1 The Robinson–Schensted algorithm maps the set ESm,n bi-
jectively onto the set of pairs of Young tableaux (P,Q) of shape �m,n. In
particular, we have

|ESm,n | = d2
�m,n

=

(
(mn)!∏m

i=1
∏n

j=1(i + j − 1)

)2

. (3.1)

The Erdős–Szekeres permutations in ESn are in bijection with the set of
pairs of n × n square Young tableaux, and are enumerated by

|ESn | = d2
�n,n

=

(
(n2)!

1 · 22 · 33 · · · nn(n + 1)n−1(n + 2)n−2 · · · (2n − 1)1

)2

.

(3.2)

A variant of the preceding argument can be used to give an alternative
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proof of the Erdős–Szekeres theorem. Indeed, if σ ∈ SN where N > mn,
then the Robinson–Schensted shape λ associated with σ is of size N, so
we must have L(σ) = λ1 > n or D(σ) = λ′1 > m; otherwise λ would be
contained in the diagram �m,n, which is of size mn.

Theorem 3.1 can be thought of as a structure theorem for Erdős–Szekeres
permutations, in that it gives a computational procedure for generating
these permutations from more familiar objects, namely Young tableaux;
but the insight that it gives us into their structure is somewhat limited,
since this computational procedure involves the Robinson–Schensted al-
gorithm and its inverse, which are in many ways nontrivial and difficult-
to-understand procedures. As it turns out, however, for the special case of
Erdős–Szekeres permutations the Robinson–Schensted algorithm reduces
to a much simpler mapping. This is explained in the next section.

3.2 The tableau sandwich theorem

For a Young diagram λ, denote by T (λ) the set of standard Young tableaux
of shape λ.

Theorem 3.2 (The tableau sandwich theorem) Let m, n ≥ 1. There is a
bijection from T (�m,n) × T (�m,n) to ESm,n, described as follows. Given
the tableaux P = (pi, j) 1≤i≤m

1≤ j≤n
,Q = (qi, j) 1≤i≤m

1≤ j≤n
∈ T (�m,n), the permutation

σ ∈ ESm,n corresponding to the pair (P,Q) satisfies

σ(qi, j) = pm+1−i, j, (1 ≤ i ≤ m, 1 ≤ j ≤ n). (3.3)

In the opposite direction, P,Q ∈ T (�m,n) can be determined from σ ∈

ESm,n by the relations

qi, j = the unique 1 ≤ k ≤ mn such that Dk(σ) = i (3.4)

and Lk(σ) = j,

pi, j = the unique 1 ≤ k ≤ mn such that Dk(σ−1) = i (3.5)

and Lk(σ−1) = j,

where Lk(σ) and Dk(σ) refer (as on p. 7) to the maximal length of an in-
creasing (respectively, decreasing) subsequence of σ that ends with σ(k).
Moreover, this bijection coincides with the bijection induced by the Robinson–
Schensted correspondence as described in Theorem 3.1.
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P =

1 4 5 7 11

2 8 9 10 15

3 12 13 14 19

6 16 17 18 20

Q =

1 2 3 9 16

4 6 8 13 17

5 7 10 15 18

11 12 14 19 20

Figure 3.1 A “tableau sandwich” producing the permutation
σ = (6, 16, 17, 3, 2, 12, 8, 13, 18, 9, 1, 4, 14, 5, 10, 20, 19, 15, 7, 11).

There is a nice way to graphically visualize the mapping taking the two
tableaux P,Q to a permutation σ ∈ ESm,n as a sort of “tableau sandwich”
where the two tableaux are placed one on top of the other, with P being
flipped over vertically. The permutation σ is the mapping that matches to
each number in Q (which we imagine as the bottom “slice” of the sand-
wich) the number directly above it in P, the top slice of the sandwich. This
is illustrated in Fig. 3.1

What makes the Robinson–Schensted algorithm behave in such a regu-
lar fashion? Trying out the algorithm with some numerical examples such
as the one above, one is led to observe an interesting phenomenon regard-
ing the behavior of the bumping sequences, which turns out to be key to
the proof of Theorem 3.2. Recall that the Robinson–Schensted algorithm
consists of building the tableaux P and Q in a sequence of insertion steps.
At each insertion step one inserts the next value of the permutation σ into
P, which results in a cascade of bumping operations. The sequence of po-
sitions where the bumping occurs is referred to as the bumping sequence.

Lemma 3.3 When the Robinson–Schensted algorithm is applied to an
(m, n)-Erdős–Szekeres permutation σ, each bumping sequence consists of
a vertical column of cells.

Note that this behavior is in marked contrast to the behavior of the
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Robinson–Schensted algorithm for an arbitrary permutation, where the
bumping sequences can be very erratic.

Proof of Lemma 3.3 We prove the obviously equivalent claim that when
the inverse Robinson–Schensted algorithm is applied to two rectangular
Young tableaux P,Q ∈ T (�m,n), all the bumping sequences are vertical
columns. In this case the bumping sequences are “reverse” bumping se-
quences that arise from a sequence of deletion steps (applied to the inser-
tion tableau P) that are the inverse to the insertion steps we considered be-
fore. The claim is proved by induction on k, the number of deletion steps. In
the kth deletion step, we choose (based on looking at the recording tableau
Q) which corner cell of the tableau P in its current form to start a deletion
from, and start bumping numbers up until we reach the first row. In each
successive bumping, say from position (i, j), the number being bumped
(denote it by x) moves up to row i − 1 and possibly to the right. However,
we claim that it cannot move to the right; for, if it moves to the right that
means it is bigger than the number in the adjacent (i − 1, j + 1) position,
which we denote by y. But, by the inductive hypothesis all bumping se-
quences prior to the kth deletion were vertical columns. This means that
in the original tableau P before any deletions started, x and y occupied re-
spective positions of the form (i0, j) and (i1, j + 1) for some i0 ≤ i1; that is,
we have x = pi0, j and y = pi1, j, so by the fact that P is a Young tableau it
follows that x < y. �

Proof of Theorem 3.2 Lemma 3.3 can be used to prove equation (3.3) as
follows. Consider what happens in the kth insertion step for some 1 ≤ k ≤
mn. If the cell that was added to the shape of P and Q in that insertion
step was in position (i, j), then we have qi, j = k. Because of Lemma 3.3,
that means that the number σ(k) that was inserted into P at that step settled
down in position (1, j), bumping the number in that position one row down
to position (2, j), resulting in the number in that position being bumped
down to (3, j), and so on, all the way down to (i, j). Now consider where in
the final tableau P the number σ(k) will end up at the end of the execution
of the algorithm. This is illustrated in Fig. 3.2. Again using the lemma,
any subsequent bumping will push it, along with the column of numbers
below it, directly down. When the algorithm terminates, the number that
was in position (i, j) after the kth insertion step will be at the bottom row
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(after kth insertion)

P

σ(k)

a

b

c

Q

k

p p p -

(at the end)

P

σ(k)

a

b

c

Q

k

Figure 3.2 Considering the state of the insertion and recording
tableaux after the kth insertion and after inserting all elements of
σ provides an easy visual explanation of the relation
σ(qi, j) = pm+1−i, j.

in position (m, j), exactly m − i positions below where it was after the kth
insertion. Therefore the number σ(k) = σ(qi, j) will also be m − i positions
below where it was after the kth insertion, namely in position (m + 1− i, j).
That gives exactly the relation σ(qi, j) = pm+1−i, j which is (3.3).

Next, turn to proving (3.4), which would also imply (3.5) by switching
the roles of P and Q and using Theorem 1.10(b). Recall from the original
proof of the Erdős–Szekeres theorem that the pairs (Dk(σ), Lk(σ)) are all
distinct, and for σ ∈ ESm,n they all lie in the discrete rectangle [1,m] ×
[1, n]. That proves that for each (i, j) there is indeed a unique k such that
(Dk(σ), Lk(σ)) = (i, j).

Now, if qi, j = k, then Lemma 3.3 implies that in the kth insertion step
in the Robinson–Schensted algorithm, the number σ(k) is inserted into po-
sition (1, j) of the insertion tableau, bumping the entries in the jth column
one step down to form a column of height i. This has two implications:
first, reading this column of the insertion tableau from bottom to top gives
a decreasing subsequence of σ of length i that ends in σ(k), which shows
that Dk(σ) ≥ i; and second, by repeating the argument used in the proof of
Lemma 1.7 (modified slightly to account for the fact that we are interested
in Lk(σ) rather than L(σ)) we can get an increasing subsequence of σ of
length j that ends in σ(k), so we get that Lk(σ) ≥ j.

We proved that the inequalities Dqi, j (σ) ≥ i, Lqi, j (σ) ≥ j hold for all
1 ≤ i ≤ m, 1 ≤ j ≤ n. But since we noted earlier that the mapping k 7→



3.3 Random Erdős–Szekeres permutations 163

(Dk(σ), Lk(σ)) is injective and takes values in [1,m] × [1, n], equality must
hold for all i, j, which proves (3.4). �

3.3 Random Erdős–Szekeres permutations

Having characterized combinatorially the class of permutations ESn which
have extremal behavior with regard to their longest monotone subsequences,
we now ask the related question of how a typical such permutation behaves.
By comparing the behavior of a random Erdős–Szekeres permutation to
that of a typical general permutation (chosen at random from among all
permutations in the symmetric group of the same order, namely n2), we
may gain some further insight into the significance of the constraint of
having only short monotone subsequences.

Thanks to the connection to square Young tableaux, it is easy to sample
a uniformly random Erdős–Szekeres permutation by sampling two random
square Young tableaux (using the algorithm described in Section 1.10) and
applying the bijection described in the previous section. Fig. 3.3 shows the
result for such a random permutation in ES50 alongside a standard uni-
formly random permutation from S2500. In both cases, we represent the per-
mutations graphically as a plot of the set of points (( j, σ( j))n2

j=1 (i.e., the
positions of the 1’s in the associated permutation matrix).

The picture of the random S2500 permutation in Fig. 3.3(b) has a simple
structure that will be obvious to anyone with a background in elementary
probability: since each value σ( j) is uniformly distributed in the discrete
interval [1, n], and pairs of values (σ( j), σ( j′)) for j , j′ are only very
weakly correlated, what we are observing is a kind of random noise that
fills the square [1, n]2 with a uniform density (one can ask questions about
the local structure of this noise, but those too are answered easily and hold
no surprises). The picture in Fig. 3.3(a), however, is much more interesting:
it appears that the defining condition of belonging to the set ESn leads the
random permutation to exhibit very specific statistical behavior. The pre-
cise statement of what is happening asymptotically as n → ∞ is described
in the following limit shape theorem, the proof of which is one of the main
goals of this chapter.
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(a) (b)

Figure 3.3 (a) A uniformly random permutation in ES50; (b) a
uniformly random permutation in S2500.

Theorem 3.4 (Limit shape theorem for random Erdős–Szekeres permuta-
tions) For each n, let σn denote a permutation chosen uniformly at ran-
dom from ESn, and let An denote its graph {( j, σn( j)) : 1 ≤ j ≤ n2}. Define
a set A∞ ⊂ R2 by

A∞ =
{
(x, y) ∈ R2 : (x2 − y2)2 + 2(x2 + y2) ≤ 3

}
=

{
(x, y) ∈ R2 : |x| ≤ 1, |y| ≤

√
x2 − 1 + 2

√
1 − x2

}
. (3.6)

As n → ∞, the scaled random set Ãn = 2
n2 An − (1, 1) converges in proba-

bility to A∞, in the sense that the following two statements hold:

(a) For any ε > 0, P(Ãn ⊂ (1 + ε)A∞)→ 1 as n→ ∞.

(b) For any open set U ⊂ A∞, P(Ãn ∩ U , ∅)→ 1 as n→ ∞.

The limit shape A∞ of random Erdős–Szekeres permutations is illus-
trated in Fig. 3.4. Note that, curiously, the boundary of A∞ is a quartic
curve, that is, an algebraic curve of degree 4.

In the next section we see how, with the help of Theorem 3.2, Theo-
rem 3.4 can be (easily) deduced from another (difficult) limit shape result
that describes the asymptotic behavior of random square Young tableaux.
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-1 -0.5 0.5 1
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-0.5

0.5

1

Figure 3.4 The limit shape of random Erdős–Szekeres
permutations.

3.4 Random square Young tableaux

In view of the connection between Erdős–Szekeres permutations and square
Young tableaux, the problem of understanding the behavior of random per-
mutations in ESn reduces to the problem of getting a good understand-
ing of the behavior of random square Young tableaux of high order, since
choosing a random Erdős–Szekeres permutation is equivalent to choosing
two uniformly random square Young tableaux and applying the bijection
of Theorem 3.2. We will formulate a result that answers the question of
how such objects behave in the limit, but once again, before presenting the
precise result it makes sense to look at some simulation results. Fig. 3.5
shows some sample results from such simulations. Square Young tableaux
are visualized in two different ways. First, since the tableau is an array of
numbers (ti, j)n

i, j=1, we can consider it as the graph of a discrete “stepped
surface,” where for each i, j the number ti, j represents the height of a stack
of unit cubes being placed over the square [i, i + 1] × [ j, j + 1] in the x–y
plane. The second representation shows an alternative way of interpreting
a Young tableau. In general, given a Young tableau of shape λ ∈ P(n), we
can interpret the tableau as an increasing sequence of Young diagrams

∅ = λ(0) ↗ λ(1) ↗ . . .↗ λ(n) = λ,

(or equivalently a path in the Young graph starting from the empty diagram
and ending at λ; see Section 1.19). The diagram λ(k) in this path consists
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(a) (b)

Figure 3.5 (a) A random square Young tableau of order 100,
visualized as a growth profile of Young diagrams growing to fill
the square. (b) A 3D plot of a random square Young tableau of
order 25 shown as a stepped surface.

of all cells of λ where the entry of the tableau is ≤ k. The association
between Young tableaux and such paths is bijective, since we can recover
the tableau from the path by filling in the number k in each cell c of the
diagram if λk \ λk−1 = {c}, that is, if c was added to λ(k−1) to obtain λ(k).

With this interpretation, we can visualize the square Young tableau by
plotting some of the diagrams in the path encoded by the tableau. This can
be thought of as the growth profile of the tableau, showing the manner in
which one arrives at the final square diagram by successively adding boxes.
Fig. 3.5(a) shows such a visualization of a random square Young tableau.

Note that the relationship between the two pictures is that the shapes in
the growth profile in Fig. 3.5(a) are sublevel sets of the stepped surface in
Fig. 3.5(b).

To formulate the precise results explaining these pictures, we need to
define the functions that describe the limiting shape of the random square
Young tableau. First, define a one-parameter family of curves (gτ(u))0<τ<1
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where for each 0 < τ < 1, gτ :
[
−
√

2τ(1 − τ),
√

2τ(1 − τ)
]
→ R and

gτ(u) =


2
π
u tan−1

(
(1−2τ)u√
2τ(1−τ)−u2

)
+
√

2
π

tan−1

( √
2(2τ(1−τ)−u2)

1−2τ

)
if 0 < τ < 1

2 ,

√
2 if τ = 1

2 ,
√

2 − g1−τ(u) if 1
2 < τ < 1.

(3.7)
The idea is that the family of curves v = gτ(u) for 0 < τ < 1 rep-
resents the limiting growth profile of the random square Young tableau,
in the rotated (a.k.a. Russian) u–v coordinate system defined in (1.23).
To talk about convergence we will want to consider each gτ as belong-
ing to a suitable function space, so we extend it by defining a function
g̃τ :

[
−
√

2/2,
√

2/2
]
→ [0,∞) given by

g̃τ(u) =


gτ(u) if |u| ≤

√
2τ(1 − τ),

|u| if
√

2τ(1 − τ) < |u| ≤
√

2/2, τ < 1
2 ,

√
2 − |u| if

√
2τ(1 − τ) < |u| ≤

√
2/2, τ > 1

2 .

(3.8)

Next, if λ is a Young diagram contained in the square diagram �n,n, we
encode it as a continual Young diagram φλ by defining

φn,λ(x) = n−1 λ′bnxc+1, (x ≥ 0) (3.9)

(compare with (1.17), and note the minor differences in scaling, which
make it more convenient to discuss all subdiagrams of �n,n using the same
scale). We can associate with each φn,λ another function ψn,λ that describes
the same continual Young diagram in the rotated coordinate system (that
is, φn,λ and φn,λ are related as f and g in (1.24)). Note that the condition
λ ⊆ �n,n means that instead of considering ψn,λ as a function on R, we can
restrict it to the interval

[
−
√

2/2,
√

2/2
]

with no loss of information.

Theorem 3.5 (Limiting growth profile of random square Young tableaux2)
For each n ≥ 1, let Tn = (tn

i, j)
n
i, j=1 be a uniformly random Young tableau of

shape �n,n, and let

∅ = Λ(n,0) ↗ Λ(n,1) ↗ . . .↗ Λ(n,k) ↗ . . .↗ Λ(n,n2) = �n,n (3.10)

denote the growing sequence of random Young diagrams encoded by the
tableau Tn. For any 1 ≤ k ≤ n2 let φn,k = φn,Λ(n,k) denote the continual
Young diagram associated with Λ(n,k) as defined in (1.17), and let ψn,k be
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(a) (b)

Figure 3.6 (a) The limiting growth profile. (b) Limit shape of
random square Young tableaux.

associated the function encoding Λ(n,k) in the rotated coordinate system.
Then for any ε > 0 we have

P

 max
1≤k≤n2

sup
u∈

[
−
√

2/2,
√

2/2
] |g̃k/n2 (u) − ψn,k(u)| > ε

→ 0 as n→ ∞. (3.11)

Next, we consider the representation of the Young tableau as a discrete
surface. The limiting object in this case will be a surface S : [0, 1]2 →

[0, 1], which we define as the unique continuous function satisfying for
any 0 < τ < 1{

(x, y) : S (x, y) = τ
}

=
{
(u, gτ(u)) : |u| ≤

√
2τ(1 − τ)

}
, (3.12)

where we identify each point (u, v) in the u–v plane with the corresponding
point 1

√
2
(x− y, x + y) in the x–y plane. Thus S (·, ·) is defined in terms of an

implicit equation, but the verification that it is well-defined is straightfor-
ward and left to the readers. It is also easy to verify the following explicit
formulas for the boundary values of S :

S (x, 0) = S (0, x) =
1 −
√

1 − x2

2
, (3.13)

S (x, 1) = S (1, x) =
1 +
√

2x − x2

2
. (3.14)
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Theorem 3.6 (Limit shape theorem for random square Young tableaux)
For each n ≥ 1, let Tn = (tn

i, j)
n
i, j=1 be a uniformly random Young tableau of

shape �n,n. For any ε > 0 we have

P
[

max
1≤i, j≤n

∣∣∣n−2tn
i, j − S (i/n, j/n)

∣∣∣ > ε]→ 0 as n→ ∞.

The proofs of Theorems 3.5 and 3.6 will take up most of our efforts in
the rest of this chapter. Before we begin, let us see how we can use these
results to derive Theorem 3.4.

Proof of Theorem 3.4 Let Pn = (pn
i, j)

n
i, j=1,Qn = (qn

i, j)
n
i, j=1 be the two Young

tableaux associated with the uniformly random Erdős–Szekeres permuta-
tion σn via the bijection of Theorem 3.2. By (3.3), the set An from Theo-
rem 3.4 can also be written as

An = {(qn
i, j, pn

n+1−i, j) : 1 ≤ i, j ≤ n}.

By Theorem 3.6, with high probability as n→ ∞ each point n−2(qn
i, j, pn

n+1−i, j)
is uniformly close to the point (S (x, y), S (1 − x, y)), where x = i/n and
y = j/n. It follows that if we define the set

A′∞ = {(2S (x, y) − 1, 2S (1 − x, y) − 1) : 0 ≤ x, y ≤ 1},

then as n → ∞ the values of the scaled set 2n−2An − (1, 1) will intersect
each open subset of A′∞, and will be contained in any open set containing
A′∞, with asymptotically high probability; that is exactly the statement of
Theorem 3.4, except for the fact that A∞ = A′∞, which we now verify. The
set A′∞ is the image of the square [0, 1] × [0, 1] under the mapping

Φ : (x, y) 7→ (2S (x, y) − 1, 2S (1 − x, y) − 1).

By (3.13) and (3.14), Φ maps the boundary of the square into the four
curves described parametrically by(

−
√

1 − t2,−
√

2t − t2
)

0≤t≤1
,

(
−
√

1 − t2,
√

2t − t2
)

0≤t≤1
,(√

1 − t2,−
√

2t − t2
)

0≤t≤1
,

(√
1 − t2,

√
2t − t2

)
0≤t≤1

.

Setting x = ±
√

1 − t2, y = ±
√

2t − t2, it is easy to verify that

(x2 − y2)2 + 2(x2 + y2) = 3,

so these curves parametrize the boundary of the set A∞. Furthermore, since
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the function (x, y) 7→ 2S (x, y) − 1 is strictly increasing in x and y and
(x, y) 7→ 2S (1 − x, y) − 1 is strictly increasing in y and decreasing in x, it is
easy to see that Φ is one-to-one. Thus the interior of the square [0, 1]2 must
be mapped under Φ to the interior of A∞. This proves that A′∞ = A∞ and
completes the proof. �

3.5 An analogue of Plancherel measure

We start our attack on Theorem 3.5 by noting in the following lemma a for-
mula for the probability distribution of the Young diagram Λ(n,k) in (3.10).
This formula highlights a remarkable similarity between the problem of the
limiting growth profile of a random square Young tableau and the prob-
lem of finding the limit shape of a Young diagram chosen according to
Plancherel measure, which we already solved in Chapter 1. Indeed, the
tools we developed to solve that problem will be directly applicable to the
problem currently under discussion.

Lemma 3.7 Let 0 ≤ k ≤ n2. We have

P
(
Λ(n,k) = λ

)
=


dλd�n,n\λ

d�n,n

if λ ∈ P(k), λ ⊂ �n,n,

0 otherwise.
(3.15)

where d�n,n\λ denotes the number of standard Young tableau whose shape
is the Young diagram obtained by taking the difference of the two Young
digrams �n,n and λ and rotating it by 180 degrees.

Proof Assume that λ ∈ P(k) satisfies λ ⊂ �n,n. The condition Λ(n,k) = λ

means that all the entries in the tableau Tn inside λ are ≤ k, and all the
entries outside λ are > k. The number of square Young tableau satisfying
this property is exactly the product dλd�n,n\λ, since we have to fill the cells
of λ with the numbers 1, . . . , k in a way that is increasing along both rows
and columns, which has dλ possibilities, and independently fill the cells of
�n,n \λwith the numbers k+1, . . . , n2 in a similarly increasing fashion; this
is once again a Young tableau-counting problem in disguise, with d�n,n\λ

possibilities. Finally, since Tn is uniformly random, to get the probability
one has to divide the expression dλd�n,n\λ by the total number of Young
tableau of shape �n,n, which is d�n,n . �
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3.6 An asymptotic hook-length formula for square Young tableaux

Since (3.15) represents the probability distribution of the random Young
diagram Λ(n,k) in terms of the Young tableau counting function λ 7→ dλ, the
asymptotic form of the hook-length formula (Theorem 1.14) we proved in
Chapter 1 will also be useful for the purpose of analyzing this probabil-
ity distribution. We now formulate a variant of that result. For a Young
diagram λ ∈ P(k) satisfying λ ⊂ �n,n, let φλ be defined as in (1.17). As be-
fore, the correspondence λ 7→ φλ embeds the discrete shape λ into a bigger
function space, which in this case we define as

F� =
{
f : [0, 1]→ [0, 1] : f is monotone nonincreasing

and left-continuous
}
.

If f ∈ F� and x, y ∈ [0, 1], the hook-length of f at (x, y) is as before
denoted by h f (x, y) and defined by h f (x, y) = f (x)−y+ f −1(y)− x. Note that
this is defined also for (x, y) lying above the graph of f (or “outside” f when
considered as a continuous analogue of a Young diagram). In this case the
hook-length will be a negative number, but we will only be interested in its
magnitude.

Theorem 3.8 Define the quantities

κ0 = 3
2 − 2 log 2, (3.16)

H(τ) = −τ log τ − (1 − τ) log(1 − τ), (3.17)

I�hook( f ) =

∫ 1

0

∫ 1

0
log |h f (x, y)| dy dx, ( f ∈ F�). (3.18)

Let 0 < τ < 1, and let k = k(n) be a sequence of integers such that k/n2 → τ

as n→ ∞. Then asymptotically as n→ ∞ we have that

P
(
Λ(n,k) = λ

)
= exp

[
−n2

(
1 + O

(
log n

n

))
(I�hook(φλ) + H(τ) + κ0)

]
, (3.19)

uniformly over all diagrams λ ∈ P(k) satisfying λ ⊂ �n,n.

Proof This can be proved directly by a computation analogous to that
used in the proof of Theorem 1.14. However, since we already proved that
result, we can deduce the present claim as an easy consequence. The idea is
that the product of hook-lengths in the expression dλ on the right-hand side
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of (3.15) contributes an exponential factor approximating the hook integral

∫ 1

0

∫ φλ(x)

0
log h f (x, y) dy dx.

Similarly, the product of hook-lengths in d�n,n\λ contributes the comple-
mentary hook-type integral∫ 1

0

∫ 1

φλ(x)
log(−h f (x, y)) dy dx,

so that the two integrals combine to give exactly the expression I�hook(φλ)
inside the exponent (note that the factor 2 in front of the hook integral in
(1.19) disappears, since on the left-hand side of that equation we have the
square of dλ so we need to take a square root). The other factors H(t) and κ0

appear by taking into account the various numerical factors involving fac-
torials, and the denominator d�n,n of (3.15). The details are straightforward
and left to the reader (Exercise 3.3). �

3.7 A family of variational problems

We proceed using the same methods and ideas we developed in Chapter 1.
Viewing the right-hand side of (3.19) as a first-order asymptotic expansion
for the probabilities on the left-hand side, we see that it is reasonable to
expect (and, as we have seen already in the case of Plancherel measure,
not too hard to justify rigorously) that the typical behavior of the scaled
diagram φΛ(n,k) for k ≈ τn2 will be close to the most likely behavior, which
is related to the shape f ∈ F� that minimizes the functional I�hook(·) from
among all candidate shapes for any given τ. In other words, we have arrived
at a new variational problem – or rather, in this case, a family of variational
problems indexed by the parameter τ.

The variational problem for square Young tableaux. For 0 < τ < 1 denote

F τ
� =

{
f ∈ F� :

∫ 1

0
f (x) dx = τ

}
.

Find the function fτ ∈ F τ
� that minimizes the functional I�hook(·).

As in the case of Plancherel measure, it turns out that the form of the
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functional simplifies, and further analysis becomes possible, once we trans-
form the coordinate system – first to the Russian coordinates, and then to a
variant of the hook coordinates introduced in Section 1.14.

As before, if f ∈ F�, let v = g(u) denote the representation of the curve
y = f (x) in the rotated coordinate system. The association f 7→ g maps the
function space F� to a new space, which we denote by G�, consisting of
functions g :

[
−
√

2
2 ,

√
2

2

]
→

[
0,
√

2
]

satisfying the following conditions:

1. g is 1-Lipschitz;
2. g

(
±
√

2
2

)
=
√

2
2 .

If f ∈ F τ
� then g satisfies the further property

3. ∫ √
2

2

−
√

2
2

(g(u) − |u|) du = τ, (3.20)

and we denote g ∈ Gτ�.
To derive the new form of the functional I�hook( f ) in terms of the rotated

function g, we separate it into two parts, namely

I�hook( f ) = I1( f ) + I2( f )

:=
∫ 1

0

∫ f (x)

0
log h f (x, y) dy dx +

∫ 1

0

∫ 1

f (x)
log

(
−h f (x, y)

)
dy dx,

and set

J1(g) = I1( f ), J2(g) = I2( f ), J(g) = J1(g) + J2(g) = I�hook( f ). (3.21)

Each of J1(g), J2(g), can be represented in terms of a separate system of
hook coordinates – the “lower” hook coordinates (coinciding with the hook
coordinates defined previously in (1.25)) for J1(g) and the “upper” hook
coordinates for J2(g). The meaning of these terms is explained in Fig. 3.7.

Consider first J1(g). By elementary geometry this can be written as

J1(g) =

∫ √
2

2

−
√

2
2

∫ √
2−|u|

g(u)
log h f (x, y) du dv.

Transforming to the lower hook coordinates (t, s) we get

J1(g) =

"
∆

log
(√

2(s − t)
) ∣∣∣∣∣D(u, v)

D(s, t)

∣∣∣∣∣ ds dt,
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t s

Hu,vL

u t s

Hu,vL

u

Figure 3.7 Lower hook coordinates and upper hook coordinates.

where ∆ =
{
−
√

2
2 ≤ t ≤ s ≤

√
2

2

}
and D(u, v)/D(s, t) is the Jacobian of the

change of variables, whose magnitude we previously computed to be equal
to 1

2 (1 + g′(t))(1 − g′(s)) (see (1.26)). Therefore we get that

J1(g) = 1
2

"
∆

log
(√

2(s − t)
)

(1 + g′(t))(1 − g′(s)) ds dt.

Now perform a similar computation for J2(g). Here we use the upper hook
coordinates (which we still denote by (t, s)), for which the absolute value
of the Jacobian can be computed in a similar manner to be 1

2 (1 + g′(s))(1−
g′(t)), and find that

J2(g) = 1
2

"
∆

log
(√

2(s − t)
)

(1 + g′(s))(1 − g′(t)) ds dt.

Adding the two expressions and symmetrizing the integration region, we
find after a short computation that

J(g) = 1
2

"
∆

log
(√

2(s − t)
)

(2 − 2g′(t)g′(s)) ds dt

= − 1
2

∫ √
2

2

−
√

2
2

∫ √
2

2

−
√

2
2

log |s − t| · g′(t)g′(s) ds dt + log 2 − 3
2

= Q(g) + log 2 − 3
2 , (3.22)

where Q(·) is the quadratic functional from Section 1.14.
Thus, we get the following reformulation of the original family of vari-

ational problems, which is directly analogous to the variational problem
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from Chapter 1: for each 0 < τ < 1, we need to find the function that
minimizes the functional Q(·) on the space Gτ�.

3.8 Minimizing the functional

The solution of the family of variational problems presented above is given
by the following result, whose proof is the focus of the next few sections.

Theorem 3.9 (Solution of the variational problem) For each 0 < τ < 1,
the function g̃τ defined in (3.8) is the unique minimizer of the functional
Q(·) on Gτ�, and the value of the minimum is

Q(g̃τ) = −H(τ) + log 2, (3.23)

where H(τ) is defined in (3.17).

Note that for τ = 1/2, since g̃′τ ≡ 0 we have Q(gτ) = 0, so it is a global
minimizer of Q(·) on all of G�, and in particular on G1/2

� . For τ > 1/2, since
Q(h) = Q(

√
2 − h) and

√
2 − h ∈ G1−τ

� , the minimizer hτ over Gτ� is related
to the minimizer over G1−τ

� via hτ =
√

2 − h1−τ. Since the functions g̃τ also
satisfy gτ =

√
2 − g1−τ, we see that it will be enough to prove the theorem

in the case τ < 1/2, and for the rest of the section we assume that τ is in
this range.

We start by formulating a sufficient condition, analogous to (1.36), for
determining when a given function is the desired minimizer.

Theorem 3.10 Let hτ ∈ Gτ�. Assume that for some constant λ ∈ R, the
function p : R→ R defined by

p(u) = −

∫ √
2

2

−
√

2
2

h′τ(s) log |s − u| ds + λu is


= 0 if − 1 < h′τ(u) < 1,

≥ 0 if h′τ(u) = −1,

≤ 0 if h′τ(u) = 1.
(3.24)

Then for any h ∈ Gτ� we have that

Q(h) ≥ Q(hτ) + Q(h − hτ). (3.25)

In particular, since Q(h−hτ) ≥ 0 by Proposition 1.15, with equality holding
iff h − hτ ≡ 0, it follows that hτ is the unique minimizer for Q(·) on Gτ�.
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Proof As in the proof of Theorem 1.16, from the assumption on p(u) we
get that

(h′(t) − h′τ(t))p(t) ≥ 0

for all t for which h′(t), h′τ(t) exist. By integration we get, in the notation of
Section 1.14, that

2B(h, hτ) − λ
∫ √

2
2

−
√

2
2

th′(t) dt ≥ 2B(hτ, hτ) − λ
∫ √

2
2

−
√

2
2

th′τ(t) dt.

Since ∫
t h′(t) dt =

∫
t h′τ(t) dt = 1

2 − τ (3.26)

(an equivalent form of the condition (3.20)), this implies that B(h−hτ, hτ) ≥
0, whence we arrive at (3.25) via the relation

Q(h) = Q(hτ + (h − hτ)) = Q(hτ) + Q(h − hτ) + 2B(h − hτ, hτ). �

Our goal is now to find a function hτ for which (3.24) holds. We shall do
this in a constructive way that does not assume prior knowledge of the so-
lution. Instead, we make only the following reasonable assumption (which
can be guessed just by looking at the simulated growth profile of a random
square Young tableau): for some β = β(τ) ∈

(
0,
√

2/2
)
, the function hτ

satisfies the condition

h′τ(u) is


= −1 if −

√
2

2 < u < −β,

∈ (−1, 1) if − β < u < β,

= 1 if β < u <
√

2
2 .

(3.27)

Substituting this into the equality in the first case of (3.24) gives that for−β <
u < β, we must have

−

∫ β

−β

h′τ(s) log |s − u| ds = −λu −
∫ −β

−
√

2
2

log(u − s) ds +

∫ √
2

2

β

log(s − u) ds

= −λu −
 √2

2
− u

 log
 √2

2
− u

 +

 √2
2

+ u
 log

 √2
2

+ u


+ (β + u) log(β + u) − (β − u) log(β − u). (3.28)
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Differentiating, we get

−

∫ β

−β

h′τ(s)
s − u

ds = −λ + log
β2 − u2

1
2 − u2

. (3.29)

The problem of finding h′τ (from which we can recover hτ) therefore
reduces, as in the analysis of Section 1.15, to the problem of finding a
function whose Hilbert transform coincides with the function on the right-
hand side of (3.29) on the interval (−β, β) (compare with (1.39)). In other
words, we need to invert a Hilbert transform, except that it is a Hilbert
transform on an interval instead of on the entire real line where we would
have been able to use the usual inversion formula (1.15).

One possibility would be to look for a result analogous to Lemma 1.17
that would identify the solution. Finding such a result seems like a difficult
problem in complex analysis, which in particular requires highly nontriv-
ial intuition that would allow us to “guess” the required analytic function
without knowing it in advance. Another approach, which is the one we will
use, is to invoke another result from the theory of Hilbert transforms, that
solves the general problem of inverting a Hilbert transform on an interval.
The result, whose proof can be found in [38], Section 3.2, is as follows.

Theorem 3.11 (Inversion formula for Hilbert transforms on a finite inter-
val) Given a function g : [−1, 1]→ R, the general solution of the equation

1
π

∫ 1

−1

f (y)
y − x

= g(x),

where the integral is taken in the sense of the Cauchy principal value, is of
the form

f (x) =
1

π
√

1 − x2

∫ 1

−1

√
1 − y2g(y)

x − y
dy +

C
√

1 − x2
, (−1 ≤ x ≤ 1)

(again in the sense of the Cauchy principal value), where C ∈ R is an
arbitrary constant.

Applying Theorem 3.11, we see that on the interval (−β, β), h′τ must be
of the form

h′τ(u) =
1

π2(β2 − u2)1/2

∫ β

−β

λ + log
β2 − u2

1
2 − u2

 du
s − u

+
C

(β2 − u2)1/2 ,

where C is an arbitrary constant. This integral evaluation is rather tedious,
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but it can be done; we note it as a lemma and postpone its proof to the next
section.

Lemma 3.12 On (−β, β), h′τ is given by

h′τ(u) =
C

(β2 − u2)1/2 +
u

π(β2 − u2)1/2

−λ − 2 log
1 +

√
1 − 2β2

√
2β


+

2
π

tan−1 (1 − 2β2)1/2u
(β2 − u2)1/2 (3.30)

Now recall that both λ and C were arbitrary; we are merely looking for
a function hτ ∈ Gτ� whose derivative has the form above. Setting C = 0 and

λ = −2 log
1+
√

1−2β2
√

2β
therefore leads to

h′τ(u) =
2
π

tan−1
(
(1 − 2β2)1/2u
(β2 − u2)1/2

)
(−β < u < β), (3.31)

which, at the very least, is bounded between −1 and 1, as we would expect
for the derivative of a function in Gτ�.

We are getting close to finding the minimizer. Two additional compu-
tational results that we will need, whose proofs are also postponed to the
next section, are contained in the following lemma.

Lemma 3.13 We have∫ β

−β

u h′τ(u) du =
1 − 2β2 −

√
1 − 2β2

2
, (3.32)

and, for −β ≤ u ≤ β,

hτ(u) = β +

∫ u

−β

h′τ(s) ds =

=
2
π

u tan−1
(
(1 − 2β2)1/2u
(β2 − u2)1/2

)
+

√
2
π

tan−1

 √2(β2 − u2)1/2

(1 − 2β2)1/2

 . (3.33)

Note that the value of the parameter β is still unknown, but we can now
deduce it from the requirement that hτ must satisfy the condition (3.26),
which we rewrite as ∫ β

−β

u h′τ(u) du = τ − β2.
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Combining this with (3.32) we get the relation

τ =
1 −

√
1 − 2β2

2
⇐⇒ β =

√
2τ(1 − τ).

Substituting this value of β in (3.33), we get the expression

hτ(u) =
2
π

u tan−1

 (1 − 2τ)u√
2τ(1 − τ) − u2


+

√
2
π

tan−1

 √
2(2τ(1 − τ) − u2)

1 − 2τ

 (
|u| ≤

√
2τ(1 − τ)

)
,

and, because of the assumption (3.27), for
√

2τ(1 − τ) ≤ |u| ≤
√

2/2
we have the values hτ(u) = |u| (note that hτ(−β) = β by assumption and
hτ(β) = β +

∫ β

−β
h′τ(u) du = β since the right-hand side of (3.31) is an odd

function). Thus, we conclude that our candidate minimizer hτ coincides
with the function g̃τ defined in (3.8) (see also (3.7)). We have seen that hτ
is 1-Lipschitz, satisfies hτ(±

√
2/2) =

√
2/2, and satisfies (3.26) (which is

equivalent to (3.20)), so hτ ∈ Gτ�. From the way we obtained hτ, we also
know that p′(u) ≡ 0 for u ∈ (−β, β), and furthermore p(0) = 0 since h′τ is
odd, so also p(u) ≡ 0 on (−β, β). To conclude that hτ minimizes the func-
tional Q(·) on Gτ�, it will be enough to check the second and third cases of
(3.24), namely the inequalities p(u) ≥ 0 and p(u) ≤ 0 when u < −β and
u > −β, respectively.

By symmetry, it is enough to prove that the second condition is satisfied.
Interestingly, the proof consists of looking how the function p(u) changes
as a function of the parameter τ. Relabel it by p(u, τ) to emphasize its
dependence on τ, and denote similarly the constant λ defined above by
λ(τ), its value being

λ(τ) = −2 log

1 +
√

1 − 2β2

√
2β

 = − log
(
1 − τ
τ

)
. (3.34)

Fix 0 ≤ u ≤
√

2
2 , and let τ̃ = (1 −

√
1 − 2u2)/2, so that β(τ̃) = u. Because

of the first condition in (3.24), which we already verified, p(u, τ̃) = 0. To
finish the proof, we will now show that ∂p(u, τ)/∂τ > 0 for 0 < τ < τ̃. By
(3.28),

∂p(u, τ)
∂β

= −

∫ β

−β

∂h′τ(s)
∂β

log |u − s| ds − u
dλ(τ)

dβ
. (3.35)
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Using (3.31) and simplifying gives

∂h′τ(s)
∂β

= −
2

πβ(1 − 2β2)1/2 ·
s

(β2 − s2)1/2 . (3.36)

It is easy to check that β satisfies the equation

β′(τ) = (1 − 2β2)1/2/β, (3.37)

so (3.35) becomes

∂p(u, τ)
∂τ

=
2
πβ2

∫ β

−β

s log |u − s|
(β2 − s2)1/2 ds +

u
τ(1 − τ)

.

In this expression, the integral can be evaluated, using a result (3.38) that
will proved in the next section, as∫ β

−β

s log |u − s|
(β2 − s2)1/2 ds =

[
− (β2 − s2)1/2 − log |u − s|

]∣∣∣∣s=β
s=−β

−

∫ β

−β

(β2 − s2)1/2

u − s
ds = −π

(
u − (u2 − β2)1/2

)
.

Therefore we get that

∂p(u, τ)
∂τ

= −
2
β2

(
u − (u2 − β2)1/2

)
+

u
τ(1 − τ)

= u
(

1
τ(1 − τ)

−
2
β2

)
+

2
β2 (u2 − β2)1/2

=
2
β2 (u2 − β2)1/2 > 0,

which was our claim.
Summarizing the discussion in this section, we proved the main claim

of Theorem 3.9, namely that g̃τ is the unique minimizer of the functional
Q(·) on Gτ�, except for a few integral evaluations that were deferred until
the next section. In Section 3.10 we also prove (3.23) and thereby finish
the proof of Theorem 3.9.

3.9 Some integral evaluations

Here, we collect the integral evaluations that were used in the previous sec-
tion. Readers who has no interest in such computational wizardry will be
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forgiven for skipping to the next section (or even going directly to Sec-
tion 3.11, since Section 3.10 contains additional computations of a some-
what similar nature).

Lemma 3.14 For x ≥ −1 we have the integral evaluations

∫ 1

−1

√
1 − y2

x − y
dy =

πx if − 1 < x < 1,

πx − π
√

x2 − 1 if x ≥ 1,
(3.38)

where in the case −1 < x < 1 the left-hand side is defined as a principal
value integral.

Proof Using the substitutions y = sin z and w = tan(z/2), we get

∫ 1

−1

√
1 − y2

x − y
dy =

∫ π/2

−π/2

cos2 z
x − sin z

dz =

∫ π/2

−π/2

(
x + sin z +

1 − x2

x − sin z

)
dz

= πx +

∫ π/2

−π/2

1 − x2

x − sin z
dz = πx + 2(1 − x2)

∫ 1

−1

dw
xw2 − 2w + x

(where all integrals are in the principal value sense if −1 < x < 1). The
denominator in the last integral xw2 − 2w + x vanishes when w = w± =

x−1(1 ±
√

1 − x2). In the case −1 < x < 1, the root w− will be in (−1, 1)
(leading to a singularity in the integral) and w+ will not; in this case one can
show using a simple computation that the principal value integral

∫ 1

−1
[xw2−

2w + x]−1 dw is 0 (see Exercise 3.4). In the second case x ≥ 1, both roots
w± lie off the real line, in which case the integrand has no singularities and
can be evaluated simply as

∫ 1

−1

dw
xw2 − 2w + x

=

∫ 1

−1

dw
x(w − x−1)2 + (x2 − 1)

=
1

√
x2 − 1

tan−1

√
x − 1
√

x + 1
+ tan−1

√
x + 1
√

x − 1

 =
π

2
√

x2 − 1

(since tan−1 t + tan−1 t−1 ≡ π/2). Therefore the left-hand side of (3.38) is
equal to πx − π

√
1 − x2, as claimed. �
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Lemma 3.15 For x ∈ [−1, 1] and a ≥ 1 we have∫ 1

−1

√
1 − y2

x − y
log

1 + y
a + y

dy = π

[
1 − a +

√
a2 − 1 − x log

(
a +
√

a2 − 1
)

− 2
√

1 − x2 tan−1

√
(a − 1)(1 − x)
(a + 1)(1 + x)

]
. (3.39)

Proof Denote the left-hand side of (3.39) by F(x, a). Note that F(x, 1) =

0, and for a > 1, using both evaluations in (3.38), we have that

∂F(x, a)
∂a

= −

∫ 1

−1

√
1 − y2

(x − y)(a + y)
dy

= −
1

a + x

∫ 1

−1

√
1 − y2

(
1

x − y
+

1
a + y

)
dy

= −
πx

a + x
−

1
a + x

∫ 1

−1

√
1 − y2

a + y
dy

= −
πx

a + x
−
πa −

√
a2 − 1

a + x
= −π +

π
√

a2 − 1
a + x

.

Integrating over a, we get that

F(x, a) =

∫ a

1

∂F(x, r)
∂r

dr = −π(a − 1) + π

∫ a

1

√
r2 − 1
r + x

dr. (3.40)

The integral can be computed using a variant of the substitutions used in
the proof of the previous lemma. Setting r = cosh z and later w = ez, we
have∫ a

1

√
r2 − 1
r + x

dr =

∫ cosh−1(a)

0

sinh2 z
x + cosh z

dz

=

∫ cosh−1(a)

0

(
cosh z − x +

x2 − 1
x + cosh z

)
dz

= sinh z
∣∣∣cosh−1(a)

0
− x cosh−1(a) +

∫ cosh−1(a)

0

x2 − 1
x + cosh z

dz

=
√

a2 − 1 − x log
(
a +
√

a2 − 1
)

+

∫ cosh−1(a)

0

x2 − 1
x + cosh z

dz

=
√

a2 − 1 − x log
(
a +
√

a2 − 1
)

+ 2(x2 − 1)
∫ a+

√
a2−1

0

dw
w2 + 2xw + 1

, (3.41)
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and the last integral equals

1
√

1 − x2
tan−1 w + x

√
1 − x2

∣∣∣∣∣∣w=a+
√

a2−1

w=1

=
1

√
1 − x2

tan−1 (a − 1 +
√

a2 − 1)
√

1 − x2

1 − x2 + (x + a +
√

a2 − 1)(1 + x)

=
1

√
1 − x2

tan−1

a − 1 +
√

a2 − 1

a + 1 +
√

a2 − 1

√
1 + x
1 − x


=

1
√

1 − x2
tan−1

√
(a − 1)(1 − x)
(a + 1)(1 + x)

. (3.42)

Combining (3.40), (3.41) and (3.42) gives (3.39). �

Proof of Lemma 3.12 Using (3.38), we have

1
π2(β2 − u2)1/2

∫ β

−β

λ + log
β2 − u2

1
2 − u2

 du
s − u

+
C

(β2 − u2)1/2

= −
λu

π(β2 − u2)1/2 +
β

π(β2 − u2)1/2

F  s
β
,

√
2

2β

 − F
− s
β
,

√
2

2β


+

C
(β2 − u2)1/2 ,

where as before F(x, a) denotes the left-hand side of (3.39). By (3.39) this
evaluates to

u
π(β2 − u2)1/2

−λ − 2 log
1 +

√
1 − 2β2

√
2β


+

2
π

tan−1

√
(a − 1)(1 + x)
(a + 1)(1 − x)

− tan−1

√
(a − 1)(1 − x)
(a + 1)(1 + x)

 +
C

(β2 − u2)1/2

(3.43)

where x = u/β, a =
√

2/(2β), which then further simplifies to the right-
hand side of (3.30) using the arctangent addition formula tan−1 s+ tan−1 t =

tan−1 (
(s + t)/(1 − st)

)
. �

Proof of Lemma 3.13 It is more convenient to work with the representa-
tion of h′τ in which the arctangent addition formula isn’t used after (3.43),
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namely,

h′τ(u) =
2
π

tan−1

√
(a − 1)(1 + x)
(a + 1)(1 − x)

− tan−1

√
(a − 1)(1 − x)
(a + 1)(1 + x)

 , (3.44)

where x and a are defined after (3.43). The claims of the lemma therefore
reduce to performing the indefinite integrations∫

tan−1

√
(a − 1)(1 + x)
(a + 1)(1 − x)

dx,
∫

x tan−1

√
(a − 1)(1 + x)
(a + 1)(1 − x)

dx (3.45)

(note that the second arctangent term in (3.44) is obtained from the first by
substituting −x for x). These integral evaluations aren’t as difficult as they
seem: for the first, perform an integration by parts to get that∫

tan−1

√
(a − 1)(1 + x)
(a + 1)(1 − x)

dx = x tan−1

√
(a − 1)(1 + x)
(a + 1)(1 − x)

−
1
2

√
a2 − 1

∫
x dx

(a − x)
√

1 − x2
+ C.

(Here and below, C denotes a generic integration constant.) The integral on
the right-hand side can then be evaluated using the substitutions x = sin z
and w = tan(z/2), which gives∫

x dx

(a − x)
√

1 − x2
=

∫
sin z

a − sin z
dz = −z +

∫
dz

a − sin z
+ C

= −z +
2
a

∫
dw

1 + w2 − 2w/a
+ C,

which is an elementary integral. The same technique will work for the sec-
ond integral in (3.45). We leave it to readers to complete the details. �

3.10 Evaluation of Q( g̃τ)

In the last two sections we showed that the minimizer hτ of Q(·) on Gτ�
coincides with the function gτ defined in (3.8). We now compute the mini-
mum value Q(g̃τ) = Q(hτ). For convenience, denote h = hτ throughout the
computation. Start with the observation that the function p(t)(h′(t) − sgn t)
(where p(t) was defined in (3.24)) vanishes on the interval

[
−
√

2/2,
√

2/2
]
,

since p(u) = 0 on (−β, β) (that condition was the starting point of our
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derivation of hτ) and h′(t) − sgn t = 0 when β ≤ |t| ≤
√

2/2. Thus we have
(making use of (3.26)) that

0 =

∫ √
2/2

−
√

2/2
p(t)(h′(t) − sgn t)

=

∫ √
2/2

−
√

2/2

λt −
∫ √

2/2

−
√

2/2
h′(s) log |s − t| ds

 (h′(t) − sgn t)

= λ

∫
√

2/2

−
√

2/2
th′(t) dt −

1
2

 + 2Q(h)

+

∫ √
2/2

−
√

2/2
h′(s)

∫
√

2/2

−
√

2/2
sgn t · log |t − s| dt

 ds

= −λτ + 2Q(h) +

∫ √
2/2

−
√

2/2
h′(s)Z(s) ds, (3.46)

where λ = − log((1 − τ)/τ) as in (3.34), and where we denote

Z(s) =

∫ √
2/2

−
√

2/2
sgn t · log |t − s| dt,

an integral that evaluates to

Z(s) = 2s log |s| − (
√

2/2 + s) log(
√

2/2 + s) + (
√

2/2 − s) log(
√

2/2 − s).

Denote W =
∫ √2/2

−
√

2/2
h′(s)Z(s) ds. Remembering that W = Wτ is a function

of τ, we differentiate, involving β = 2
√
τ(1 − τ) as an intermediate variable

and making use of (3.36) and (3.37). This gives

dW
dτ

=
dβ
dτ

dW
dβ

=

√
1 − 2β2

β

∫ √
2/2

−
√

2/2

∂h′(s)
∂β

Z(s) ds

=

√
1 − 2β2

β

∫ β

−β

−2

πβ
√

1 − 2β2
·

s√
β2 − s2

Z(s) ds

=
−2
πβ2

∫ β

−β

s√
β2 − s2

Z(s) ds =
−2
πβ2

∫ β

−β

√
β2 − s2Z′(s) ds

=
−2
πβ2

∫ β

−β

√
β2 − s2

(
2 log |s| − log

(√
2/2 + s

)
− log

(√
2/2 − s

))
ds.

(3.47)
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Now denote

Eβ(u) =

∫ β

−β

√
β2 − s2 log |s − u| ds,

so that (3.47) can be rewritten as

dW
dτ

=
−2
πβ2

(
2Eβ(0) − Eβ

(√
2/2

)
− Eβ

(
−
√

2/2
))

=
2
πβ2

∫
√

2/2

0
E′β(x) dx −

∫ 0

−
√

2/2
E′β(x) dx

 =
4
πβ2

∫ √
2/2

0
E′β(x) dx,

and observe that E′β(x) can be evaluated via a simple rescaling of (3.38),
which gives

E′β(x) =

∫ β

−β

√
β2 − s2

u − s
ds =

πx if |x| < β,

πx − π
√

x2 − β2 if x ≥ β.

This leads to

dW
dτ

=
4
β2

∫
√

2/2

0
x dx −

∫ √
2/2

β

√
x2 − β2 dx


=

4
β2

(
1
4
−

1
2

[
x
√

x2 − β2 − β2 log
(
x +

√
x2 − β2

)]x=
√

2/2

x=β

)
=

4
β2

(
1
4
−

1
2

(
1 − 2τ

2
− τ(1 − τ) log

(
1 − τ
τ

)))
=

2
2τ(1 − τ)

(
τ + τ(1 − τ) log

(
1 − τ
τ

))
=

1
1 − τ

− log τ + log(1 − τ).

Finally, since h′τ=1/2 ≡ 0, we have that Wτ=1/2 = 0, and therefore we get that

W =

∫ τ

1/2

(
1

1 − v
− log v + log(1 − v)

)
dv

= −2 log 2 − log(1 − τ) − τ log τ − (1 − τ) log(1 − τ).

Combining this with the relation Q(h) = 1
2 (λτ − W), which follows from

(3.46), gives the result that

Q(h) = log 2 + τ log τ + (1 − τ) log(1 − τ),

which confirms (3.23). The proof of Theorem 3.9 is complete. �
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3.11 The limiting growth profile

We can now prove Theorem 3.5. We start by proving a slightly weaker
result without uniformity in k; later we show how this easily implies the
claim of Theorem 3.5 by simple monotonicity considerations.

Proposition 3.16 Let 0 < τ < 1, and let k = k(n) be a sequence such that
1 ≤ k ≤ n2 and k/n2 → τ as n→ ∞. For any ε > 0 we have

P

 sup
u∈

[
−
√

2/2,
√

2/2
] |g̃k/n2 (u) − ψn,k(u)| > ε

→ 0 as n→ ∞. (3.48)

Proof Let ε > 0 be given. As in the proof of Theorem 1.20, denote by
Mn,k the set of Young diagrams λ ∈ P(k) that are contained in the square
diagram �n,n and for which

‖ψn,λ − g̃k/n2‖Q > ε,

where ‖h‖Q = Q(h)1/2 as in (1.46) and ψn,λ is defined in the paragraph after
(3.9). For λ ∈ Mn,k, by Theorem 3.9 and (3.25) we have that

Q(ψn,λ) ≥ Q(g̃k/n2 ) + ‖ψn,λ − g̃k/n2‖2Q > −H(k/n2) + log 2 + ε2,

so that (using (3.21) and (3.22)) I�hook(φn,λ) > −H(k/n2) + 2 log 2 − 3
2 + ε2

(where φn,λ is defined in (3.9)). Therefore by (3.19),

P
(
Λ(n,k) = λ

)
< exp

(
−ε2n2 + O(n log n)

)
,

uniformly over all λ ∈ Mn,k. Since |Mn,k| ≤ |P(k)| = p(k) ≤ eCτn for some
constant C > 0, we get that

P
[
‖ψn,k−g̃k/n2‖Q > ε

]
= P

[
Λ(n,k) ∈ Mn,k

]
≤ exp

(
−ε2n2 + Cτn + O(n log n)

)
→ 0 as n→ ∞.

This implies (3.48) by using Lemma 1.21 to replace the Q-norm bound by
a bound on the uniform ‖·‖∞ norm. �

Proof of Theorem 3.5 The idea is to apply simultaneously for several se-
quences k j = k j(n) and then use the fact that both ψn,k and g̃k2/n are mono-
tone nondecreasing in k to deduce a uniform estimate. Fix an integer m ≥ 1,
and set

k j = k j(n) = 1 +

⌊ j
m

(n2 − 1)
⌋
, j = 0, 1, . . . ,m.
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Define an event

En =

{
max
0≤ j≤m

‖ψn,k − g̃k2/n‖∞ < ε/2
}
.

By Theorem 3.16, P(En) → 1 as n → ∞. Assume that En occurred. Given
some k satisfying 1 ≤ k ≤ n2, we have k j ≤ k ≤ k j+1 for some 0 ≤
j < m. By the monotonicity properties mentioned earlier, we have for all
u ∈

[
−
√

2/2,
√

2/2
]

the chain of inequalities

g̃k j/n2 (u) −
ε

2
≤ ψn,k j (u) ≤ ψn,k(u) ≤ ψn,k j+1 (u) ≤ g̃k j+1/n2 (u) +

ε

2
,

and furthermore, by continuity of g̃τ(u) as a function of τ it is easy to see
that if m is fixed to be large enough (as a function of ε but not depending
on n), we will have for large n the inequalities g̃k j+1 (u) ≤ g̃k/n2 + ε/2 and
g̃k/n2 − ε/2 ≤ g̃k j (u), so we get that

g̃k/n2 (u) − ε ≤ ψn,k(u) ≤ g̃k/n2 (u) + ε,

or equivalently that ‖ψn,k − g̃k/n2‖∞ < ε. This shows that occurrence of
En (which has asymptotically high probability) implies occurrence of the
event

max
1≤k≤n2

sup
u∈

[
−
√

2/2,
√

2/2
] |g̃k/n2 (u) − ψn,k(u)| ≤ ε,

(the event complementary to the one that appears in (3.11)), and therefore
finishes the proof. �

3.12 Growth of the first row of Λ(n,k)

Our next major goal is to prove Theorem 3.6. When trying to deduce it
from Theorem 3.5, we run into a difficulty that is similar to the one we had
in Chapter 1 when we tried to derive the result Λ = 2 from the limit shape
theorem for Plancherel-random partitions. The problem is that because the
limit shape result proves proximity to the limiting shape in the Russian
coordinate system, it does not guarantee that the length Λ

(n,k)
1 of the first row

of the Young diagram Λ(n,k) is asymptotically close to the value predicted
by the limiting shape. To proceed we need to separately prove the following
result.
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Theorem 3.17 For any ε > 0 we have

P
[

max
1≤k≤n2

∣∣∣n−1Λ
(n,k)
1 − q(k/n2)

∣∣∣ > ε]→ 0 as n→ ∞, (3.49)

where q(·) is defined by

q(τ) =

2
√
τ(1 − τ) if 0 ≤ τ ≤ 1

2 ,

1 if 1
2 ≤ τ ≤ 1.

Note that since Λ
(n,k)
1 is increasing in k, it is enough to consider the values

1 ≤ k ≤ n2/2 in (3.49). Theorem 3.5 implies half of this result, namely a
lower bound for Λ

(n,k)
1 .

Lemma 3.18 For any ε > 0,

P
[
n−1Λ

(n,k)
1 > q(k/n2) − ε for all 1 ≤ k ≤ n2/2

]
→ 1 as n→ ∞. (3.50)

Proof Fix ε > 0. We claim that there is a δ > 0 such that if the event{
max

1≤k≤n2
sup
u∈R
|g̃k/n2 (u) − ψn,k(u)| < δ

}
occurs then for any 1 ≤ k ≤ n2/2, the inequality

n−1Λ
(n,k)
1 > q(k/n2) − ε (3.51)

must hold; if true, this implies the result by (3.11). The fact that the claim
is true, and the relationship between δ and ε, are illustrated in Fig. 3.8. One
can see immediately that the fact that the graph of ψn,k is constrained to lie
above the graph of max(g̃τ(u)−δ, |u|) (where we denote τ = k/n2) forces the
inequality n−1Λ

(n,k)
1 > q(τ) − ε to hold. We leave it to readers to formalize

the dependence between δ and ε. (In particular, it should be noted that for
a given ε, a single δ would work for any 1 ≤ k ≤ n2.) �

Corollary 3.19 Denote An(k) = EΛ
(n,k)
1 . For any ε > 0, there is an integer

N ≥ 1 such that for any n ≥ N, we have

n−1An(k) > q(k/n2) − ε for all 1 ≤ k ≤ n2/2. (3.52)

Proof Denote by En,ε the event

En,ε =
{
n−1Λ

(n,k)
1 > q(k/n2) − ε/2 for all 1 ≤ k ≤ n2/2

}
, (3.53)
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g̃τ(u) + δ

g̃τ(u) − δ

2δ6
?r r

R
I@
@ε

@
@

@
@I

@
@
@
@R

q(τ)

Figure 3.8 Illustration of the proof of Lemma 3.18: proximity of
ψn,k to the limit shape g̃k/n2 forces a lower bound – but not an
upper bound – on the length of the first row of Λ(n,k).

and note that for any 1 ≤ k ≤ n2/2,

n−1An(k) ≥ n−1E
[
Λ

(n,k)
1 1En,ε

]
≥ (q(k/n2) − ε/2)P(En,ε).

By (3.50), the right-hand side is ≥ q(k/n2) − ε if n is large enough. �

We now turn to the task of establishing the less obvious matching up-
per bound to (3.51). First, we note an interesting combinatorial identity
involving a product of hook-lengths.

Lemma 3.20 Let 1 ≤ k ≤ n2. Let λ ↗ ν be a pair of Young diagrams
contained in the square diagram �n,n such that λ is of size k − 1, ν is of
size k, and ν is obtained from λ by adding a new cell to the first row of λ.
Then we have

dλd�n,n\ν

d�n,n\λdν
=

n2 − λ2
1

k(n2 − k + 1)
. (3.54)

Proof For the duration of the proof denote λ̄ = �n,n \ λ and ν̄ = �n,n \ ν.
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Figure 3.9 An illustration of the four hook-length products
participating in the identity (3.54).

By the hook-length formula we have

dλdν̄
dλ̄dν

=
(k − 1)!(n2 − k)!
(n2 − k + 1)!k!

·

∏
(i, j)∈λ̄

hλ̄(i, j)
∏

(i, j)∈ν
hν(i, j)∏

(i, j)∈λ
hλ(i, j)

∏
(i, j)∈ν̄

hν̄(i, j)

=
1

k(n2 − k + 1)
·

∏
(i, j)∈λ̄

hλ̄(i, j)
∏

(i, j)∈ν
hν(i, j)∏

(i, j)∈λ
hλ(i, j)

∏
(i, j)∈ν̄

hν̄(i, j)
,

so it remains to explain how the factor n2 − λ2
1 arises out of the four hook-

length products, with all other factors cancelling out. This phenomenon is
illustrated in Fig. 3.9, which shows the “T”-shaped set of cells contributing
to the four hook-length products, with all other hook-lengths cancelling out
in a trivial manner because the hook-length does not change in the process
of adding the new cell to get from λ to ν (or, symmetrically, removing a cell
to get from ν̄ to λ̄). For each box (i, j) from that set of cells, Fig. 3.9 shows
the ratio of hook-lengths hν(i, j)/hλ(i, j) or hλ̄(i, j)/h ¯ν(i, j), so that the product
above is obtained by multiplying all the fractions. By studying the figure,
one can see that now we get further cancellation that arises as follows. In
the “right arm” of the set of cells we simply have the fraction of factorials

(n − λ1)!
(n − λ1 − 1)!

= n − λ1.

In each of the left arm and the leg of the “T” we have a partial cancel-
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lation along contiguous stretches where the hook-lengths increase by 1,
where the product of fractions is telescoping and leaves only the denomi-
nator of the first cell and the numerator of the last cell in each such stretch
(counting in the direction leading away from the cell ν \ λ); for example,
in the leg in the example of Fig. 3.9 we have the product 6

5 ·
7
6 ·

8
7 = 8

5 .
Call the remaining hook-lengths after this cancellation the “exceptional”
hook-lengths. However, as can be seen in the example in the figure, the
same numerators and denominators that remain in the product of hook ra-
tios hν(i, j)/hλ(i, j) in the left arm appear with inverse powers in the dual
product of ratios hλ̄(i, j)/hν̄(i, j) in the leg, and vice versa, with only two
hook-lengths remaining, namely the smallest hook-length 1 (in the denom-
inator) and the largest hook-length n+λ1 (in the numerator). The reason for
this is that, except for these smallest and largest hook-lengths, the excep-
tional hook-lengths in λ are in one-to-one correspondence with identical
exceptional hook-lengths in ν̄; and similarly the exceptional hook-lengths
in ν can be matched with identical ones in λ̄. Note that in the above exam-
ple, the largest hook-length came from the hook product of hook-lengths
of ν, but there is also a separate case in which that hook-length will appear
in the product of hook-lengths of ν̄. This happens when λ has less than n
parts, but it is easy to verify that the end result is the same in both cases.

We conclude that the product of hook ratios indeed leaves out exactly
two factors, which combine to give the expression (n−λ1)(n+λ1) = n2−λ2

1.
This was exactly what we needed to finish the proof. �

Using the identity (3.54), we can show that the numbers An(k) = EΛ
(n,k)
1

satisfy an interesting discrete difference inequality.

Lemma 3.21 Denote an(k) = An(k)− An(k− 1) (where An(0) is defined to
be 0). We have

an(k)2 ≤
n2 − An(k)2

k(n2 − k + 1)
. (3.55)

Proof The “discrete derivative” an(k) can be interpreted as the probability
that Λ(n,k) was obtained from Λ(n,k−1) by adding a cell to the first row. Let
Ln,k be the set of pairs (λ, ν) of Young diagrams contained in �n,n, where λ
is of size k − 1, ν is of size k, and ν is obtained from λ by adding a cell to
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the first row of λ. We can write

an(k) =
∑

(λ,ν)∈Ln,k

dλd�n,n\ν

d�n,n

=
∑

(λ,ν)∈Ln,k

dνd�n,n\ν

d�n,n

·
dλ
dν
.

This is an average of the quantity dλ/dν (thought of as a function of ν) with
respect to the probability measure ν 7→

dνd�n,n\ν

d�n,n
, that is, the measure given

in (3.15); except that the summation is not over all possible ν, since not all
ν ⊂ �n,n of size k have a corresponding λ such that (λ, ν) ∈ Ln,k. Applying
the Cauchy–Schwarz inequality and then using Lemma 3.20, we therefore
get that

an(k)2 ≤
∑

(λ,ν)∈Ln,k

dνd�n,n\ν

d�n,n

·
d2
λ

d2
ν

=
∑

(λ,ν)∈Ln,k

dλd�n,n\λ

d�n,n

·
dλd�n,n\ν

d�n,n\λdν

=
∑

(λ,ν)∈Ln,k

dλd�n,n\λ

d�n,n

·
n2 − λ2

1

k(n2 − k + 1)

=
(
k(n2 − k + 1)

)−1E
[
n2 −

(
Λ

(n,k)
1

)2
]
≤

n2 − An(k)2

k(n2 − k + 1)
. �

The difference inequality (3.55) is the key to deriving an upper bound
for An(k) that matches the lower bound in (3.52).

Lemma 3.22 For any ε > 0, there is an integer N ≥ 1 such that for any
n ≥ N, we have

n−1An(k) < q(k/n2) + ε for all 1 ≤ k ≤ n2/2. (3.56)

Proof Note that if (3.55) were an equality rather than an inequality, it
would be a discrete analogue of the differential equation

q′(τ)2 =
1 − q(τ)2

τ(1 − τ)
(3.57)

which (check!) is satisfied by q(·) for 0 < τ < 1
2 . Since what we have is

an inequality, it will give an upper bound on the growth of An(k) (which
is what we want), by a self-referential quantity that can nonetheless be
made explicit by the fact that we already derived a lower bound for An(k).
To make this argument precise, fix ε > 0, and let δ > 0 depend on ε

in a manner that will be determined shortly. Using (3.52) and (3.55), for
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1 ≤ k ≤ n2/2 and n large enough we can write

An(k) =

k∑
j=1

an( j) ≤
k∑

j=1

(
n2 − An( j)2

j(n2 − j + 1)

)1/2

≤

k∑
j=1

n2 − n2
(
q
(

j
n2

)
− δ

)2

j(n2 − j + 1)


1/2

= n ·
k∑

j=1

1 −
(
q
(

j
n2

)
− δ

)2

j
n2

(
1 − j−1

n2

)


1/2

·
1
n2

≤ n

∫ τ

0

(
1 − (q(t) − δ)2

t(1 − t)

)1/2

dt + o(1)


where we denote τ = k/n2 as before, and where the o(1) is uniform in k as
n → ∞. Taking δ to be sufficiently small as a function of ε, we can further
upper-bound this for large n (making use of the differential equation (3.57))
by

n

∫ τ

0

(
1 − q(t)2

t(1 − t)

)1/2

dt + 1
2ε + o(1)

 = n
(
q(τ) + 1

2ε + o(1)
)

= n
(
q(k/n2) + 1

2ε + o(1)
)
≤ n

(
q(k/n2) + ε

)
,

as claimed. �

Proof of Theorem 3.17 Fix 0 < τ ≤ 1/2, and let k = k(n) be a sequence
such that k(n) ≤ n2/2 and k/n→ τ as n→ ∞.

P
(∣∣∣n−1Λ(n,k) − q(k/n2)

∣∣∣ > ε) ≤ P
(
n−1Λ(n,k) − q(k/n2) < −ε

)
+ P

(
n−1Λ(n,k) − q(k/n2) > ε

)
(3.58)

The first probability on the right goes to 0 as n→ ∞, by Lemma 3.18. The
second probability is bounded from above (using Markov’s inequality) by
ε−1

(
n−1EΛ

(n,k)
1 − q(k/n2)

)
, and this goes to 0 as n → ∞ by Lemma 3.22. It

follows that the right-hand side of (3.58) goes to 0. Consequently, a sim-
ilar statement is true when considering several sequences k1(n), . . . , km(n)
simultaneously, namely that

P
(
max
1≤ j≤m

∣∣∣n−1Λ(n,k j) − q(k j/n2)
∣∣∣ > ε)→ 0 as n→ ∞. (3.59)

(with m fixed). Apply this with k j = b( j/m)n2/2c, ( j = 1, . . . ,m), and use
the facts that Λ

(n,k)
1 is monotone nondecreasing in k and q(·) is continuous,
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to deduce that if the event max1≤k≤n2/2

∣∣∣n−1Λ
(n,k)
1 − q(k/n2)

∣∣∣ > ε occurs, then
we will also have that

max
1≤ j≤m

∣∣∣n−1Λ(n,k j) − q(k j/n2)
∣∣∣ > ε − δ,

where

δ = δm = sup
x,y∈[0,1/2]
|x−y|≤2/m

|q(x) − q(y)|.

Since δ can be made arbitrarily small by taking m large enough, it follows
that (3.59) implies (3.49). �

3.13 Proof of the limit shape theorem

We now deduce Theorem 3.6 from Theorems 3.5 and 3.17. First, we prove
a claim about convergence of individual entries of the tableau. Let ε > 0
and (x, y) ∈ [0, 1]2, and denote i = i(n, x) = 1 + b(n − 1)xc, j = j(n, x) =

1 + b(n − 1)yc.

Proposition 3.23 We have

P
[∣∣∣n−2tn

i, j − S (i/n, j/n)
∣∣∣ > ε]→ 0 as n→ ∞. (3.60)

Proof Denote

(x′, y′) =

(
i − 1/2

n
,

j − 1/2
n

)
= (x, y) + O(n−1),

(u, v) =

(
x − y
√

2
,

x + y
√

2

)
,

(u′, v′) =

(
x′ − y′
√

2
,

x′ + y′
√

2

)
= (u, v) + O(n−1).

First, note that it is enough to prove the claim when (x, y) is in the triangle
{x, y ≥ 0, x + y ≤ 1}, since the distribution of the uniformly random square
Young tableau Tn is invariant under the reflection transformation that re-
places the entry tn

i, j in position (i, j) by n2+1−tn
n+1−i,n+1− j, and the limit shape

S (·, ·) has a corresponding symmetry property S (x, y) = 1− S (1− x, 1− y).
We now divide into two cases according as whether one of x and y is 0

or both are positive. If x, y > 0, we use the following characterization of
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tn
i, j: recall that if tn

i, j = k that means that the cell (i, j) was added to Λ(n,k−1)

to obtain Λ(n,k). Thus, we can write

tn
i, j = min

{
1 ≤ k ≤ n2 : ψn,k(u′) > v′

}
. (3.61)

Denote S (x, y) = s. By the definition of the limit surface S (·, ·), this means
that v = g̃s(u), and therefore also v′ = g̃s(u′) + O(n−1). Since (x, y) lies in
the interior of the square, we also have that |u| ≤

√
2s(1 − s), that is, (u, v)

lies on the “curved” part of the curve v = g̃s(u) rather than the “flat” part.
In this regime of the parameters, we have the property

∂g̃s(u)
∂s

> 0, (3.62)

which implies that in a neighborhood of (s, u), g̃s(u) is increasing in s (and
note that in general g̃s(u) is nondecreasing in s). Denote s− = (s − ε) ∨ 0,
s+ = (s + ε) ∧ 1, and

δ = min
(
g̃s(u) − g̃s−(u)

2
,

g̃s+
(u) − g̃s(u)

2

)
.

Then we have

g̃s−(u) + δ < g̃s(u) < g̃s+
(u) − δ

and δ > 0 (in fact, by (3.62) above, δ behaves approximately like a constant
times ε when ε is small, but this is not important for our purposes), and
therefore also

g̃s−(u
′) + δ/2 < v′ < g̃s+

(u′) − δ/2

when n is sufficiently large. Now denote k− = ds−n2e and k+ = bs+n2c, and
apply Theorem 3.5 with the parameter ε in that theorem being set to δ/2,
to see that the event

ψn,k−(u
′) < v′ < ψn,k+(u′)

holds with probability that tends to 1 as n→ ∞. But if this event holds, by
(3.61) this implies that

k− < tn
i, j ≤ k+,

that is, that
∣∣∣n−2tn

i, j − S (x, y)
∣∣∣ < ε. Since S (i/n, j/n) = S (x, y) + o(1) as

n→ ∞ (by continuity of S (·, ·)), we get (3.60).
Next, consider the case when one of x and y is 0, say y = 0. In this case
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j = j(n, y) = 1, and we use a different characterization of tn
i, j in terms of the

length of the first rows of the sequence of diagrams Λ(n,k), namely

tn
i, j = tn

i,1 = min
{
1 ≤ k ≤ n2 : Λ

(n,k)
1 ≥ k

}
. (3.63)

In this case Theorem 3.17 can be invoked and combined with (3.63) using
standard ε-δ arguments similar to those used above to deduce that the event∣∣∣n−2tn

i,1 − r(x)
∣∣∣ < ε (3.64)

occurs with asymptotically high probability as n → ∞, where we define
the function r : [0, 1]→ [0, 1/2] by

r(x) = min{0 ≤ τ ≤ 1/2 : q(τ) ≥ x}.

The details are left to the reader as an exercise. Finally, it is easy to check
that

r(x) = q−1(x) =
1 −
√

1 − x2

2
= S (x, 0),

showing that (3.64) is just what is needed to imply (3.60). �

Proof of Theorem 3.6 Fix ε > 0. By continuity of S (·, ·), there is a δ > 0
such that if we take partitions

0 = x0 < x1 < . . . < xk = 1, 0 = y0 < y1 < . . . < y` = 1

of [0, 1] with a mesh smaller than δ then we have

max
(
|S (xp+1, yq) − S (xp, yq)|, |S (xq, yp+1) − S (xq, yp)|

)
<
ε

4
(3.65)

for all 0 ≤ p < k, 0 ≤ q ≤ `. Fix n, fix two such partitions, and assume that
the event{∣∣∣∣∣n−2tn

i(n,xp), j(n,yq) − S
( i(n, xp)

n
,

j(n, yq)
n

)∣∣∣∣∣ < ε/4
for all 0 ≤ p ≤ k, 0 ≤ q ≤ `

}
(3.66)

occurred, where the notation i(n, x) and j(n, y) from Proposition 3.23 is
used. Then for any 1 ≤ i0, j0 ≤ n, we can find some p, q with 0 ≤ p <

k, 0 ≤ q < `, and

i(n, xp) ≤ i0 ≤ i(n, xp+1), j0 ≤ j(n, yq) ≤ j0 < j(n, yq+1).
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Therefore by monotonicity we have that

tn
i(n,xp), j(n,xp+1) ≤ ti0, j0 ≤ tn

i(n,xp+1), j(n,yq+1),

and thus, using (3.65), (3.66), and the fact that S (x, y) is increasing in x and
y, we deduce that also ∣∣∣n−2tn

i0, j0 − S (i0/n, j0/n)
∣∣∣ < ε.

We have shown that occurrence of the event (3.66), which by Proposi-
tion 3.23 has probability that tends to 1 as n→ ∞, forces the event{

max
1≤i0, j0≤n

∣∣∣n−2tn
i0, j0 − S (i0/n, j0/n)

∣∣∣ < ε}
to occur, so this event too has asymptotically high probability, and the proof
is complete. �

3.14 Random square Young tableaux as an interacting particle
system

In this section we consider a new way of thinking about random square
Young tableaux as a system of randomly interacting particles. This ties the
study of this probabilistic model to a more general notion of interacting
particle systems, which are random processes consisting of a configura-
tion of particles evolving over time in a random manner according to some
set of rules. Usually the particles occupy a space with some discrete geom-
etry (e.g., a lattice or a graph), and the evolution of each particle depends
primarily on the state of nearby particles. Such systems appear naturally
in connection with many applied and theoretical problems in probability
theory, statistical physics, and other fields. We will encounter another in-
teresting interacting particle system in Chapter 4.

We start by describing the combinatorial structure of the particle system,
without specifying the nature of the probabilistic behavior. Let n ≥ 1. We
consider n particles arranged on the discrete interval [1, 2n]. Initially, the
particles occupy the positions 1, . . . , n. Subsequently, particles start jump-
ing to the right at discrete times t = 1, 2, . . .; at each time step exactly one
particle jumps one step to the right. The jumps are constrained by the rule
that a particle may only jump into a vacant position, and all particles re-
main in the interval [1, 2n]. The process continues until all particles have
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t = 1
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t = 4
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Figure 3.10 Particle trajectories in a square Young tableau jump
process with four particles.

moved as far to the right as they can, so no more jumps may occur. At this
point, each particle has moved n steps to the right, so the total number of
jumps is n2, and the particles occupy the lattice positions in [n + 1, 2n].

Fig. 3.10 illustrates a way of visualizing an instance of such a system in
a space–time diagram that shows the trajectories each of the particles goes
through as a function of time. In this example, there are just four particles.

Let Ωn be the set of possible ways in which the system can move from
the initial to the final state. It is not so important how this information is
encoded, so we omit a formal definition. Since the set Ωn is a finite set, we
can now add random behavior to the system by considering for each n an
element of Ωn drawn uniformly at random. In other words, we equip Ωn

with the uniform probability measure to get a probability space. Because
the system will turn out to be related to square Young tableaux, we call it
the square Young tableau jump process (or for convenience just jump
process) with n particles. Fig. 3.11 shows a visualization of such a process
of order 100; the trajectories of a few selected particles are highlighted to
give a better feeling as to the overall behavior of the process. The picture is
rather striking, and suggestive of an interesting asymptotic result waiting to
be proved. But in fact, as readers may have guessed, what we are looking at
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Figure 3.11 A square Young tableau jump process with 100
particles.

is simply a different way of visualizing a uniformly random square Young
tableau, and the asymptotic result will be just an alternative way (though
quite interesting in its own right) of thinking about the limit shape theorem
for those tableaux. To make this precise, we note that the space Ωn is in
bijection with the set of square Young tableaux of order n. The bijection
works as follows: for each 1 ≤ k ≤ n, the kth row of the tableau lists
the times during which the kth leading particle (i.e., the particle that was
initially in position n + 1 − k) jumps. This works because each particle
needs to jump exactly n times (and each row of the tableau has n cells), and
the requirement that particles can only jump into vacant spots corresponds
precisely to the fact that the Young tableau encodes a growing sequence of
Young diagrams. For example, Fig. 3.12 shows the square Young tableau
that corresponds to the four-particle jump process from Fig. 3.10. The fact
that the first row of the tableau is (1, 3, 8, 10) corresponds to the fact that
the leading particle in the example jumped at times 1, 3, 8, and 10, which
may be seen in the picture.

We can now translate our knowledge of the asymptotic behavior of ran-
dom square Young tableaux into an interesting result on the limiting be-
havior of the jump process as n→ ∞.
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2 4 9 14

5 6 12 15

7 11 13 16

Figure 3.12 The square Young tableau associated with the jump
process shown in Fig. 3.10.

Theorem 3.24 (Limiting trajectories in the square Young tableau jump pro-
cess) For each n ≥ 1, let Xn be a random square Young tableau jump pro-
cess with n particles. For any 1 ≤ j ≤ n and 0 ≤ k ≤ n2, denote by xn, j(k)
the position of the particle with index j (meaning the particle that starts at
position j and ends in position n + j) at time k. Define the one-parameter
family of curves (ψx(t))0≤x≤1 by

ψx(t) =


x if 0 ≤ t ≤ 1−

√
2x−x2

2 ,

x + max{0 ≤ y ≤ 1 : S (1 − x, y) ≤ t} if 1−
√

2x−x2

2 ≤ t ≤ 1+
√

1−x2

2 ,

x + 1 if 1+
√

1−x2

2 ≤ t ≤ 1.
(3.67)

Then, as n → ∞, the scaled trajectories of the particles in the processes
Xn converge uniformly in probability to the curves (ψx(t))0≤x≤1. That is, for
any ε > 0, we have that

P
[

max
1≤ j≤n,1≤k≤n2

∣∣∣n−1xn, j(k) − ψ j/n(k/n2)
∣∣∣ > ε]→ 0. (3.68)

Before proving Theorem 3.24, let us state another result that will follow
from it. One aspect of the theorem that is not immediately apparent from
looking at the formulas, but is visually obvious from the simulation picture,
is the emergence of a roughly circular curve, or interface, in the scaled
space–time square in which the process acts out its life. The area in the
interior of this curve has a “chaotic” or random look to it, whereas the
behavior of the process outside the curve is deterministic (and is itself of
two types: two connected regions where particles are clustered together
in a “traffic jam” where there is no movement, and two connected regions
which are completely free of particles. In the limit the interface between the
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two types of behavior approaches the shape of the circle inscribed within
the square. We refer to this circle as the arctic circle.3

We can define the interface curve as follows. Given a square Young
tableau jump process of order n, let τ−n (k) and τ+

n (k) denote respectively
the first and last times at which a particle k jumped from or to position k.
Clearly, in the time period [0, τ−n (k)], nothing happens in position k (i.e., for
1 ≤ k ≤ n it is constantly occupied by a particle, and for n + 1 ≤ k ≤ 2n it
is vacant), and similarly, in the period [τ+

n (k), n2], nothing happens in posi-
tion k. Therefore the discrete “curves” τ±n (k) represent the lower and upper
boundaries of the interface. We will prove the following result as an easy
corollary of Theorem 3.24.

Theorem 3.25 (The arctic circle theorem for square Young tableau jump
processes4) Denote

ϕ±(x) = 1
2 ±

√
x(1 − x).

Then for any ε > 0, we have

P
[{

max
1≤k≤2n

∣∣∣n−2τ−n (k) − ϕ−(k/2n)
∣∣∣ < ε}

∩

{
max

1≤k≤2n

∣∣∣n−2τ+
n (k) − ϕ+(k/2n)

∣∣∣ < ε}]→ 1 as n→ ∞.

The arctic circle and limiting particle trajectories in the jump process are
shown in Fig. 3.13.

Proof of Theorem 3.24 The proof is based on a representation of the po-
sition xn, j(k) of the jth particle at time k in terms of the random Young
tableau Tn = (tn

i, j)
n
i, j=1 corresponding to the jump process. It is easy to see

given the description above of the bijection between the two families of
objects that in terms of the tableau entries, xn, j(k) is given by

xn, j(k) =


j if k < t1,n+1− j,

j + max
{
0 ≤ i ≤ n : tn

i,n+1− j ≤ k
}

if t1,n+1− j ≤ k ≤ tn,n+1− j,

j + n if tn,n+1− j < k ≤ n2

(3.69)
(the third case in this equation is superfluous and can be unified with the
second, but is added for extra clarity). Note that this is a discrete analogue
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Figure 3.13 Limiting trajectories in the square Young tableau
jump process and the arctic circle.

of (3.67). Indeed, when considering the difference∣∣∣n−1xn, j(k) − ψ j/n(k/n2)
∣∣∣ ,

the “x” term in (3.67) cancels out the “ j” term in (3.69), and we are left
with the difference of two maxima∣∣∣∣n−1 max

{
0 ≤ i ≤ n : tn

i,n+1− j ≤ k
}
−max{0 ≤ y ≤ 1 : S (1 − x, y) ≤ t}

∣∣∣∣ ,
with the convention that the maximum of an empty set is 0, and with the
notation x = j/n, t = k/n2. Now, Theorem 3.6 says that tn

i,n+1− j is (with
asymptotically high probability) uniformly close to S (1 − x, i/n) – say,
closer in distance than some δ > 0. It is easy to see that δ may be chosen
small enough as a function of ε so that, assuming this event, the absolute
value of the difference of the maxima will be smaller than ε. We omit the
details of this verification, which are straightforward and similar to many
of the estimates we encountered in previous sections. �

Proof of Theorem 3.25 It is enough to note the following simple observa-
tions that express the times τ−n (k) and τ+

n (k) in terms of the random tableau



204 Erdős–Szekeres permutations and square Young tableaux

entries (tn
i, j)

n
i, j=1:

τ−n (k) =

tn
n+1−k,1 if 1 ≤ k ≤ n,

tn
1,k−n if n + 1 ≤ k ≤ 2n,

τ+
n (k) =

tn,k if 1 ≤ k ≤ n,

t2n+1−k,n if n + 1 ≤ k ≤ 2n.

For example, when 1 ≤ k ≤ n, τ−n (k) is simply the first time at which
the particle stating at position k (which corresponds to row n + 1 − k in the
tableau) jumps. The three remaining cases are equally simple to verify. The
result now follows easily using (3.13), (3.14) and Theorem 3.6. �

Exercises

3.1 (K) Let σ = (σ(1), . . . , σ(mn)) be an (m, n)-Erdős–Szekeres permutation.
Denoteσ′ = (σ(mn), . . . , σ(1)) andσ′′ = (mn+1−σ(1), . . . ,mn+1−σ(mn)).
Show that σ−1 ∈ ESm,n, σ′ ∈ ESn,m and σ′′ ∈ ESn,m. What is the effect of
each of these operations on the rectangular Young tableaux P,Q associated
with σ?

3.2 (K) Show that the limit shape S (x, y) from (3.12) satisfies

S (x, x) =
1
2

(1 − cos(πx)) (0 ≤ x ≤ 1).

3.3 (KK) Fill in the missing details of the proof of Theorem 3.8.
3.4 (KK) Prove the claim, stated in the proof of Lemma 3.14, that if −1 < x < 1

then

P.V.
∫ 1

−1

dw
xw2 − 2w + x

= 0,

where P.V. denotes an integral in the sense of the principal value.
3.5 (KKK) (Stanley [126]) Show that the area of the limit shape A∞ (defined

in (3.6)) of random Erdős–Szekeres permutations is given by 4α, where α,
the fraction between the area of the shape and that of the enclosing square
[−1, 1]2, can be expressed in terms of elliptic integrals as

α = 2
∫ 1

0

1√
(1 − t2)(1 − (t/3)2

dt −
3
2

∫ 1

0

√
1 − (t/3)2

1 − t2 dt .
= 0.94544596.

3.6 (KKK) (Pittel–Romik [100]) Show that the number d�n,n of n × n square
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Young tableaux has the asymptotic behavior

d�n,n = n11/12
√

2π exp
[
n2 log n +

(
−2 log 2 +

1
2

)
n2

−
1
6

+
log 2
12
−C + o(1)

]
as n→ ∞,

where the constant C is given by

C =

∫ ∞

0

[
1

et − 1
−

1
t

+
1
2
−

t
12

]
e−t

t2 dt.

3.7 Let λ denote a Young diagram. It is easy to see that a filling of the numbers
1, . . . , |λ| in the cells of λ is a Young tableau if and only if each entry is the
smallest in its hook. Similarly, define a balanced tableau of shape λ to be
a filling of the numbers 1, . . . , |λ| in the cells of λ that satisfies the condition
that the entry in each box (i, j) is the kth largest in its hook, where k is the
size of the “leg” part of the hook (which consists of (i, j) and the cells below
(i, j) in the same column).

(a) (KK) (Knuth [71], Section 5.1.4) Given a random filling of the numbers
1, . . . , n in the cells of λ chosen uniformly at random from among the |λ|!
possibilities, compute for each box (i, j) the probability that the entry in
box (i, j) is the smallest in its hook. Show that if we assume these events
are independent, then the hook-length formula (1.12) would follow easily.
Does this argument give a new proof of the hook-length formula? Why,
or why not?

(b) (KK) Find a bijection between Young tableaux of rectangular shape �m,n

and balanced tableaux of rectangular shape �m,n.
(c) (KKK) (Edelman–Greene [34]) Let λ denote the rectangular diagram

�m,n with the bottom-right corner removed. Find a bijection between
Young tableaux of rectangular shape λ and balanced tableaux of rectan-
gular shape λ.

(d) (KKKK) (Edelman–Greene [34]) Prove that for any Young diagram
λ, the number bλ of balanced tableaux of shape λ is equal to dλ (and
therefore is also given by the hook-length formula).

3.8 For 1 ≤ j ≤ n − 1, denote by τ j the permutation in Sn (known as an adjacent
transposition or swap) that exchanges j and j+1 and leaves all other elements
fixed. Denote by revn the “reverse permutation,” given (in two-line notation)
by

(
1 2 ... n
n n−1 ... 1

)
. An n-element sorting network is a sequence (s1, . . . , sN)

such that revn = τs1τs2 . . . τsN and N =
(
n
2

)
. (Sorting networks are also known

as maximal chains in the weak Bruhat order and as reduced decompo-
sitions of the reverse word; see Exercise 185 on pp. 400–401 of [127] and
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5

4

3

2

1

1

2

3

4

5

Figure 3.14 The wiring diagram associated with the five-element
sorting network (1, 3, 4, 2, 3, 4, 1, 2, 1, 3). The swaps are shown as
black discs.

Exercise 7.22 on pp. 454–456 of [125].) Graphically, this means that we start
with the list of numbers (1, 2, . . . , n) in increasing order and successively ap-
ply swaps until arriving at the list arranged in decreasing order, a process that
can be described schematically in a wiring diagram (see Fig. 3.14). Note
that

(
n
2

)
is the minimum number of swaps required to change the list from

increasing to decreasing order, since one swap is required to exchange any
two elements 1 ≤ i < j ≤ n.

(a) (K) For any n ≥ 1, give an example of an n-element sorting network.

(b) (KK) Given a sorting network (s1, . . . , sN) of order n, for any 1 ≤ i <
j ≤ n let τ(i, j) be the unique time when i and j were swapped. More
precisely, let σk = τs1 . . . τsk for 0 ≤ k ≤ N (where σ0 is the identity
permutation), and define τ(i, j) as the unique number t such that σ−1

t−1(i) <
σ−1

t−1( j) and σ−1
t (i) > σ−1

t ( j).

Show that (τ(i, j))1≤i< j≤n is a balanced tableau (defined in Exercise 3.7
above) of shape n = (n − 1, n − 2, . . . , 1) (called the staircase shape).
Conversely, show that any balanced tableau of staircase shape n arises
in such a way from a unique sorting network.

(c) (KKKK) (Edelman–Greene [34]) Given a Young tableau T of shape
λ, denote the coordinates of the cell containing its maximal entry |λ| by
(imax(T ), jmax(T )).

Define the Schützenberger operator Φ as a map that takes the Young
tableau T = (ti, j)(i, j)∈λ and returns a new Young tableau Φ(T ) of shape
λ, described as follows. Construct inductively a “sliding sequence” of
cells (i0, j0), . . . , (id, jd) of λ, where the sequence begins at (i0, j0) =

(imax(T ), jmax(T )) and ends at (id, jd) = (1, 1), and for each k for which
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1 2 3 9

4 5 10

6 11 12

7 13 15

8 14

slide
−−−→

2 3 9

1 5 10

4 6 12

7 11 13

8 14

increment
−−−−−−−→

1 3 4 10

2 6 11

5 7 13

8 12 14

9 15

Figure 3.15 The sliding sequence and the Schützenberger
operator.

(ik, jk) , (1, 1) we have

(ik+1, jk+1) =

(ik − 1, jk) if j = 1 or tik−1, jk > tik , jk−1,

(ik, jk − 1) if i = 1 or tik1, jk < tik , jk−1.

Then the tableau T ′ = Φ(T ) = (t′i, j)(i, j)∈λ is defined by setting

t′i, j =


1 if (i, j) = (1, 1),

ti, j + 1 if (i, j) , (ik, jk) for all k,

tik+1, jk+1 + 1 if (i, j) = (ik, jk) for 1 ≤ k < d.

In words, we start by removing the maximal entry of T ; then pull the
cells along the sliding sequence, shifting each cell in the sequence to the
position vacated by the previous one until the cell (1, 1) is left vacant; then
increment all entries of the resulting array of numbers by 1, and finally
fill the still-vacant cell at position (1, 1) with the number 1. It is easy to
see that the result is still a Young tableau; Fig. 3.15 shows an example.

Define a map on the set of Young tableaux of staircase shape n by

EG(T ) =
(

jmax
(
Φ(n

2)−k(T )
))

k=1,...,(n
2)
,

where Φk denotes the kth functional iterate of Φ. Prove that EG is a bi-
jection from the set of Young tableaux of shape n to the set of sorting
networks of order n. Deduce the result, first proved by Stanley [124], that
the number of sorting networks of order n is given by(

n
2

)
!

1n−13n−25n−3 . . . (2n − 3)1 .

The map EG is known as the Edelman–Greene bijection.
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(d) (KK) (Angel–Holroyd–Romik–Virág [6]) Let S = (S 1, . . . , S N) be a uni-
formly random sorting network of order n. Show that the swap positions
S 1, . . . , S N are identically distributed random variables, and find a for-
mula for the probability distribution

PS 1 (m) = P(S 1 = m) (1 ≤ m ≤ n − 1),

of the swap positions.

(e) (KK) (Reiner [103]) A triple of successive swaps sk, sk+1, sk+2 in a sort-
ing network is called a Yang–Baxter move if (sk, sk+1, sk+2) = ( j, j±1, j)
for some j. Show that the number X of Yang–Baxter moves in a uniformly
random n-element sorting network S defined above satisfies E(X) = 1.

3.9 (KKKK) (Angel et al. [6]) Let T = (ti, j)1≤i< j≤n be a uniformly random
Young tableau of staircase shape n (defined in Exercise 3.8 above). State
and prove limit shape theorems analogous to Theorems 3.5 and 3.6 for the
random tableau T . Hint: Exploit a symmetry property of random square
Young tableaux and a corresponding symmetry of their limit shapes.

3.10 (a) (KK) Let (xi, j)n
i, j=1 be an array of distinct numbers. Prove that if each

row of the array is sorted in increasing order, and then each column of
the array is sorted in increasing order, the resulting array has the property
that both its rows and columns are arranged in increasing order.

(b) (KKK) Let (Xi, j)n
i, j=1 be the array described above in the case when

Xi, j are independent and identically distributed random variables with the
uniform distribution U[0, 1]. Let Y = (Yi, j)n

i, j=1 be the resulting array after
sorting the rows and then the columns in increasing order. Define a new
array T = (Ti, j)n

i, j=1 by letting Ti, j be the ranking of Yi, j in the array Y
(i.e., Ti, j = 1 if Yi, j is the smallest number in the array, 2 if Yi, j is the
second smallest, and so on). Note that by the result of part (a) above, T is
a square Young tableau.

Investigate the properties of the random square Young tableau T . Can
you prove an interesting (or uninteresting, for that matter) limit shape
theorem?

3.11 (KKK) (Thrall [134]) Let λ = (λ1, . . . , λk) be an integer partition with
all parts distinct. A shifted Young diagram of shape λ is a variant of the
ordinary Young diagram of shape λ in which for each j, the jth row of λ is
indented j − 1 positions to the left. For example, the shifted Young diagram
associated with the partition (10, 6, 5, 2, 1) is
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Given a shifted Young diagram (which we denote by λ, identifying it with the
underlying partition with distinct parts), a shifted Young tableau of shape λ
is a filling of the cells of λwith the numbers 1, . . . , |λ| that is increasing along
rows and columns. The hook of a cell (i, j) in the shifted Young diagram is
the set

H∗λ(i, j) = {(i, j′) ∈ λ : j′ ≥ j} ∪ {(i′, j) ∈ λ : i′ ≥ i}

∪ {( j + 1, j′) ∈ λ : j′ > j}.

(The last part of the hook can be interpreted as a reflection of the actual
hook of the cell (i, j) in an augmented Young diagram obtained by glueing λ
together with a copy of λ reflected along the northwest–southeast diagonal.)
The hook-length of (i, j) in λ, denoted h∗λ(i, j), is defined as the number of
cells in the hook H∗λ(i, j).
Prove the following version of the hook-length formula for shifted Young
tableaux.

Theorem 3.26 (Hook-length formula for shifted Young tableaux) The num-
ber gλ of shifted Young tableaux of shape λ is given by

gλ =
|λ|!∏

(i, j)∈λ h∗λ(i, j)
.

3.12 (a) (KK) Let n denote the shifted Young diagram (2n−1, 2n−3, . . . , 3, 1).
Show that the number of shifted Young tableaux of shape n is equal
to d�n,n , the number of n × n square Young tableaux.

(b) (KKKK) (Haiman [53]) Find an explicit bijection between the set of
shifted Young tableaux of shape n and the set of n × n square Young
tableaux.

3.13 (KKK) (Pittel–Romik [101]) Generalize the limit shape results proved in
this chapter to the case of uniformly random m × n rectangular Young
tableaux, in the case when m, n → ∞ such that m/n → α for some fixed
α ∈ (0,∞).





4

The corner growth process: limit shapes

Chapter summary. In Chapter 1 we discussed the Plancherel growth pro-
cess, which can be thought of as a type of random walk on the Young
graph consisting of all Young diagrams, in which a random Young diagram
is “grown” by starting with a diagram with a single cell and successively
adding new celles in random places chosen according to a certain proba-
bility distribution. In this chapter we consider another natural random walk
on the Young graph defined by an even simpler rule: the new cell is al-
ways added in a position chosen uniformly at random among the available
places. This random walk is called the corner growth process. Our analy-
sis of its asymptotic behavior will lead to many interesting ideas such as the
use of Legendre transforms, a model for traffic jams and hydrodynamic
limits in interacting particle systems.

4.1 A random walk on Young diagrams

In this chapter we study a random process called the corner growth process,1

a natural random walk on the Young graph, which, as you recall from Chap-
ter 1, is the directed graph consisting of all Young diagrams, with the ad-
jacency relation, denoted λ ↗ µ, being that of “adding a cell.” For consis-
tency with the existing literature on the subject, throughout this chapter we
will use the “French notation” (see p. 35) for drawing Young diagrams and
Young tableaux (Fig. 4.1).

Let us fix some notation. Throughout this chapter, we identify a Young
diagram λ with a subset of N2 corresponding to the cell positions in the
diagram, that is, the positions (i, j) that satisfy λi ≤ j, a relation that we
now denote as (i, j) ∈ λ. Denote by ext(λ) the set of external corners of λ,

211
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Figure 4.1 The Young graph, French-style.

which are the positions (i, j) ∈ N2 where a new cell may be added to λ to
form a new Young diagram (which we’ll denote λ ∪ {(i, j)}); and denote
out(λ) = |ext(λ)|, the number of external corners of λ (which is the out-
degree of λ considered as a vertex in the Young graph).

The definition of the corner growth process is as follows. Let (λ(n))∞n=1 be
a sequence of random Young diagrams such that λ(1) is the unique diagram
with one cell, and for each n ≥ 2, λ(n) is generated from λ(n−1) by adding
a cell in one of the external corners of λ(n−1), where the corner is chosen
uniformly at random from the available ones. Formally, the process can be
defined as the Markov chain (see p. 77 for the definition) with transition
rule

P
(
λ(n) = µn

∣∣∣ λ(1) = µ1, . . . , λ
(n−1) = µn−1

)
=

1
out(µn−1)

(4.1)

for any Young diagrams µ1 ↗ . . . ↗ µn with |µ1| = 1 (compare with
(1.56), and see also Exercise 1.22). Yet another equivalent way of defining
the process, in terms that will be familiar to many students of probability
theory, is that the corner growth process is the usual (nonweighted) random
walk on the Young graph that starts from the one-cell diagram at the “root”
of the graph.
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The problem we initially consider, which will occupy our attention for a
large part of this chapter, is analogous to the one we studied in connection
to the Plancherel growth process in Chapter 1, namely that of understand-
ing the shape of the Young diagram λ(n) that is typically observed as n
grows large. Fig. 4.2(a) shows a simulation of λ(n) for n = 1000. Once
again, we have an interesting limit shape phenomenon, where as n → ∞
the typical shape of the diagram converges to a limiting shape, shown in
Fig. 4.2(b). The precise result, which was proved by Hermann Rost [110]
in 1981, is as follows.

Theorem 4.1 (Limit shape theorem for the corner growth process) For a
Young diagram λ, let setλ denote the planar set associated with λ, defined
in (1.57). Let (λ(n))∞n=1 denote the corner growth process, and define a set
∆CG by

∆CG =
{
(x, y) ∈ R2 : x, y ≥ 0,

√
x +
√

y ≤ 61/4
}
.

As n → ∞, the scaled planar set n−1/2setλ(n) converges in probability to
the set ∆CG, in the same sense as that of Theorem 1.26. That is, for any
0 < ε < 1 we have that

P
(
(1 − ε)∆CG ⊆

1
√

n
setλ(n) ⊆ (1 + ε)∆CG

)
→ 1 as n→ ∞.

It is easy to verify that the set ∆CG has area 1, which is to be expected,
since setλ(n) has area n and we scale both axes by 1/

√
n to get the conver-

gence. The equation
√

x +
√

y = 61/4 for the curved part of the boundary
is symmetric in x and y, which is also not surprising, since the symme-
try is already inherent in the combinatorics of the corner growth process.
Rewriting it in terms of the Russian coordinates (1.23) gives, after a short
computation, the equation

v =

√
3

2
+

1

2
√

3
u2

(
|u| ≤

√
3
)
,

which shows that the curve is a parabola.
It is interesting to note that Rost’s motivation for considering the corner

growth process came from his study of a certain interacting particle sys-
tem (which will be discussed in Section 4.7) and was unrelated to longest
increasing subsequences. Indeed, the developments in this chapter will not
make any reference to this subject, which has been our focus in earlier
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(a) (b)

Figure 4.2 (a) A random Young diagram of order 1000 sampled
from the corner growth process. (b) The limit shape ∆CG of
Young diagrams in the corner growth process. The curved part of
the boundary is an arc of a parabola, described by the equation
√

x +
√

y = 61/4.

chapters. However, the mathematics that grew out of the analysis of the
corner growth process, aside from being quite interesting in its own right,
turned out to have direct relevance to the study of longest increasing sub-
sequences, in two separate ways. First, the methods developed to prove
Theorem 4.1 inspired a new approach (sometimes referred to as the “hy-
drodynamic” approach) to the study of longest increasing subsequences,
that led to a new proof of Theorem 1.1 on the asymptotics of the max-
imal increasing subsequence length in a random permutation and to ad-
ditional new results. We will not cover these developments here; see [2],
[52], [116], [117], [118] for more information. Second, it turned out that
certain quantities associated with the corner growth process – the so-called
passage times, defined in Section 4.3 below – actually correspond to maxi-
mal increasing subsequence lengths in random words over a finite alphabet
(which differ from permutations in that they can have repetitions). This ob-
servation led to a new and very fruitful avenue for exploration, the results
of which are described in the next chapter.

In the next section we begin the analysis that will ultimately lead us to a
proof of Theorem 4.1. A crucial first step will be to redefine the notion of
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time in the process, replacing the discrete time variable n with a continuous
parameter t.

4.2 Corner growth in continuous time

We now define a continuous-time random process (Λ(t))t≥0 that takes val-
ues in the setP∗ of Young diagrams and is equivalent to the original process
(λ(n))∞n=1, up to the time parametrization. We show two ways of doing this,
and prove that they are equivalent. The first is a general construction that
is simple to define, but will add little to our understanding. The second is a
more elaborate construction that will provide much better insight into the
corner growth process and will play a key role in our subsequent analysis
of it.

We start with the simpler method. There is a general recipe to turn a
random walk on a graph into a continuous-time process such that the se-
quence of sites it visits is a realization of the original random walk, and
such that the new time parametrization is natural in a certain sense (that
is, in technical language, the process is a Markov process). We do not
need the general theory here, so we simply give the construction in our
specific case. Let (λ(n))∞n=0 be the original corner growth process defined
above, where (for reasons of future convenience) we now consider the pro-
cess to start at n = 0 and set λ(0) to be the empty partition ∅ of order 0. Let
(Xλ)λ∈P∗ be a family of independent random variables, independent of the
process (λ(n))∞n=0, such that for each λ, Xλ has the exponential distribution
Exp(out(λ)). (For the empty partition we define out(∅) = 1.)

Now construct an increasing sequence of random variables (S n)∞n=0 de-
fined inductively by setting S 0 = 0, and for each n ≥ 1, letting S n be
defined conditionally on the value of λ(n) by

S n = S n−1 + Xλ on the event {λ(n) = λ}, (λ ∈ P(n)). (4.2)

The idea is that Xλ represents the time it will take the (n + 1)th cell to be
added to the random partition λ(n) = λ, and that the rate of growth (which is
the parameter of the exponential random variable), is equal to the number
of possible corners where growth can occur, rather than being constant
as in the original discrete-time parametrization. The random variable S n
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represents the total time since the beginning of the process until the nth
cell is added to the diagram.

The continuous-time random walk is now defined as the family (Λ(t))t≥0

of random Young diagrams given by

Λ(t) = λ(n) if S n ≤ t < S n+1.

Note that Λ(t) is defined only on the event that t < supn S n. Since it is not
a priori obvious that the sequence S n is unbounded, set Λ(t) to be some
special symbol, say∞, if t ≥ supn S n, but this is unimportant, since we will
show shortly that in fact supn S n = ∞ almost surely, which means that Λ(t)
is a well-defined random Young diagram for all t ≥ 0.

This definition of the continuous-time random walk follows a standard
recipe from probability theory, but the method is so general that it offers
little insight into our specific problem. In particular, it does not explain
why we should expect the continuous-time version of the process to be
any easier to understand or analyze than the original discrete-time process.
Our second construction is better tailored to the problem at hand, and will
make much clearer the benefits to be gained from the transition to continu-
ous time. Before introducing it, we should note that this is an example of a
more general principle at work, which is the notion of replacing a “global”
or “centralized” randomness with a “local” or “decentralized” type of ran-
dom behavior. This comes up frequently in probability theory. For example,
Hammersley’s idea, discussed in Section 1.4, of replacing a set of n uni-
formly random points on a rectangle with a Poisson point process (which is
related to the “Poissonization” concept we also encountered in Chapter 2),
falls broadly into this line of thinking. The problem with a set of n ran-
dom points on a rectangle is that when we restrict the set to a subrectangle,
whose area is some fraction α of the original rectangle, we get a set with a
random number of points, which is only approximately equal to αn. Thus,
the original process does not scale nicely. The move to a Poisson point
process made things simpler, since it created a situation in which, in a very
definite sense, each infinitesimal rectangle [x, x+dx]×[y, y+dy], makes an
independent random choice as to whether or not it will contain a Poisson
point. In this sense, the Poisson process has a “local” type of randomness.

We now wish to apply the same philosophy to our current setting, and
replace the corner growth process as we defined it by a variant in which the



4.2 Corner growth in continuous time 217

growth of the Young diagram happens in a “local” way. The way to do this
is as follows. We equip each cell position having coordinates (i, j) ∈ N2

with a random “clock” that will tell it when to add itself to the growing
sequence (λ(n))∞n=1 of Young diagrams. Of course, the rules of growth must
respect the constraints of the process, namely the requirement that a cell
can be added only once it becomes an external corner of the existing Young
diagram (i.e., once the cell to its left is already part of the Young diagram
if j > 1, and the cell below it is part of the Young diagram if i > 1). So, we
will set things up so that each cell’s clock only “starts running” once this
condition is satisfied. Furthermore, we also want the competition between
the different clocks to be “fair” so that the resulting family of growing
Young diagrams grows according to the correct dynamics prescribed by
the growth rule (4.1), with the continuous time parametrization also cor-
responding to our previous construction. The correct way to satisfy these
requirements turns out to involve the use of i.i.d. exponentially distributed
random variables for the clock times.

To make this more precise, let (τi, j)i, j∈N be a family of i.i.d. random vari-
ables with the exponential distribution Exp(1). We call τi, j the clock time
associated with position (i, j).2 We define by induction a sequence of ran-
dom Young diagrams (µ(n))∞n=0 and a sequence of random variables (Tn)∞n=0,
where, analogously to the sequences (λ(n))∞n=0 and (S n)∞n=0 from our previ-
ous construction, µ(n) will represent a randomly growing Young diagram
after n growth steps, starting from the empty diagram, and Tn will denote
the time at which the nth growth step occurred. We also denote by (in, jn)
the position where the growth occurred in the (n + 1)th step, that is, such
that µ(n+1) = µ(n) ∪ {(in, jn)}.

Set T0 = 0, µ(0) = ∅ (the empty diagram), and if Tk and µ(k) are defined
for all k ≤ n, then Tn+1 and µ(n+1) are defined as follows. For each cell po-
sition (i, j) ∈ N2, let κ(i, j) be the minimal index k ≥ 0 for which (i, j) was
an external corner of µ(k). Given the sequence µ(0), . . . , µ(n), this is defined
at least for cells that are in µ(n) or that are external corners of µ(n). Now set

(in, jn) = argmin
{
Tκ(i, j) + τi, j : (i, j) ∈ ext(µ(n))

}
, (4.3)

Tn+1 = min
{
Tκ(i, j) + τi, j : (i, j) ∈ ext(µ(n))

}
= Tκ(in, jn) + τin, jn , (4.4)



218 The corner growth process: limit shapes

µ(n+1) = µ(n) ∪ {(in, jn)}. (4.5)

Note that the argmin in the definition of (in, jn) is almost surely well
defined. For example, it is well-defined on the event that all the sums of
the form

∑
(i, j)∈A τi, j, where A ranges over finite subsets of N2, are distinct,

and this event has probability 1. So (µ(n))∞n=0 and (Tn)∞n=0 are well-defined
random processes.

Lemma 4.2 The sequence Tn is increasing, and almost surely Tn → ∞

as n→ ∞.

Proof If κ(in, jn) = n then Tn+1 = Tn + τin, jn > Tn. On the other hand, if
κ(in, jn) < n, that is, (in, jn) was already an external corner of µ(n−1), then
(in, jn) already participated in the minimum defining Tn, so we must have
(in−1, jn−1) , (in, jn) (otherwise (in, jn) will have been added to µ(n−1) and
would have been a cell, not an external corner, of µ(n)), and therefore (by
the definition of (in−1, jn−1))

Tn+1 = Tκ(in, jn) + τin, jn > Tκ(in−1, jn−1) + τin−1, jn−1 = Tn.

This proves that Tn is increasing. To prove the second claim, observe that
we have the lower bound

Tn ≥ max

 ∑
1≤ j≤µ(n)

1

τ1, j,
∑

1≤i≤(µ(n))′1

τi,1

 ,
where µ(n)

1 and (µ(n))′1 are the lengths of the first row and first column of
µ(n), respectively, which is easy to prove by induction. Since either the first
row or the first column of µ(n) must be of length at least b

√
nc, we get that

Tn ≥ min

 ∑
1≤ j≤

√
n

τ1, j,
∑

1≤i≤
√

n

τi,1

 ,
and this implies that Tn → ∞ almost surely as n → ∞ by the law of large
numbers. �

Now, as with the first construction, define a family (Φ(t))t≥0 of random
Young diagrams, by setting Φ(t) = µ(n) if Tn ≤ t < Tn+1. Because of the
lemma, Φ(t) is defined for all t ≥ 0. This completes our second construction
of a continuous-time version of the corner growth process.
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We now want to prove the equivalence of the two constructions. The
following lemma will do most of the necessary heavy lifting.

Lemma 4.3 Let n ≥ 1, and let ∅ = ν(0) ↗ ν(1) ↗ . . . ↗ ν(n) be a
deterministic sequence of Young diagrams. Define an event

E = {µ( j) = ν( j), j = 0, . . . , n}. (4.6)

Then, conditioned on the event E, the set{
Tκ(i, j) − Tn + τi, j : (i, j) ∈ ext(ν(n))

}
is a family of i.i.d. random variables with distribution Exp(1) which is in-
dependent of the family

{τp,q : (p, q) ∈ ν(n)}.

Proof Denote K = ext(ν(n)). Start by noting that the occurrence of the
event E can be decided by looking at the family of random variables τ =

(τi, j)(i, j)∈ν(n)∪K (in measure-theoretic terminology, E is in the σ-algebra gen-
erated by τ), which we will think of as being a vector made up of two parts,
writing τ = (τin, τout) where τin = (τp,q)(p,q)∈ν(n) and τout = (τi, j)(i, j)∈K .

Furthermore, inside the event E, the random variables κ(i, j) for any
(i, j) ∈ ν(n) ∪ K are constant, and the random variables T0, . . . ,Tn are de-
termined by the τin component (it is easy to see that each Tk is a sum of
some subset of the coordinates of τin that is determined by the sequence
ν(0) ↗ . . . ↗ ν(n)). So, we can represent certain conditional probabilities
given the event E as integrals on the configuration space of τ, which is the
space Ω = Rν(n)∪K

+ = Rν(n)

+ × RK
+ (where R+ = [0,∞)), relative to the proba-

bility measure M(dτ) =
∏

(i, j)∈ν(n)∪K m(dτi, j) where m(dx) = e−x1R+
(x) dx is

the Exp(1) probability distribution on R+. The event E itself can be thought
of (with a minimal abuse of notation) as a Borel subset of Ω.

Now comes a key observation, which is that, although the occurrence of
E depends on both the parts τin and τout of τ, the dependence on τout is a
fairly weak one, in the following precise sense: if (τin, τout) ∈ E, then we
will also have (τin, τ

′
out) ∈ E precisely for those τ′out = (τ′i, j)(i, j)∈K whose

coordinates satisfy

τ′i, j > Tn − Tκ(i, j) for all (i, j) ∈ K

(where Tn,Tκ(i, j) are evaluated as a function of the first component τin; see
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the comment above). The reason for this is that if these inequalities are
satisfied then by the definitions (4.3)–(4.5) the value of the argmin (ik, jk)
will not change for any 1 ≤ k ≤ n − 1, so we remain inside the event E.

It follows from this discussion that E has a kind of “skew-product” struc-
ture; more precisely, there is a Borel set A ⊂ Rν(n)

+ such that

E =
{
(τin, τout) =

(
(τp,q)(p,q)∈ν(n) , (τi, j)(i, j)∈K

)
: τin ∈ A

and τi, j > Tn − Tκ(i, j) for all (i, j) ∈ K
}
.

This can be immediately applied to our needs. Let B be a Borel subset of
Rν(n)

+ and let (ti, j)(i, j)∈K ∈ RK
+ . For each (i, j) ∈ K, define a random variable

Xi, j by Xi, j = Tκ(i, j) − Tn + τi, j. Let X denote a random variable with the
Exp(1) distribution. We have

P
[ ⋂

(i, j)∈K

{Xi, j > ti, j} ∩ {τin ∈ B}
∣∣∣∣∣ E

]

=
1

P(E)
P
[
{τin ∈ B ∩ A} ∩

⋂
(i, j)∈K

{τi, j > ti, j + Tn − Tκ(i, j)}

]
=

1
P(E)

∫
. . .

∫
B∩A

∏
(p,q)∈ν(n)

m(dτp,q)

×

∫
. . .

∫
∏

(i, j)∈K [ti, j+Tn−Tκ(i, j),∞)

∏
(i, j)∈K

m(dτi, j)

= exp

− ∑
(i, j)∈K

ti, j


×

1
P(E)

∫
. . .

∫
B∩A

exp

 ∑
(i, j)∈K

(Tκ(i, j) − Tn)

 ∏
(p,q)∈ν(n)

m(dτp,q)

=
∏

(i, j)∈K

P(X > ti, j)

×
1

P(E)

∫
. . .

∫
B∩A

exp

 ∑
(i, j)∈K

(Tκ(i, j) − Tn)

 ∏
(p,q)∈ν(n)

m(dτp,q).

This is exactly what was needed to prove the claim of the lemma, since we
showed that the conditional probability decomposes into the product of two
parts, the first of which is the product of the exponential tail probabilities
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P(X > ti, j), and the second part depending only on the set B and not on the
numbers ti, j. �

Theorem 4.4 The two constructions are equivalent. That is, we have the
equality in distribution of random processes

(Λ(t))t≥0
d
= (Φ(t))t≥0 .

Proof The claim is clearly equivalent to the statement that(
λ(n), S n

)∞
n=1

d
=

(
µ(n),Tn

)∞
n=1

,

and by induction it is easy to see that it will be enough to show that
for each n ≥ 0, the conditional distribution of (µ(n+1),Tn+1 − Tn) given
(µ(k),Tk)n

k=0 coincides with the conditional distribution of (λ(n+1), S n+1 − S n)
given (λ(k), S k)n

k=0.
Fix deterministic partitions ∅ = ν(0) ↗ . . . ↗ ν(n). As in Lemma 4.3, let

K denote the set of external corners of ν(n) and let E be the event defined in
(4.6). Let D be a Borel subset of the set {(t1, . . . , tn) : 0 < t1 < t2 < . . . < tn}

with positive Lebesgue measure, and denote B = E ∩ {(T1, . . . ,Tn) ∈ D}.
By Lemma 4.3, the conditional distribution of the family of random vari-
ables {Tκ(i, j) − Tn + τi, j : (i, j) ∈ K} given the event B is that of a family
of i.i.d. Exp(1) random variables. Furthermore, rewriting (4.3) and (4.4) in
the form

(in, jn) = argmin{Tκ(i, j) − Tn + τi, j : (i, j) ∈ ext(µ(n))},

Tn+1 − Tn = min{Tκ(i, j) − Tn + τi, j : (i, j) ∈ ext(µ(n))},

we see that the (n + 1)th growth corner (in, jn) and the (n + 1)th time incre-
ment Tn+1 − Tn are precisely the argmin and the minimum of this family,
respectively. By a well-known and easy property of exponential random
variables (see Exercise 4.1), the argmin and the minimum are indepen-
dent, the argmin is a uniformly random element of K, and the minimum
has distribution Exp(|K|). But this is exactly what we needed, since, by the
definitions (4.1) and (4.2), the conditional distribution of (λ(n), S n+1 − S n)
conditioned on the event {λ( j) = ν( j), j = 0, . . . , n} ∩ {(S 1, . . . , S n) ∈ D}
analogous to B is also that of the diagram λ(n) grown by adding a uniformly
random external corner, and an independent time increment that has the
exponential distribution Exp(|K|). This establishes the inductive claim and
finishes the proof. �
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From now on we use just the notation (Λ(t))t≥0 (and the related quanti-
ties λ(n),Tn) for the corner growth process in continuous time, and think of
Λ(t) as being defined by the formulas (4.3)–(4.5) of the second construc-
tion. Note that λ(n) and Tn can be recovered from (Λ(t))t≥0 via the obvious
relations

Tn = inf{t ≥ 0 : |Λ(t)| = n}, (4.7)

λ(n) = Λ(Tn). (4.8)

Having reformulated the process, we can now reformulate the limit shape
theorem which will be our main goal.

Theorem 4.5 (Limit shape theorem for the corner growth process in contin-
uous time) Let (Λ(t))t≥0 denote the corner growth process in continuous
time, and define

∆̃CG =
{
(x, y) ∈ R2 : x, y ≥ 0,

√
x +
√

y ≤ 1
}
. (4.9)

As t → ∞, the scaled planar set t−1setΛ(t) converges in probability to the
set ∆̃CG. That is, for any 0 < ε < 1 we have that

P
(
(1 − ε)∆̃CG ⊆ t−1setΛ(t) ⊆ (1 + ε)∆̃CG

)
→ 1 as t → ∞. (4.10)

Since ∆̃CG is obtained by scaling the set ∆CG, which has area 1, by a
factor 1/

√
6, the area of ∆̃CG is 1/6. So as a trivial corollary to (4.10) we

would get that 1
t2 |Λ(t)| → 1

6 in probability as t → ∞. Note that |Λ(Tn)| =
|λ(n)| = n, so if we were allowed to set t = Tn in the relation |Λ(t)| ≈ 1

6 t2

we would also get that Tn ≈
√

6n. This argument is made precise in the
following lemma.

Lemma 4.6 Tn/
√

6n→ 1 in probability as n→ ∞.

Proof (assuming Theorem 4.5) Fix some 0 < ε < 1. For any t > 0, if the
event

Ct =
{
(1 − ε)∆̃CG ⊆ t−1setΛ(t) ⊆ (1 + ε)∆̃CG

}
occurred, then

(1 − ε)2 t2

6
≤ |Λ(t)| ≤ (1 + ε)2 t2

6
. (4.11)
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Given an integer n ≥ 1, define numbers t− = t−(n), t+ = t+(n) by

t− =
1

1 + ε

√
6(n − 1),

t+ =
1

1 − ε

√
6(n + 1),

so that n − 1 = (1 + ε)2t2
−/6 and n + 1 = (1 − ε)2t2

+/6. We then have that on
the event Dn = Ct− ∩Ct+ , the inequalities

|Λt− | ≥ n − 1, |Λt+ | ≤ n + 1

hold. Combining this with (4.7) (and the fact that the Tn are increasing)
gives that t− < Tn < t+. In other words, we have shown that

1
1 + ε

√
n − 1

n
<

Tn
√

6n
<

1
1 − ε

√
n + 1

n

on the event Dn, for which we also know that P(Dn)→ 1 as n→ ∞. Since ε
was an arbitrary number in (0, 1), this clearly implies the claim. �

The next few sections are devoted to the proof of Theorem 4.5. To
conclude this section, we prove that the limit shape theorem for the cor-
ner growth process in continuous time implies the result for the original
discrete-time process.

Proof of Theorem 4.1 assuming Theorem 4.5 Fix an 0 < ε < 1. Let 0 <

δ < 1 be a number such that (1 + δ)2 ≤ 1 + ε and (1− δ)2 ≥ 1− ε. For n ≥ 1
let En denote the event

En =

{
1 − δ ≤

Tn
√

6n
≤ 1 + δ

}
∩

{
(1 − δ)∆̃CG ⊆

1

(1 − δ)
√

6n
setΛ((1−δ)

√
6n)

}
∩

{
1

(1 + δ)
√

6n
setΛ((1+δ)

√
6n) ⊆ (1 + δ)∆̃CG

}
.

By Lemma 4.6 and Theorem 4.5, P(En) → 1 as n → ∞. Furthermore, on
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the event En we have that

1
√

n
setλ(n) =

1
√

n
setΛ(Tn) ⊆

1
√

n
setΛ((1+δ)

√
6n)

= (1 + δ)
√

6
1

(1 + δ)
√

6n
setΛ((1+δ)

√
6n)

⊆ (1 + δ)2
√

6∆̃CG = (1 + δ)2∆CG ⊆ (1 + ε)∆CG.

By similar reasoning, we also have that 1
√

n setλ(n) ⊇ (1 − ε)∆CG on the event
En, so the result is proved. �

4.3 Last-passage percolation

The next step in our analysis will involve yet another way of thinking about
the continuous-time corner growth process, using an elegant formalism
known as last-passage percolation (also known as directed last-passage
percolation; see the box opposite for a discussion of this terminology and
its connection to a more general family of stochastic growth models). The
idea is that instead of focusing on the shape of the diagram Λ(t) at a given
time t, we look at a particular position (i, j) ∈ N2 and ask at which point
in time the cell at that position was added to the growing family of shapes.
That is, we define random variables

G(i, j) = inf{t ≥ 0 : (i, j) ∈ Λ(t)} (i, j ≥ 1),

and call G(i, j) the passage time to (i, j).
One of the benefits of working with the passage times G(i, j) is that they

satisfy a nice recurrence relation.

Lemma 4.7 The array (G(i, j))i, j≥1 satisfies the recurrence

G(i, j) = τi, j + G(i − 1, j) ∨G(i, j − 1), (4.12)

with the convention that G(i, j) = 0 if i = 0 or j = 0.

Proof The quantity G(i−1, j)∨G(i, j−1) represents the first time t when
both the cell positions (i − 1, j) and (i, j − 1) belong to the growing shape.
Equivalently, this is the first time at which (i, j) becomes an external corner
of Λ(t). That is, in our earlier notation, we have

G(i − 1, j) ∨G(i, j − 1) = Tκ(i, j).
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Last-passage percolation and stochastic growth models

Last-passage percolation belongs to a family of stochastic growth models
that are widely studied in probability theory. One can consider such models
on a lattice such as Z2,Z3, and so on, or more generally on any graph. For
illustration purposes we focus on Z2 here. The idea is that an “infection”
starts out occupying some of the sites in the lattice, and proceeds to infect
other nearby sites over time according to some probabilistic rules. Thus, the
set of infected sites at any given time forms a random “shape” that evolves
over time.

The models vary according to the specifics of how the infection spreads.
In first-passage percolation, each site of the lattice has a random clock,
independent of all other clocks – formally, a nonnegative random variable
drawn from some distribution – telling it when to become infected, and the
clock starts ticking as soon as one of the neighboring sites becomes in-
fected (in some versions of the process, the clock times are associated with
the edges rather than sites of the lattice). In directed first-passage perco-
lation, the infection spreads only in two directions, east and north, so the
rule is that a site’s clock starts ticking as soon as the site below it or the
site to its left is infected. In last-passage percolation – the growth model
we are considering, which is defined only in the directed setting – the site
can become infected only once both the site to its left and the site below it
have become infected (the directed models are usually considered as taking
place in N2, with the sites in Z2 \ N2 being initially infected).

Another degree of freedom involves the choice of probability distribu-
tion for the clock times. Although it is most natural to consider exponential
or geometric clock times, due to the “lack of memory” property of these
distributions, one can consider arbitrary distributions. Many other variations
and generalizations (to other graphs, different infection rules etc.) have been
considered in the literature. For more details, see [15], [86].

Similarly, by the definition of G(i, j) we can write

G(i, j) = Tγ(i, j),

where γ(i, j) is defined as the minimal index n ≥ 0 for which (i, j) ∈ λ(n)

when i, j ≥ 1, or as 0 if i < 0 or j < 0. So (4.12) reduces to the claim that
Tγ(i, j) = Tκ(i, j) + τi, j. That this is true can be seen by conditioning on the
value of γ(i, j): for any n ≥ 0, the equality holds on the event

{(in−1, jn−1) = (i, j)} = {γ(i, j) = n},

by (4.4). This finishes the proof. �
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The recurrence (4.12) will be one of the main tools in our analysis
of the corner growth process. There is yet another useful way of look-
ing at the passage times. It turns out that the recurrence can be solved,
leading to a more explicit, nonrecursive expression for the passage times.
In fact, this expression also suggests defining a larger family of random
variables G(a, b; i, j) that generalize the passage times G(i, j). The idea
is as follows. Given two lattice positions (a, b), (i, j) ∈ N2, denote the
partial order (a, b) � (i, j) if a ≤ i and b ≤ j, as in Section 1.4. If
(a, b) � (i, j), let Z(a, b; i, j) denote the family of lattice paths of the
form (p0, q0), (p1, q1), . . . , (pk, qk) where (p0, q0) = (a, b), (pk, qk) = (i, j)
and (p`+1, q`+1) − (p`, q`) ∈ {(1, 0), (0, 1)} for all ` (and necessarily k =

i − a + j − b). We refer to the elements of Z(a, b; i, j) as up-right paths
from (a, b) to (i, j) (see Fig. 4.3 for an illustration). Now define

G(a, b; i, j) = max

 k∑
`=0

τp` ,q` : (p`, q`)k
`=0 ∈ Z(a, b; i, j)

 . (4.13)

We will refer to G(a, b; i, j) as the passage time from (a, b) to (i, j). We
also define G(a, b, i, j) as 0 if i < a or j < b. The similarity in notation
and terminology to the earlier passage times, and the connection to the
recurrence (4.12), are explained in the folowing lemma.

Lemma 4.8 For all (i, j) ∈ N2 we have G(i, j) = G(1, 1; i, j).

Proof It is enough to observe that the family (G(1, 1; i, j))i, j≥1 satisfies the
recurrence (4.12) (with a similar convention that G(1, 1; i, j) = 0 if i = 0 or
j = 0). The reason for this is that the sum

∑k
`=0 τp` ,q` in the maximum defin-

ing G(1, 1; i, j) always contains τi, j as its last term, and after removing τi, j

one is left with a maximum of sums
∑k−1
`=0 τp` ,q` over all up-right paths from

(1, 1) to either of the two positions (i − 1, j) or (i, j − 1). This corresponds
exactly to the maximum G(i − 1, j) ∨G(i, j − 1) in (4.12). �

Note that for any initial and end positions (a, b) � (i, j), G(a, b; i, j) is
equal in distribution to the “simple” passage time G(i − a + 1, j − b + 1),
so the generalization may not seem particularly far-reaching; however, we
shall see that considering the more general passage times is nonetheless
helpful.

Another observation that we will use is the trivial fact that G(a, b; i, j)
is monotone nonincreasing in (a, b) and nondecreasing in (i, j), that is, we
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Figure 4.3 An up-right path from (1, 1) to (6, 5).

have

G(a′, b′; i, j) ≥ G(a, b; i, j) ≤ G(a, b; i′, j′) (4.14)

whenever (a′, b′) � (a, b) � (i, j) � (i′, j′).
The process of passage times (G(i, j))i, j≥1 has many remarkable proper-

ties. One notable result is an explicit formula for the marginal distribution
function of G(i, j) for each (i, j), which we discuss in the next chapter.
This formula relates G(i, j) to maximal eigenvalue distributions from ran-
dom matrix theory and has other useful and surprising consequences. In
this chapter we use other nice properties of the passage times to derive our
limit shape theorem for the corner growth process. A key idea, which we
now introduce, is to compare the passage times with those of a modified
“slowed-down” version of the growth process.

The idea is as follows. Fix a parameter 0 < α < 1. We augment the array
of clock times (τi, j)i, j≥1 with additional clock times in the row and column
with index 0, by letting τ0,0, (τi,0)i≥1, (τ0, j) j≥1 be a family of independent
random variables, independent of the existing τi, j, whose distributions are
given by

τ0,0 = 0, (4.15)

τi,0 ∼ Exp(α) (i ≥ 1), (4.16)

τ0, j ∼ Exp(1 − α) ( j ≥ 1). (4.17)

With these new clock times, we consider the passage times in (4.13) as
being defined for any a, b, i, j ≥ 0. For i, j ≥ 0, denote

Gα(i, j) = G(0, 0; i, j).
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We refer to Gα(i, j) as the slowed down passage time to (i, j) with pa-
rameter α. (Note that the value of α will be fixed throughout most of the
discussion, until a crucial moment at which we optimize a certain inequal-
ity over all values of α. To avoid tedious language and notation, we usually
speak of the process of slowed down passage times without explicit men-
tion of the value of α, and similarly omit α from the notation for various
quantities where there is no risk of confusion.) The terminology is justified
by the fact that

G(i, j) ≤ Gα(i, j) (4.18)

(a special case of (4.14)). Another, more precise, connection between the
original and slowed down passage times is given in the relation

Gα(k, `) = max
1≤i≤k

{
Gα(i, 0) + G(i, 1; k, `)

}
∨ max

1≤ j≤`

{
Gα(0, j) + Gα(1, j; k, `)

)
(k, ` ≥ 1), (4.19)

which follows directly from the definition (4.13), encoding the fact that
an up-right path from (0, 0) to (k, `) must travel a certain number of steps
along either the x- or y-axes before visiting a point of the form (i, 1) or
(1, i) with i ≥ 1. Note that the slowed down passage times (Gα(i, j))i, j≥0

also satisfy the recurrence (4.12) for all i, j ≥ 0, except of course that the
values along the x- and y-axes are not zero.

Our next goal is to reach a good understanding of the behavior of the
slowed down passage times (Gα(i, j))i, j≥0. We pursue this in the next sec-
tion. When combined with the relations (4.18) and (4.19), these insights
will later allow us to analyze the original passage times and eventually to
prove the limit shape result.

4.4 Analysis of the slowed down passage times

Consider the increments of the slowed down passage times Gα(i, j) in the
x- and y-directions, namely

X(i, j) = Gα(i, j) −Gα(i − 1, j),
Y(i, j) = Gα(i, j) −Gα(i, j − 1),

(i, j ≥ 0).

The next lemma recasts the recurrence (4.12) into a new form involving
the arrays (X(i, j))i, j≥0, (Y(i, j))i, j≥0.
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Lemma 4.9 For a real number s denote s+ = s∨0. The increments X(i, j)
and Y(i, j) satisfy the recurrence relations

X(i, j) = τi, j + (X(i, j − 1) − Y(i − 1, j))+, (4.20)

Y(i, j) = τi, j + (Y(i − 1, j) − X(i, j − 1))+. (4.21)

Proof Using (4.12) we can write

X(i, j) = τi, j + Gα(i − 1, j) ∨Gα(i, j − 1) −Gα(i − 1, j)

= τi, j + (Gα(i, j − 1) −Gα(i − 1, j)) ∨ 0

= τi, j + (X(i, j − 1) − Y(i − 1, j)) ∨ 0

= τi, j + (X(i, j − 1) − Y(i − 1, j))+.

A symmetric computation for Y(i, j) yields (4.21). �

The next lemma states a curious distributional identity that gives a hint
as to why the new recurrences (4.20), (4.21) may be interesting.

Lemma 4.10 Let 0 < α < 1. Let X,Y,Z be independent random variables
such that X ∼ Exp(α), Y ∼ Exp(1 − α) and Z ∼ Exp(1). Define three
random variables U,V,W by

U = Z + (X − Y)+,

V = Z + (Y − X)+,

W = X ∧ Y.

Then we have the equality in distribution (U,V,W) d
= (X,Y,Z).

Proof The joint density of X,Y,Z is fX,Y,Z(x, y, z) = α(1 − α)e−αx−(1−α)y−z.
For the transformed vector (U,V,W) we can write (U,V,W) = T (X,Y,Z)
where T : [0,∞)3 → [0,∞)3 is the transformation

(u, v,w) = T (x, y, z) =

(z, z + y − x, x) if x ≤ y,

(z + x − y, z, y) if x > y.
(4.22)

Note that u ≤ v if and only if x ≤ y, that T is a piecewise linear map,
and that T is invertible and satisfies T−1 = T (check this separately for
each of the two linear maps). In particular, the Jacobian of T (which is the
determinant of the linear maps) is ±1. By a standard change of variables
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formula from probability theory ([111], Theorem 7.26), the joint density of
U,V,W is given by

fU,V,W(u, v,w) = fX,Y,Z(T−1(u, v,w)) =

 fX,Y,Z(w,w + v − u, u) if u ≤ v,

fX,Y,Z(w + u − v,w, v) if u > v.

From this it is easy to check directly that fU,V,W(u, v,w) = fX,Y,Z(u, v,w) for
all u, v,w ≥ 0. �

A doubly infinite path ((in, jn))n∈Z in (N ∪ {0})2 is called a down-right
path if for any n ∈ Z we have (in, jn)− (in−1, jn−1) ∈ {(1, 0), (0,−1)}. We as-
sociate with every such path a family (Wn)n∈Z of random variables defined
by

Wn =

X(in, jn) if (in, jn) − (in−1, jn−1) = (1, 0),

Y(in−1, jn−1) if (in, jn) − (in−1, jn−1) = (0,−1).
(4.23)

Lemma 4.11 For any down-right path ((in, jn))n∈Z, the family (Wn)n∈Z is
a family of independent random variables, and for each n the distribution
of Wn is given by

Wn ∼

Exp(α) if (in, jn) − (in−1, jn−1) = (1, 0),

Exp(1 − α) if (in, jn) − (in−1, jn−1) = (0,−1).

Proof We prove this first for paths which straddle the x- and y-axes, that
is, have the property that for some M > 0, in = 0 if n < −M and jn = 0
if n > M. Such a path can be thought of as tracing out the boundary of a
Young diagram ν, as illustrated in Fig. 4.4. The proof will be by induction
on the size of ν. For the empty diagram, we have

(Wn)n∈Z = {X(i, 0), i = 1, 2, . . .} ∪ {Y(0, j), j = 1, 2, . . .}.

Since X(i, 0) = τi,0 and Y(0, j) = τ0, j, the claim is true by the definitions
(4.15)–(4.17).

Next, assume the claim is true for ν, and let µ be a Young diagram such
that ν ↗ µ. Since µ is obtained from ν by adding a cell which has its top-
right corner at some position (i, j) ∈ N2, the lattice path associated with
µ will be obtained from the path of ν by replacing a triple of successive
points of the form (i − 1, j), (i − 1, j − 1), (i, j − 1) with the triple (i −
1, j), (i, j), (i, j−1) (see Fig. 4.4). So, in the family (Wn)n∈Z associated with ν
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Figure 4.4 A down-right path straddling the x- and y-axes traces
out the boundary of a Young diagram. Adding the cell with
top-right corner (i, j) will result in a new Young diagram
associated with a new down-right path.

(which satisfies the inductive hypothesis), the variables Y(i−1, j), X(i, j−1)
will be replaced with X(i, j),Y(i, j) to obtain the new family associated
with µ. By the recurrences (4.20), (4.21), the new variables are obtained
from the old ones exactly according to the recipe of Lemma 4.10 (where
the input for the “Z” variable is τi, j, which is trivially independent of the
family (Wn)n∈Z). We conclude using the lemma that the random variables
in the new family are all independent and have the correct distributions.

To conclude, note that for a general down-right path ((in, jn))n∈Z, any
finite subpath ((in, jn))−M≤n≤M is shared with some path from the class dis-
cussed above. It follows that the claim of the lemma is true for any finite
subset of the variables (Wn)n∈Z, but then it is also true for the entire fam-
ily since the distribution of a random process is determined by its finite-
dimensional marginals. �

From Lemma 4.11 it follows in particular that for any fixed j ≥ 0, the
x-increments along the jth row (X(i, j))∞i=1 form a family of i.i.d. random
variables with distribution Exp(α), and similarly, for any fixed i ≥ 0, the y-
increments along the ith column (Y(i, j))∞j=1 form a family of i.i.d. random
variables with distribution Exp(1 − α). This has several important conse-
quences. First, since the slowed down passage time Gα(i, j) can be written
as the sum of increments Gα(i, j) =

∑i
k=1 X(k, 0) +

∑ j
`=1 Y(i, `), it follows
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immediately that its expected value is given by

EGα(i, j) =
i
α

+
j

1 − α
. (4.24)

Second, combining (4.24) with the relation (4.18) and setting α = 1/2 gives
the rough bound

EG(i, j) ≤ 2(i + j) (i, j ≥ 1), (4.25)

for the rate of growth of the original passage times, which will also be use-
ful later. Third, we have the following important result about the asymptotic
behavior of the slowed down passage times.

Theorem 4.12 Denote Ψα(x, y) = x
α

+
y

1−α . For any x, y > 0 we have the
almost sure convergence

1
n

Gα(bnxc, bnyc)→ Ψα(x, y) as n→ ∞. (4.26)

Proof Use the representation Gα(i, j) =
∑i

k=1 X(k, 0) +
∑ j
`=1 Y(i, `) with

i = bnxc, j = bnyc. For the first sum, the strong law of large numbers gives
the almost sure convergence 1

n

∑i
k=1 X(k, 0) → x/α as n → ∞. For the re-

maining sum 1
n

∑ j
`=1 Y(i, `), the strong law of large numbers in its usual

form does not apply, because the variables over which we are summing
change with n. Nonetheless, 1

n

∑ j
`=1 Y(i, `) is an empirical average of i.i.d.

Exp(1) random variables, so we can go “under the hood” of the machin-
ery of probability theory and use standard estimates from one of the proofs
of the strong law of large numbers. According to this estimate (see Exer-
cise 4.3), there is a constant C > 0 such that for any ε > 0 we have

P
(∣∣∣∣∣∣1n

j∑
`=1

Y(i, `) −
y

1 − α

∣∣∣∣∣∣ > ε
)

= P


∣∣∣∣∣∣∣1n

j∑
`=1

Y(0, `) −
y

1 − α

∣∣∣∣∣∣∣ > ε
 ≤ C

n2ε4 .

By the Borel-Cantelli lemma this implies that almost surely 1
n

∑ j
`=1 Y(i, `)→

y/(1 − α) as n→ ∞, and completes the proof. �

4.5 Existence of the limit shape

In this section we prove the existence of the limit shape in the corner growth
process, without yet being able to prove the explicit formula for it. We start
by proving a result on the asymptotic behavior of the passage times G(i, j).
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A main idea is that the passage times satisfy a superadditivity property,
which makes it possible to use Kingman’s subadditive ergodic theorem
(discussed in the Appendix).

Theorem 4.13 (Asymptotics of the passage times) There exists a function
Ψ : [0,∞)2 → [0,∞) such that for all x, y ≥ 0, if ((in, jn))∞n=1 is a sequence
of positions in N2 such that 1

n (in, jn) → (x, y) as n → ∞, then we have the
almost sure convergence

1
n

G(in, jn)→ Ψ(x, y) as n→ ∞. (4.27)

Furthermore, Ψ has the following properties:

1. Continuity: Ψ is continuous.
2. Monotonicity: Ψ is monotone nondecreasing in both arguments.
3. Symmetry: Ψ(x, y) = Ψ(y, x).
4. Concavity: Ψ satisfies

Ψ(α(x1, y1) + (1 − α)(x2, y2)) ≥ αΨ(x1, y1) + (1 − α)Ψ(x2, y2)

for all 0 ≤ α ≤ 1, x1, x2, y1, y2 ≥ 0.
5. Superadditivity: Ψ satisfies

Ψ(x1 + x2, y1 + y2) ≥ Ψ(x1, y1) + Ψ(x2, y2) (4.28)

for all x1, x2, y1, y2 ≥ 0.
6. Homogeneity: Ψ(αx, αy) = αΨ(x, y) for all x, y, α ≥ 0.

Proof The proof proceeds in several steps where we initially define Ψ on
a limited range of values (x, y) and then extend its definition, proving the
claimed properties along the way. In steps 1–3 that follow, x, y are assumed
to take positive values, and we prove only a special case of (4.27), namely
the fact that almost surely

1
n

G(bnxc, bnyc)→ Ψ(x, y) as n→ ∞ (4.29)

(which we then show implies (4.27)).
Step 1: positive integers. Assume that x, y ∈ N. Define a family (Vm,n)0≤m<n

of random variables by

Vm,n = G(mx + 1,my + 1; nx, ny).

We claim that the array (−Vm,n)0≤m<n satisfies the assumptions of the i.i.d.



234 The corner growth process: limit shapes

case of Kingman’s subadditive ergodic theorem (Theorem A.3 in the Ap-
pendix). Conditions 2 and 3 of the theorem are obvious. Condition 1 trans-
lates to the discrete superadditivity property

G(1, 1; nx, ny) ≥ G(1, 1; mx,my) + G(mx + 1,my + 1; nx, ny), (4.30)

which is immediate from (4.13), since the right-hand side represents the
maximum of sums of the form

∑
j τk j,` j over a family of increasing lattice

paths that start at (1, 1), move north and east until getting to (mx,my), then
jumps to (mx+1,my+1) and then again moves north and east until reaching
(nx, ny). (Compare to the verification of superadditivity in Exercise 1.2.)
Condition 4 follows from (4.25).

The conclusion is that there is a function Ψ : N2 → [0,∞) such that
almost surely, for any x, y ∈ N we have

1
n

G(nx, ny) =
1
n

G(1, 1; nx, ny) = V0,n → Ψ(x, y) as n→ ∞.

The fact that G(i, j) is symmetric in i, j and monotone nondecreasing in
each implies the analogous symmetry and monotonicity properties for Ψ.
The homogeneity property follows for α ∈ N by setting x′ = αx, y′ = αy
and taking the limit as n→ ∞ of the equation 1

nG(nx′, ny′) = α 1
αnG(αnx, αny).

The superadditivity property (4.28) also follows (for x1, y1, x2, y2 ∈ N)
by writing its discrete analogue

1
n

G(n(x1 + x2), n(y1 + y2))

≥
1
n

G(nx1, ny1) +
1
n

G(nx1 + 1, ny1 + 1; n(x1 + x2), n(y1 + y2), (4.31)

which holds for a similar reason as that explained for (4.30), and tak-
ing the limit as n → ∞. The left-hand side converges almost surely to
the left-hand side of (4.28). The first summand on the right-hand side of
(4.31) converges almost surely to Ψ(x1, y1), the first summand of (4.28).
The second summand on the right-hand side of (4.31) does not necessarily
converge almost surely to Ψ(x2, y2); however, it is equal in distribution to
1
nG(1, 1; nx2, ny2), which does converge almost surely to Ψ(x2, y2). We can
exploit this convergence by arguing that as a consequence, the random vari-
able 1

nG(nx1 + 1, ny1 + 1; n(x1 + x2), n(y1 + y2) converges to Ψ(x2, y2) in the
weaker sense of convergence in probability (this is true since the limiting
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random variable is a constant). By a standard fact from probability the-
ory (Exercise 4.2), we can also infer that there is almost sure convergence
along a subsequence. In combination with the observations about the other
terms, this is enough to imply (4.28).

Step 2: positive rationals. Assume that x, y ∈ Q ∩ (0,∞). In this case,
write x and y as x = s/q, y = t/q where q, s, t ∈ N. We extend the definition
of Ψ to a function Ψ : (Q ∩ (0,∞))2 → [0,∞) by setting

Ψ(x, y) =
1
q

Ψ(qx, qy).

It is easy to check that this definition is independent of the representation
of x, y as fractions, by the homogeneity we showed for integer α, x and
y, and that the extended function Ψ for rational points also inherits the
monotonicity, symmetry, superadditivity, and homogeneity (with rational
α > 0). The fact that 1

nG(bnxc, bnyc) → Ψ(x, y) almost surely as n → ∞
follows by taking the limit as n→ ∞ in the chain of inequalities

1
n

G(bn/qcqx, bn/qcqy) ≤
1
n

G(bnxc, bnyc)

≤
1
n

G((bn/qc + 1)qx, (bn/qc + 1)qy).

Step 3: positive reals. Assume that x, y ∈ (0,∞). Extend Ψ to a function
Ψ : (0,∞)2 → [0,∞) by setting for arbitrary real x, y > 0

Ψ(x, y) = sup{Ψ(u, v) : 0 < u < x, 0 < v < y and u, v ∈ Q}.

First, note that this definition is consistent with the existing definition,
since, if x, y > 0 are rational, then by the monotonicity property the right-
hand side is bounded from above by Ψ(x, y) and (by monotonicity and ho-
mogeneity) bounded from below by Ψ((1 − ε)(x, y)) = (1 − ε)Ψ(x, y) for
any (rational!) 0 < ε < 1.

It is now straightforward to show that the monotonicity, symmetry, su-
peradditivity, and homogeneity properties hold also for the extended func-
tion. The details are left to the reader.

To conclude the list of claimed properties, note that the superaddivity
and homogeneity properties imply that Ψ is concave, since we can write

Ψ(α(x1, y1) + (1 − α)(x2, y2)) ≥ Ψ(α(x1, y1)) + Ψ((1 − α)(x2, y2))

= αΨ(x1, y1) + (1 − α)Ψ(x2, y2).



236 The corner growth process: limit shapes

Continuity follows by a general well-known fact that a concave function
on an open region of Rd is continuous (see [105], Theorem 10.1).

We now prove the convergence (4.29) for arbitrary real x, y > 0. Fix
some rational ε > 0. For any rational u, v > 0 satisfying u < x < (1 +

ε)u, v < y < (1 + ε)v, we have the inequalities

1
n

G(bnuc, bnvc) ≤
1
n

G(bnxc, bnyc) ≤
1
n

G(bn(1 + ε)uc, bn(1 + ε)vc).

Taking the limit as n→ ∞ and using the convergence we already know for
rational points, and the homogeneity property, shows that almost surely,

Ψ(u, v) ≤ lim inf
n→∞

1
n

G(bnxc, bnyc) ≤ lim sup
n→∞

1
n

G(bnxc, bnyc)

≤ Ψ((1 + ε)(u, v)) = (1 + ε)Ψ(u, v).

Letting u↗ x and v↗ y implies that (almost surely)

Ψ(x, y) ≤ lim inf
n→∞

1
n

G(bnxc, bnyc)

≤ lim sup
n→∞

1
n

G(bnxc, bnyc) ≤ (1 + ε)Ψ(x, y).

Since ε was an arbitrary positive rational number, we get the desired claim
that 1

nG(bnxc, bnyc)→ Ψ(x, y) almost surely as n→ ∞.
To conclude this part of the proof, we show that (4.29) implies (4.27).

If n−1(in, jn) → (x, y) where x, y > 0, then, taking positive real numbers
x′, x′′, y′, y′′ such that x′ < x < x′′ and y′ < y < y′′, we have that

1
n

G(bnx′c, bny′c) ≤
1
n

G(in, jn) ≤ G(bnx′′c, bny′′c)

if n is large enough. Letting n→ ∞ shows that almost surely

Ψ(x′, y′) ≤ lim inf
n→∞

1
n

G(in, jn) ≤ lim sup
n→∞

1
n

G(in, jn) ≤ Ψ(x′′, y′′).

Now using homogeneity as we did in an earlier part of the proof (for ex-
ample taking x′ = (1 − ε)x, y′ = (1 − ε)y, x′′ = (1 + ε)x, y′′ = (1 + ε)y
for some arbitrary positive ε), this implies easily that 1

nG(in, jn) → Ψ(x, y)
almost surely.

Step 4: extension to the x- and y-axes. To prove that Ψ can be extended
to a continuous function on [0,∞)2, we derive upper and lower bounds
for Ψ(x, y) that become sharp as the point (x, y) approaches the axes. Let
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x, y > 0. Use the relation (4.18) with (i, j) = (bnxc, bnyc). Dividing both
sides by n and letting n→ ∞ gives (using (4.26)) that

Ψ(x, y) ≤ Ψα(x, y) =
x
α

+
y

1 − α
. (4.32)

Now recall that α can take an arbitrary value in (0, 1). Choosing the value
α =

√
x/

(√
x +
√

y
)

minimizes the right-hand side and gives the bound

Ψ(x, y) ≤
(√

x +
√

y
)2
. (4.33)

(Remarkably, it turns out that the right-hand side is the correct formula
for Ψ(x, y), but we will prove this only in the next section.) In the other
direction, noting the fact that 1

nG(bnxc, bnyc) ≥ 1
n

∑bnxc
i=1 τi,0 and letting n →

∞, using the strong law of large numbers we see that Ψ(x, y) ≥ x. Similar
reasoning gives Ψ(x, y) ≥ y, so together we have the lower bound

Ψ(x, y) ≥ x ∨ y. (4.34)

The upper and lower bounds in (4.33) and (4.34) both converge to z as (x, y)
converges to a point (z, 0) on the x-axis or to a point (0, z) on the y-axis. It
follows that if we set Ψ(z, 0) = Ψ(0, z) = z then Ψ extends to a continuous
function on [0,∞)2. All the properties we claimed for Ψ trivially carry over
to the extended function by continuity.

Finally, we prove that (4.27) holds when n−1(in, jn) → (x, y) where the
point (x, y) lies on the x- or y-axes. This involves a monotonicity argument
similar to the one used previously. For example, assume that x = 0 (the
case y = 0 is similar). In this case, take arbitrary positive numbers y′, y′′

satisfying y′ < y < y′′ and a number x′′ > 0. For large enough n we have
that

1
n

G(1, bny′c) ≤
1
n

G(in, jn) ≤
1
n

G(bnx′′c, bny′′c).

Letting n→ ∞ gives that almost surely,

y′ = Ψ(0, y) ≤ lim inf
n→∞

1
n

G(in, jn) ≤ lim sup
n→∞

1
n

G(in, jn) ≤ Ψ(x′′, y′′),

where the limit on the left-hand side follows from the strong law of large
numbers (since G(1, j) =

∑ j
k=1 τ1, j). Once again, the limit (4.27) follows by

taking the limit as y′ ↗ y, y′′ ↘ y and x′′ ↘ x. �

We will now use Theorem 4.13 to prove an existence result about the
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Figure 4.5 Illustration of the claim of Lemma 4.14.

convergence of the corner growth process to a limit shape. The limit shape
is defined in terms of the (still unknown) function Ψ(x, y) by

DCG =
{
(x, y) ∈ [0,∞)2 : Ψ(x, y) ≤ 1

}
. (4.35)

Lemma 4.14 For any 0 < ε < 1 there exist points (x1, y1), . . . , (xk, yk),
(u1, v1), . . . , (u`, v`) ∈ R2

+ = [0,∞)2 such that Ψ(xi, yi) < 1 for all 1 ≤ i ≤ k,
Ψ(u j, v j) > 1 for all 1 ≤ j ≤ `, and such that the following relations hold:

(1 − ε)DCG ⊆

k⋃
i=1

(
[0, xi] × [0, yi]

)
,

R2
+ \ (1 + ε)DCG ⊆

⋃̀
j=1

(
(u j,∞) × (v j,∞)

)
.

The claim of the lemma is illustrated in Fig. 4.5.

Proof By the continuity of Ψ, the set (1 − ε)DCG is a compact set, and
by the homogeneity property it can also be written as Ψ−1([0, 1 − ε]). It
follows that the family of sets {[0, x) × [0, y) : Ψ(x, y) < 1} is a covering
of (1 − ε)DCG by sets that are (relatively) open in [0,∞)2, so the first claim
follows from the Heine-Borel theorem.

Similarly, to prove the second claim, let M > 0 be a sufficiently large
number so that the set (1 + ε)DCG is contained in [0,M]2. It will be enough
(check this!) to show that there are points (u1, v1), . . . , (u`, v`) ∈ R2

+ such
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that

[0, 2M]2 \ (1 + ε)DCG ⊆
⋃̀
j=1

(
(u j, 2M] × (v j, 2M]

)
.

This follows from a compactness argument similar to the one used in the
proof of the first claim. �

Theorem 4.15 As t → ∞, the scaled planar set t−1setΛ(t) converges in
probability, in the same sense as before, to the set DCG.

Proof Fix 0 < ε < 1. Let the points (x1, y1), . . . , (xk, yk), (u1, v1), . . . , (u`, v`)
be as in Lemma 4.14 above. By Theorem 4.13, the event

Ft =

k⋂
i=1

{
G(dtxie, dtyie) < t

}
∩

⋂̀
j=1

{
G(btuic, btvic) > t

}
has probability that converges to 1 as t → ∞. But, note that for any
(a, b) ∈ N2, G(a, b) < t implies that (a, b) is the position of the top-right
corner of a cell in Λ(t), so the planar set setΛ(t) contains the set [0, a]×[0, b].
It follows that on the event Ft we have

1
t

setΛ(t) ⊇

k⋃
i=1

( [
0, t−1dtxie

]
×

[
0, t−1dtyie

] )
⊇ (1 − ε)DCG. (4.36)

Similarly, if G(a, b) > t then (a− 1, b− 1) is not the position of the bottom-
left corner of a cell in Λ(t), which implies the relation R2

+ \ setΛ(t) ⊇ (a −
1,∞) × (b − 1,∞). Thus on the event Ft we have that

R2
+ \

1
t

setΛ(t) ⊇
⋃̀
j=1

([
t−1btu jc,∞

)
×

[
t−1btv jc,∞

))
⊇ R2

+ \ (1 + ε)DCG,

and therefore that
1
t

setΛ(t) ⊆ (1 + ε)DCG. (4.37)

The fact that for any ε > 0, (4.36) and (4.37) hold with asymptotically high
probability as t → ∞ is exactly the claim that was to be shown. �

4.6 Recovering the limit shape

Our remaining goal on the path to proving the limit shape theorem for the
corner growth process is to show that the limit shape DCG coincides with
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the set ∆̃CG defined in (4.9). The idea is to take the limit of the relation
(4.19) as n → ∞. This will provide us with a relation between the known
function Ψα(x, y) and the unknown function Ψ(x, y). The result is as fol-
lows.

Theorem 4.16 For any x, y ≥ 0 and 0 < α < 1 we have

Ψα(x, y) = max
0≤u≤x

{ u
α

+ Ψ(x − u, y)
}
∨ max

0≤v≤x

{ v
1 − α

+ Ψ(x, y − v)
}
. (4.38)

Proof Let 0 ≤ u ≤ x. Using (4.19) we can write that

Gα(1 + bnxc,1 + bnyc)

= max
1≤i≤1+bnxc

{
Gα(i, 0) + G(i, 1; 1 + bnxc, 1 + bnyc)

}
∨ max

1≤ j≤bnyc

{
Gα(0, j) + G(1, j; bnxc, bnyc)

}
≥ Gα(1 + bnuc, 0) + G(1 + bnuc, 1; 1 + bnxc, 1 + bnyc).

Dividing this inequality by n and letting n → ∞, the left-hand side con-
verges almost surely to Ψα(x, y). On the right-hand side, the first term
1
nGα(1 + bnuc, 0) converges almost surely to Ψα(u, 0) = u/α. The second
term 1

nG(1 + bnuc, 1; 1 + bnxc, 1 + bnyc) is handled by observing that it is
equal in distribution to 1

nG(1 + bnxc − bnuc, 1 + bnyc − bnvc), and there-
fore converges in probability to Ψ(x − u, y). As before, this implies (Ex-
ercise 4.2) almost sure convergence along a subsequence, so, by looking
at the three almost sure limits along that subsequence, we deduce that
Ψα(x, y) ≥ u

α
+ Ψ(x − u, y). Since this is true for any 0 ≤ u ≤ x we get

that

Ψα(x, y) ≥ max
0≤u≤x

{ u
α

+ Ψ(x − u, y)
}
.

A symmetric argument shows that

Ψα(x, y) ≥ max
0≤v≤x

{ v
1 − α

+ Ψ(x, y − v)
}
,

so we conclude that the right-hand side of (4.38) is a lower bound for
Ψ(x, y).

To establish the same expression as an upper bound for Ψ(x, y), start
with the observation that the maxima on the right-hand side of (4.19) can be
bounded from above by slightly modified maxima where the indices i and j
range over sets whose cardinality does not grow with n. More precisely, for
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any k, ` ≥ 1, given integers 1 ≤ i1 < . . . < is ≤ k and 1 ≤ j1 < . . . < jt ≤ `,
we have that

max
1≤i≤k

{
Gα(i, 0) + G(i, 1; k, `)

}
≤ max

1≤d≤s−1

{
Gα(id+1, 0) + G(id, 1; k, `)

}
,

max
1≤ j≤`

{
Gα(0, j) + G(1, j; k, `)

}
≤ max

1≤d≤t−1

{
Gα(0, jd+1) + G(1, jd; k, `)

}
.

(These relations follow easily from the monotonicity property (4.14).) So,
we have the upper bound

Gα(k, `) ≤ max
1≤d≤s−1

{
Gα(id+1, 0) + G(id, 1; k, `)

}
∨ max

1≤d≤t−1

{
Gα(0, jd+1) + G(1, jd; k, `)

}
. (4.39)

Apply this with the parameters

k = 1 + bnxc, ` = 1 + bnyc,

id = 1 + bnxd/qc, jd = 1 + bnyd/qc (1 ≤ d ≤ q),

where q ≥ 1 is some fixed integer. Dividing both sides of (4.39) by n
and letting n → ∞, the same subsequence trick used above implies the
inequality

Ψα(x, y) ≤ max
1≤d≤q

{
(d + 1)x/q

α
+ Ψ(x − (dx/q), y)

}
∨ max

1≤d≤q

{
(d + 1)y/q

1 − α
+ Ψ(x, y − (dy/q))

}
. (4.40)

(Note that we can get almost sure convergence along the same subse-
quence simultaneously for all the values of id and jd by taking nested sub-
sequences, since the number of points id and jd does not grow with n.)

This was true for arbitrary q ≥ 1. Letting q → ∞, the continuity of Ψ

ensures that the right-hand side of (4.40) converges to the right-hand side
of (4.38), which completes the proof of the upper bound. �

We have reduced the problem of the limit shape in the corner growth
process to the problem of finding (and proving uniqueness of) a function
Ψ : [0,∞)2 → [0,∞) satisfying the properties listed in Theorem 4.13 and
the relation (4.38). It is helpful to think of (4.38) as an (uncountably in-
finite) system of equations for Ψ(x, y) in terms of Ψα. The information
encoded in this system turns out to be equivalent to a statement about
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Legendre transforms, so we can use well-known properties of these trans-
forms to find Ψ.

Let us start by simplifying (4.38) to bring it to a more tractable form.
First, we will actually need to use it only with the values x = y = 1 (but
arbitrary 0 < α < 1). In this special case we can write

1
α

+
1

1 − α
= Ψα(1, 1)

= max
0≤u≤1

( u
α

+ Ψ(1 − u, 1)
)
∨ max

0≤u≤1

( u
1 − α

+ Ψ(1, 1 − u)
)
.

Because of the symmetry of Ψ, the two maxima differ only in the explicit
terms u/α, u/(1 − α), so we see that for α ≤ 1/2 the first maximum is
the dominant one and for α > 1/2 the second maximum dominates. Fur-
thermore, both sides of the equation are symmetric in α and 1 − α, so it
is enough to look at values α ≤ 1/2. Denoting f (u) = −Ψ(1 − u, 1) and
replacing the variable α with s = 1/α, we therefore have that

s2

s − 1
= max

0≤u≤1
(su − f (u)) (s ≥ 2). (4.41)

Note that f , which we regard as a function on [0, 1], is monotone non-
decreasing, convex, continuous, and satisfies f (1) = −1. As a final step,
extend f to a function f̃ : R→ R ∪ {∞} in a rather trivial way by setting

f̃ (u) =

 f (u) if 0 ≤ u ≤ 1,

∞ otherwise,

and noting that (4.41) can be rewritten as the statement that

s2

s − 1
= sup

u∈R

(
su − f̃ (u)

)
(s ≥ 2). (4.42)

The reason this is useful is that the operation that takes a convex function
g : R→ R∪ {−∞,∞} and returns the function g∗(s) = supu∈R (su − g(u)) is
a well-known operation, known as the Legendre transform. The function
g∗(s) is referred to as the Legendre transform, or convex dual, of g. It is
easy (and recommended as an exercise) to check that g∗(s) is also convex.

A fundamental property of the Legendre transform is that it is its own
inverse. Its precise formulation is as follows.
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The Legendre transform

The Legendre transform of a convex function g : R → R ∪ {∞} is defined
by (4.43). In the simplest case when g is differentiable and strictly convex, g∗

can be computed by solving a maximization problem, leading to an equiva-
lent definition in terms of the implicit pair of equations

g∗(p) = xp − g(x), p = g′(x). (4.45)

This gives a recipe for computing g∗ by solving the equation p = g′(x) for x to
obtain x = x(p) = (g′)−1(p), which is then substituted into the first equation
in (4.45). The equations (4.45) also have a simple geometric interpretation,
shown in the figure below. The elegant fact that the same recipe can be used
to recover g from g∗ was discovered in 1787 by the French mathematician
Adrien-Marie Legendre.

The Legendre transform (and
its higher-dimensional general-
ization of the same name) ap-
pears in several places in math-
ematics and physics. Perhaps
most notably, it is of funda-
mental importance in mechan-
ics, where it is used to show the
equivalence of the Lagrangian
and Hamiltonian formulations
of the laws of mechanics. For
more details, see [9], [105].

-

6

g(x)

px

r
r

x

slope= p6
?

g∗(p)

y = g(x)

The geometric meaning of g∗(p)

Theorem 4.17 Let g : R → R ∪ {−∞,∞} be a convex function that is
lower-semicontinuous (that is, g−1((t,∞]) is an open set for any t ∈ R).
Denote

h(s) = g∗(s) = sup
u∈R
{su − g(u)} (s ∈ R). (4.43)

Then we have that

g(u) = h∗(u) = sup
s∈R
{su − h(s)} (u ∈ R). (4.44)

For the proof of this easy result, see [115, Appendix C] or [105, Sec-
tion 12]. See the box for some additional background on the Legendre
transform, its geometric meaning and its importance in mathematics.

By the properties of f mentioned previously, the extended function f̃ is
convex and lower-semicontinuous. Let h(s) = f̃ ∗(s) = sup{us − f̃ (u) : u ∈
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R}. We know from (4.42) that h(s) = s2/(s − 1) for s ≥ 2, but in order to
make use of Theorem 4.17 to recover f̃ , we need to know h(s) for all real
values of s. We claim that h(s) = h(2) = 4 for all s < 2. To see this, first
note that in the particular case g = f̃ , the supremum in the definition (4.43)
of h can be taken over u ≥ 0. It follows immediately that h is monotone
nondecreasing, and this implies that h(s) ≤ h(2) = 4 for all s ≤ 2. On the
other hand, since h is convex, it satisfies the inequality

h(y) − h(x)
y − x

≤
h(z) − h(y)

z − y

for any real numbers x < y < z. Taking y = 2 and letting z↘ 2 gives

4 − h(x)
2 − x

≤ lim
z↘2

h(z) − 4
z − 2

= h′(2+) =
d
ds

∣∣∣s=2

(
s2

s − 1

)
= 0

that is, h(x) ≥ 4, for all x < 2. Thus, we have shown that

h(s) =

4 if s < 2,
s2

s−1 if s ≥ 2.

We can now compute f̃ (or, rather, f , which is the only part of f̃ that
interests us) using (4.44). We have

f (u) = sup
s∈R
{us − h(s)} = sup

s≥2
{us − h(s)} (0 ≤ u ≤ 1),

where the second equality holds since h(s) is constant on (−∞, 2]. For u = 1
we already know f (u) = −1. For 0 ≤ u < 1, the function gu(s) = us − h(s)
has a stationary point (which, it is easy to check, is a global maximum) at
the point s∗ = s∗(u) satisfying

0 = g′u(s∗) = 1 − u −
1

(s∗ − 1)2 .

This gives s∗ = 1 + 1/
√

1 − u and therefore, after a quick computation,

f (u) = us∗ − h(s∗) = −(1 +
√

1 − u)2.

We have found an explicit formula for f . From here, it it a short step to the
following important result.

Theorem 4.18 For x, y ≥ 0 we have

Ψ(x, y) = (
√

x +
√

y)2. (4.46)
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Proof If Φ(x, y) = (
√

x +
√

y)2, then Φ(x, 1) = (1 +
√

x)2 = − f (1 −
x) = Ψ(x, 1) for all x ∈ [0, 1]. By the symmetry of Φ and Ψ we also
have Φ(1, y) = Ψ(1, y) for all y ∈ [0, 1]. Both Φ and Ψ are homogeneous
functions, so, since they coincide on the set {(x, 0) : 0 ≤ x ≤ 1} ∪ {(0, y) :
0 ≤ y ≤ 1}, they are equal everywhere. �

Using (4.46) we see that the sets ∆̃CG and DCG defined in (4.9) and (4.35)
are equal. This was the last missing piece of the puzzle, so the proof of
Theorem 4.5 (and therefore also of Theorem 4.1) is complete.

4.7 Rost’s particle process

In Chapter 3 we studied random square Young tableaux, which we saw can
also be interpreted as a type of “growth process” for Young diagrams grow-
ing from the empty diagram to the square diagram of given order n. We then
observed that this process can also be interpreted as an interacting particle
system. The corner growth process in continuous time has an analogous
interpretation as a system of interacting particles on a one-dimensional lat-
tice, which is quite natural and interesting in its own right. In the literature
on interacting particle systems this process is known by a somewhat tech-
nical name.3 To simplify the terminology, here we will refer to it as Rost’s
particle process. It can be thought of as a simple model for a traffic jam, or
as a queueing system consisting of a line of customers visiting a succession
of service stations. In his paper [110] in which he proved the limit shape
theorem for the corner growth process, Rost originally proved a result on
the limiting behavior of this particle system and the limit shape theorem
was derived as an application. Here we take the opposite route.

In Rost’s particle process, particles (which can be visualized, for exam-
ple, as cars backed up along a road) move randomly on the sites of the
integer lattice Z as a function of a continuous time parameter t ≥ 0. Each
site can contain at most one particle. Initially, particles occupy the posi-
tions 0,−1,−2, . . . of the lattice, and the positions 1, 2, . . . are vacant; this
is the “infinite traffic jam.” Subsequently, each particle moves one step to
the right at random times. A particle can only move to the right if the space
to its right is vacant. Once a particle has reached a given position and the
space to the right of that position becomes vacant, the time it takes the
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particle to move to the right is an Exp(1)-distributed random variable, in-
dependent of all other sources of randomness.

Label the particles with the labels 1, 2, . . ., as counted from the “front
of the line,” so that the particle with label i is the particle that started in
position −i + 1. Formally, the randomness input into the process is a family
(τi, j)i, j≥1 of i.i.d. random variables with distribution Exp(1), where τi, j is
interpreted as the time it took particle number i to make its jth move to the
right (from position j − i to position j − i + 1) once it arrived in position
j − i and position j − i + 1 has become vacant.

Given the array (τi, j)i, j≥1 it is possible to compute where any particle is at
any given time. A convenient way to do this, which will immediately reveal
the connection to the corner growth process, is as follows. For i, j ≥ 1
denote by G(i, j) the time (starting from time 0) it will take particle i to
reach position j − i + 1 (i.e., to complete its jth move to the right). By the
rules we specified, the random variables G(i, j) satisfy the recurrence

G(i, j) = G(i, j − 1) ∨G(i − 1, j) + τi, j, (4.47)

since G(i, j−1) represents the time when particle i arrived in position j− i,
and G(i−1, j) represents the time when particle i−1 departed from position
j − i + 1 (leaving it vacant); at the latter of these two times, particle i is
ready to make its jth move to the right and the (i, j)th random clock “starts
ticking.” The recurrence (4.47) holds for all i, j ≥ 1 with the convention
that G(k, 0) = G(0, k) = 0 for all k ≥ 1 (it is easy to see why this convention
is needed). Since this is the same recurrence as (4.12), we have proved the
following result.

Lemma 4.19 Rost’s particle process is equivalent to the corner growth
process in continuous time. More precisely, the array (G(i, j))i, j≥1 as de-
fined earlier is equal in distribution to the family of passage times in the
corner growth process.

It is worth noting that there is a second, equivalent way of defining Rost’s
particle process that is slightly more elegant and used in much of the litera-
ture on the subject. In this version, each lattice position k is equipped with
a standard Poisson process of random times on [0,∞) that dictate when
a particle occupying the position will attempt to move to the right. Each
time this “Poisson clock” rings, if the position is empty, or if the position
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is occupied by a particle but the position to its right is also occupied, then
nothing happens; if the position is occupied by a particle and the position
to the right is vacant, the particle moves to the right. The different Poisson
processes associated with different lattice positions are all independent.

When defined this way, the process is a special case of a process known
as the totally asymmetric simple exclusion process (usually abbreviated
to TASEP), part of an even larger family of models known as exclusion
processes. We will not go into the more general theory of these processes,
but the box on the next page provides some more background.

It is not hard to check that the definition in terms of Poisson processes
is equivalent to the first one we gave earlier. The equivalence is related
to the standard connection between Poisson processes and the exponential
distribution, and to the fact that it does not matter whether we associate the
random clock times to lattice positions or to individual particle/vacancy
pairs, as long as they are all independent.

Let us now explore some consequences of the equivalence between Rost’s
particle process and the corner growth process. One natural question, con-
sidered by Rost, is how the entire particle configuration, considered as a
bulk mass, evolves over time at the so-called macroscopic scale in which
looks not at individual particles but rather at average densities of particles
over large regions. To formulate this question more precisely, denote by Nt

the counting measure of particles at time t (that is, Nt(E) is the number of
particles in the set E at time t). What can we say about the behavior of Nt

for large t?

First, note that the range of positions over which the interesting part of
the measure Nt is spread out is approximately [−t, t] (that is, as t grows
larger we want to look at a larger and larger range of positions – time
and space must be scaled similarly). The reason for this is as follows: the
movement of particle number 1 is particularly simple, since the time for it
to make j moves to the right is G(1, j) =

∑ j
k=1 τ1, j, a sum of j i.i.d. Exp(1)

random variables. In other words, particle 1 is executing a continuous-time
random walk in which with rate 1 it moves one step to the right. By the
strong law of large numbers we have 1

j G(1, j) → Eτ1,1 = 1 almost surely
as j → ∞. Equivalently, the position Y1(t) of particle 1 at time t, which is
a Poi(t) random variable, satisfies Y1(t)/t → 1 almost surely as t → ∞. So,
to the right of position (1 + o(1))t we expect to not find any particles – the
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Exclusion processes

The exclusion process is the name given to a family of interacting particle
systems introduced by Frank Spitzer in 1970 [123]. Given a graph G – usu-
ally taken to be a lattice (finite or infinite) such as Z, Zd or a cycle graph – an
exclusion process on G consists of an evolving configuration of particles oc-
cupying at any time some subset of the vertices (or “sites” in the probabilistic
parlance) of G and moving from one site to another at random times. The
crucial rule that gives the process its name, known as the exclusion rule, is
that each site can be occupied by at most one particle at a time. In addition,
the assumption is that the process of random times at which each particle
attempts to jump (succeeding if and only if the site it is trying to jump to is
vacant at that time) is a standard Poisson process on [0,∞), with processes
associated with different particles being independent. Furthermore, when a
particle decides to jump, it also randomly selects a site to jump to from some
specified distribution (which can depend, usually in a translation-equivariant
way, on the particle’s position).

The different exclusion processes differ in the graph G and in the distri-
bution of positions for jumping. Assume G = Z. In the totally asymmetric
simple exclusion process, or TASEP, all jumps occur one step to the right.
In the partially asymmetric simple exclusion process (PASEP), jumps
occur one step to the right with some fixed probability p ∈ (0, 1), p , 1/2, or
one step to the left with the complementary probability 1− p. The case when
p = 1/2, that is, when jumps in both directions are equally likely, is known
as the symmetric simple exclusion process. (In all the above cases, the
adjective “simple” refers to the fact that only jumps to adjacent sites are
permitted, in analogy with the classical “simple random walk” of probabil-
ity theory.) These processes along with other nonsimple variants in which
particles jump some random number of units away from their current posi-
tion, and generalizations to higher dimensions and other graphs, have been
studied extensively and are a fertile ground for the interaction of ideas from
probability theory, statistical physics, integrable systems, partial differential
equations and other areas. For more details, see [77, 78]

local density of particles will be 0 with high probability – but in position t
and slightly to the left we may find a positive density of particles trailing
the leading particle.

Similarly, we can interpret a vacant position as a type of particle, known
as a hole, and consider the position of the first hole (counting from the left,
that is, the hole that starts in position 0) – analogously and symmetrically
to the first particle, it is traveling to the left at random times with rate 1.
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In fact, the time for the first hole to move i steps to the left is exactly
G(i, 1) =

∑i
k=1 τk,1, so by a similar reasoning, the position Y∗1 (t) of the first

hole at time t satisfies Y∗1 (t)/t → −1 almost surely as t → ∞. So, to the left
of (−1 + o(1))t we expect to find only particles at time t: the “traffic jam”
hasn’t begun to unwind this far to the left, but a bit further to the right we
will find some vacant sites.

Rost’s discovery was that as one travels from position −t to position t,
the density of particles decreases from 1 to 0 in the simplest way one might
imagine, namely as a linear function. The precise result is as follows.

Theorem 4.20 (Limiting density profile in Rost’s particle process) Define
a function h : R→ [0, 1] by

h(x) =


1 if x < −1,
1
2 (1 − x) if − 1 ≤ x ≤ 1,

0 if x > 1.

(4.48)

Then h describes the limiting particle density profile in Rost’s particle pro-
cess. More precisely, for any −∞ < a < b < ∞ we have the almost sure
convergence

1
t

Nt[at, bt]→
∫ b

a
h(x) dx as t → ∞. (4.49)

Proof It is easy to see that it is enough to prove (4.49) for arbitrary a ∈ R
and b = ∞. If a > 1 then, by the preceding comments on the asymptotic
position of the leading particle, with probability 1 we’ll have Nt[at,∞) = 0
for large enough t, so indeed (4.49) holds. Similarly, if a < −1 then with
probability 1, for all t large enough the relation Nt[at,∞) = 1 + b−atc will
hold, since no particle to the left of position batc will have moved by time
t. So, we get that almost surely,

1
t

Nt[at,∞) −−−→
t→∞

−a =

∫ ∞

−a
h(x) dx.

Finally, consider −1 ≤ a ≤ 1. Note that for any k ∈ Z, any given particle
i ≥ 1 is counted in the number Nt[k,∞) of particles whose position at time
t is ≥ k if and only if G(i, k + i− 1) ≤ t (where G(i, j) is interpreted as 0 for
j ≤ 0); so, Nt[k,∞) is the maximal i satisfying this condition. The idea is
to translate this into a statement about the corner growth process (Λ(t))t≥0
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associated with the passage times (G(i, j))i, j≥1. The positions (i, j) ∈ N2 for
which G(i, j) ≤ t correspond to the top-right corners of cells in the planar
set setΛ(t), so, by Theorem 4.5, we have

1
t

Nt[at,∞)
a.s.
−−−→
t→∞

φ(a) := max{0 ≤ x ≤ 1 : Ψ(x, x + a) ≤ 1}

= max
{
0 ≤ x ≤ 1 : x + a ≤ (1 −

√
x)2

}
.

It is now easy to check that for −1 ≤ a ≤ 1 we have φ(a) = 1
4 (1 − a)2 =∫ 1

a
h(x) dx where h is defined in (4.48). �

There is another interesting way to look at Theorem 4.20. Instead of
looking at the particle density profile at some fixed time, we can look how
the profile evolves over time. That is, fixing some scaling factor n, we con-
sider the family of random measures (ν(n)

t )t≥0 on R defined by

ν(n)
t (E) = Nnt(nE).

It can be easily checked (Exercise 4.5) that Theorem 4.20 implies the fol-
lowing result.

Theorem 4.21 (Rost’s hydrodynamic limit theorem) As n→ ∞, the ran-
dom process (ν(n)

t )t≥0 converges almost surely to the deterministic family of
measures u(x, t) dx, where

u(x, t) = h
( x

t

)
=


1 if x < −t,
t − x

2t
if − t ≤ x ≤ t,

0 if x > t,

in the following precise sense: for any −∞ < a < b < ∞ and t ≥ 0 we have

ν(n)
t [a, b]→

∫ b

a
u(x, t) dx almost surely as n→ ∞.

Conceptually, the meaning of such a “hydrodynamic” limit is that we
imagine that as the scaling of time and space becomes finer and finer, the
random movement of particles converges to a continuous (and nonrandom)
“flow” and the picture resembles that of a continuous fluid. Furthermore,
the fluid obeys a continuous dynamical law: it can be checked easily that
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the function u(x, t) satisfies the partial differential equation (PDE)

∂u(x, t)
∂t

= −
∂

∂x
(u(x, t)(1 − u(x, t))) , (4.50)

a version of a PDE from fluid dynamics known as the inviscid Burgers’
equation. (At least, u satisfies the PDE wherever its partial derivatives ex-
ist. One needs to be careful around the points of nondifferentiability, but
even there one can say the equation (4.50) is satisfied if one assumes the
correct notion of a solution.) Note that u(x, t) satisfies the initial condition
u(x, 0) = 1(−∞,0)(x). In the theory of Burgers’ equation, an initial condition
with this type of jump discontinuity is known as a shock initial condition
– it is the continuous analogue of the front of a traffic jam.

The reason the PDE (4.50) gives a useful way of looking at the hydro-
dynamic limit theorem (which is equivalent to the limit shape theorem in
the corner growth process) is that the preceding results can be generalized
significantly, and in the more general formulation it is the equation (4.50)
which plays the central role. We have focused our attention on Rost’s parti-
cle process, which is an interacting particle system with a particular initial
condition. One can consider more generally the totally asymmetric simple
exclusion process (or TASEP – see the box on p. 248), which is a system of
interacting particles on Z evolving according to the same stochastic rules as
Rost’s process, except with an arbitrary initial state (formally, the config-
uration space from which the initial state can be chosen and in which the
system evolves is {0, 1}Z). One can then imagine a scenario in which the
initial state is chosen as a discrete approximation to some real-valued den-
sity profile u0 : R → [0, 1]. It turns out that, under mild assumptions, the
subsequent evolution of the system converges to the solution of the equa-
tion (4.50) with initial condition u(x, 0) = u(x). The precise formulation of
this elegant result and its proof are beyond the scope of this book; more
details can be found in [115].

We conclude this section by posing another natural question about Rost’s
process which can be easily answered using the tools we developed. This
time we focus our attention on the motion of individual particles: for each
k ≥ 1, let Yk(t) denote the position of particle number k at time t. For fixed
k, we refer to the random function (Yk(t))t≥0 as the trajectory of particle k.
It is natural to ask what is the asymptotic behavior of Yk(t). Because of the
scaling relation between the time and space coordinate, we consider this
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question not for fixed k (where the answer turns out to be trivial: the kth
particle eventually moves forward with asymptotic speed 1), but rather for
k that scales linearly with the length of the time interval in which we are
interested.

More precisely, if n is a discrete parameter that will grow large, we will
take k ≈ xn for some fixed x ≥ 0, and simultaneously speed up time by a
factor of n, to get a properly scaled particle trajectory (Yk(nt))t≥0. This leads
to the following result, which is illustrated in Fig. 4.6.

Theorem 4.22 (Limiting particle trajectories in Rost’s particle process)
Define a function F : [0,∞)2 → R by

F(t, x) =

−x if 0 ≤ t ≤ x,

t − 2
√

xt if t ≥ x.

For any t, x ≥ 0, if k = k(n) is a sequence of positive integers such that
k(n)/n→ x as n→ ∞, then we have the almost sure convergence

1
n

Yk(n)(nt)→ F(t, x) as n→ ∞.

Proof Since particle k starts in position −k + 1, we have the relation

Yk(t) = −k + 1 + max{m ≥ 0 : G(k,m) ≤ t},

so
1
n

Yk(n)(nt) =
−k(n) + 1

n
+

1
n

max{m ≥ 0 : G(k(n),m) ≤ t}

= −x +
1
n

max{m ≥ 0 : G(n · k(n)/n, n · m/n) ≤ t} + o(1).

(4.51)

If 0 ≤ t < x then using Theorem 4.13, for any m ≥ 1 we have

1
n

G(n · k(n)/n, n · m/n) ≥
1
n

G(n · k(n)/n, 1) −−−→
n→∞

Ψ(x, 0) > t,

so almost surely, for large enough values of n the maximum on the right-
hand side of (4.51) will be attained when m = 0, and we get that 1

n Yk(n)(nt)→
−x = F(t, x) almost surely.

In the other case where t ≥ x, by Theorem 4.13 and obvious monotonic-
ity considerations which we leave to the reader to make precise, the last
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Figure 4.6 Simulated particle trajectories in Rost’s particle
process at several scales: (a) 8 particles; (b) 50 particles; (c) 400
particles (every eighth particle trajectory is shown). (d) The
limiting trajectories. (In all four figures the vertical axis
represents time.)

expression is seen to converge almost surely as n→ ∞ to

−x + max{y ≥ 0 : Ψ(x, y) ≤ t} = −x + (
√

t −
√

x)2,

which is again equal to F(t, x). �

4.8 The multicorner growth process

We now turn to another direction in which the results of the previous
sections can be extended. The last-passage percolation formalism we de-
veloped suggests a large family of processes in which the random clock
times τi, j can be a family of i.i.d. random variables sampled from some
arbitrary distribution on [0,∞). Some results, and in particular an asymp-
totic shape theorem analogous to Theorem 4.13 based on a use of the
subadditive ergodic theorem, can be proved in this generality (see [115],
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Theorem 2.1). Unfortunately, the exponential distribution is almost the
only case for which the limit shape can be found explicitly (and, as we
see in the next chapter, for which many other quantities of interest can be
computed precisely).

It turns out however that there is another family of distributions other
than the exponential distributions for which the last-passage percolation
model can be analyzed in a similar level of detail and precision. These are
the geometric distributions, the discrete-time analogues of the exponential
distribution. Furthermore, the last-passage percolation process associated
with the geometric distributions has an interpretation as a growth process of
random Young diagrams that is itself very natural. It is also satisfying that
this process can be analyzed in a manner almost identical to the analysis
of the original corner growth process – all the proofs remain valid after
making a few small modifications that we will point out.

Let us start by describing the random growth process, which we call
the multicorner growth process, and then explain the connection to geo-
metric clock times. Fix a parameter 0 < p < 1 that will remain constant
throughout the discussion, and will be referred to as the growth rate pa-
rameter. The multicorner growth process is a growing family (λ(n))∞n=0 of
random Young diagrams that evolves (in discrete time) according to the
following rules: first, λ(0) = ∅, the empty diagram; second, for each n, the
(n + 1)th diagram λ(n+1) is obtained from λ(n) by tossing a coin with bias p
independently for each external corner (i, j) of λ(n) and adding the cell in
position (i, j) if the coin toss was successful. Thus, at any transition from
time n to n + 1, the number of new cells that get added to the diagram is
random and varies between 0 and the number of external corners of the nth
diagram.

Formally, we define the process as a Markov chain with an explicitly
given transition rule. For two Young diagrams µ, λ, denote µ ⇒λ if µ ⊆
λ ⊆ µ ∪ ext(µ), that is, if λ can be obtained from µ by adding to µ a set of
new cells consisting of some subset of its external corners. The transition
rule for the process (λ(n))∞n=0 is given by

P
(
λ(n+1) = µn+1

∣∣∣ λ(0) = µ0, . . . , λ
(n) = µn

)
= pk(1 − p)e−k (4.52)

for any Young diagrams µ0, . . . , µn+1 satisfying ∅ = µ0 ⇒ . . . ⇒µn+1, pro-
vided that the conditioning event has positive probability, and where we de-
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note e = | ext(µn)| (the number of external corners of µn) and k = |µn+1|−|µn|

(the number of cells that need to be added to get from µn to µn+1).
Note that in the special case p = 1/2, an equivalent description of the

growth rule would be that a subset of the external corners of λ(n) is cho-
sen uniformly at random, and those cells get added to the diagram. This
corresponds to a random walk on a graph that extends the Young graph
by adding self-loops and additional edges to account for the possibility of
adding more than one box at a time (i.e., the directed graph on Young di-
agrams with adjacency relation µ ⇒λ). In the case p , 1/2, the growth
process can be interpreted as a weighted random walk on the same graph.
In any case, the description using coin-tossing seems more elegant.

The definition of the multicorner growth process given above is quite in-
tuitive, but as with the case of the corner growth process, to get a good un-
derstanding of the process we need to represent it in terms of last-passage
percolation. In this case there is no need to change the time parametriza-
tion, since the discrete time parametrization we used in the definition is
already the correct one needed for the analysis. The connection to last-
passage percolation is explained in the following theorem.

Theorem 4.23 For each (i, j) ∈ N2, denote

G(i, j) = min
{
n ≥ 0 : (i, j) ∈ λ(n)

}
.

The array of random variables (G(i, j))i, j≥1 is equal in distribution to the
array of passage times in last-passage percolation defined by the recur-
rence (4.12) from a family of i.i.d. clock times (τi, j)i, j≥1 with the geometric
distribution Geom(p).

Proof Start with the passage times (G(i, j))i, j≥1 defined by (4.12) from
i.i.d. Geom(p)-distributed clock times (τi, j)i, j≥1. We can associate with these
passage times a growing family (ν(n))∞n=0 of Young diagrams, defined by

ν(n) =
{
(i, j) ∈ N2 : G(i, j) ≤ n

}
.

To prove the theorem it will be enough to show that the family (ν(n))∞n=0

is equal in distribution to the multicorner growth process as defined pre-
viously, that is, that it satisfies ν(0) = ∅ (which it does, trivially, since
G(i, j) ≥ 1 for all i, j) and the transition rule (4.52).

First, as a trivial case of (4.52) we need to check that growth from λ(n) =
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µ to λ(n+1) = λ can occur only if µ ⇒λ. This is true since the fact that
τi, j ≥ 1 for all i, j implies that the array of passage times G(i, j) is strictly
increasing by integer increments along rows and columns, so if G(i, j) ≤
n + 1 then G(i − 1, j) ∨ G(i, j − 1) ≤ n and therefore (i, j) is an external
corner of ν(n).

Second, fix deterministic Young diagrams ∅ = µ0 ⇒ . . . ⇒µn. We pro-
ceed as in the proof of Lemma 4.3. Define an event E by

E =
{
ν( j) = µ j, j = 0, . . . , n

}
,

and assume that E has positive probability. Denote K = ext(µn). Note that
the occurrence of the event E can be decided by looking at the family of
clock times τ = (τi, j)(i, j)∈µn∪K . We again consider the vector τ to be made
up of two vector components τin = (τp,q)(p,q)∈µn and τout = (τi, j)(i, j)∈K . For
each i, j ≥ 1 denote by κ(i, j) the minimal index k for which (i, j) ∈ λ(k),
and note that inside the event E, κ(i, j) is constant for each (i, j) ∈ µn ∪ K.

Now observe that E can be represented in the form

E = {τin ∈ A} ∩ {τi, j > n − κ(i, j) for all (i, j) ∈ K}

for some nonempty set A ⊂ Nµn . The reason why such a representation is
possible is easy to see: the condition in the first event in the intersection
is an event designed to guarantee that for any 0 ≤ k ≤ n and (p, q) ∈ µn,
G(p, q) = k if and only if (p, q) ∈ µk \ µk−1, and the condition in the second
event ensures that G(i, j) > n for all (i, j) ∈ K. For similar reasons, we have
a representation for the event E ∩ {λ(n+1) = µn+1} in the form

E ∩ {ν(n+1) = µn+1} = {τin ∈ A}

∩ {τi, j = n + 1 − κ(i, j) for all (i, j) ∈ µn+1 \ µn}

∩ {τi, j > n + 1 − κ(i, j) for all (i, j) ∈ K \ µn+1}

(where, importantly, the set A is the same in both representations). We
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therefore have that

P
(
ν(n+1) = µn+1 | E

)
=

P
(
E ∩

{
ν(n+1) = µn+1

})
P(E)

=

∏
(i, j)∈µn+1\µn

P(τi, j = n + 1 − κ(i, j))
∏

(i, j)∈K\µn+1

P(τi, j > n + 1 − κ(i, j))∏
(i, j)∈K

P
(
τi, j > n − κ(i, j)

)

=

∏
(i, j)∈µn+1\µn

p(1 − p)n−κ(i, j)
∏

(i, j)∈K\µn+1

(1 − p)n+1−κ(i, j)

∏
(i, j)∈K

(1 − p)n−κ(i, j))
= p|µn+1\µn |(1 − p)|K\µn+1 |,

which is exactly (4.52). �

Our final goal for this chapter is to prove the following limit shape
theorem for the multicorner growth process, which is analogous to The-
orem 4.5.

Theorem 4.24 (Limit shape theorem for the multicorner growth process4 )
Let (λ(n))∞n=0 denote as above the multicorner growth process with growth
rate parameter 0 < p < 1. Define a set ∆

p
MCG ⊂ R2 by

∆
p
MCG =

{
(x, y) : x, y ≥ 0, x + y + 2

√
(1 − p)xy ≤ p

}
. (4.53)

As n → ∞, the scaled planar set 1
n setλ(n) converges in probability to ∆

p
MCG.

That is, for any ε > 0, we have

P
(
(1 − ε)∆p

MCG ⊂
1
n

setλ(n) ⊂ (1 + ε)∆p
MCG

)
→ 1 as n→ ∞.

The curved part of the boundary of the shape ∆
p
MCG is an arc of an ellipse

whose principal axes are parallel to the u–v rotated coordinate axes. Fig. 4.7
shows the limit shapes and the associated ellipses for various values of p.
Exercises 4.12–4.13 sketch a delightful and surprising application of this
result to the study of random domino tilings.

The approach to proving Theorem 4.24 follows exactly the same steps
that were used in our proof of Theorem 4.5: first, look at generalized pas-
sage times that correspond to a slowed down version of the process for
which exact computations are possible. This provides bounds on the pas-
sage times in the original process, from which we can deduce that the pas-
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Figure 4.7 (a) The limit shape ∆
p
MCG when p = 0.7 and the

ellipse whose arc forms the curved part of the boundary of the
limit shape. (b) The limit shapes (and associated ellipses) for
p = 1/6, 1/3, 1/2, 2/3, 5/6. The triangle shape corresponds to the
limit as p↗ 1 of the shapes. For p = 1/2 the ellipse is the circle
of radius 1/2 centered at (1/2, 1/2).

sage times converge in a suitable scaling limit to an unknown limiting func-
tion Φp(x, y). Finally, the connection between the slowed down process and
the original process can be used to derive an equation relating Φp(x, y) to
the analogous, explicitly known, function for the slowed down process.
Solving this equation for Φp(x, y) turns out to be equivalent to inverting a
Legendre transform.

We start with the definition of the slowed down version of the process.
Fix a parameter r satisfying 0 < r < p (which will be analogous to the
parameter α we used for the slowed down corner growth process). Anal-
ogously to the case of the exponential clock times used before, we aug-
ment the array of i.i.d. geometric clock times (τi, j)i, j≥1 with additional clock
times for the row and column with index 0, which are taken to be random
variables τ0,0, τk,0, τ0,k for k ≥ 1 (independent of each other and of the ex-
isting clock times) whose distributions are given by

τ0,0 = 0, (4.54)

τi,0 ∼ Geom(r) (i ≥ 1), (4.55)

τ0, j ∼ Geom((p − r)/(1 − r)) ( j ≥ 1). (4.56)
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Denote as before in the augmented model

Gr(i, j) = G(0, 0; i, j)

and refer to Gr(i, j) as the slowed down passage time to (i, j) (with param-
eter r). A key property that makes the analysis of the slowed down model
possible is the following lemma, which is analogous to Lemma 4.25.

Lemma 4.25 Let 0 < r < p < 1. Let X,Y,Z be independent random
variables such that X ∼ Geom(r), Y ∼ Geom((p − r)/(1 − r)) and Z ∼
Geom(p). Define random variables U,V,W by

U = Z + (X − Y)+,

V = Z + (Y − X)+,

W = X ∧ Y.

Then we have the equality in distribution (U,V,W) d
= (X,Y,Z).

Proof Let T be the transformation defined in (4.22). If u, v,w ≥ 1 are
integers, then, by the properties of T discussed in the proof of Lemma 4.10,
when u ≤ v we have that

P(U = u,V = v,W = w) = P(Z = u, X = w,Y = v + w − u)

= p(1 − p)u−1 · r(1 − r)w−1 ·
p − r
1 − r

(
1 − p
1 − r

)v+w−u−1

= r(1 − r)u−1 ·
p − r
1 − r

(
1 − p
1 − r

)v−1

· p(1 − p)w−1

= P(X = u,Y = v,Z = w).

Similarly, when u > v, we have

P(U = u,V = v,W = w) = P(Z = v,Y = w, X = u + w − v)

= p(1 − p)v−1 · r(1 − r)u+w−v−1 ·
p − r
1 − r

(
1 − p
1 − r

)w−1

= r(1 − r)u−1 ·
p − r
1 − r

(
1 − p
1 − r

)v−1

· p(1 − p)w−1

= P(X = u,Y = v,Z = w). �
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Consider as before the x- and y-increments of the slowed down passage
times, defined by

X(i, j) = Gr(i, j) −Gr(i − 1, j),
Y(i, j) = Gr(i, j) −Gr(i, j − 1),

(i, j ≥ 0).

Lemma 4.26 For any down-right path ((in, jn))n∈Z, let the associated fam-
ily of random variables (Wn)n∈Z be defined as in (4.23) in terms of the
increment random variables X(i, j),Y(i, j). Then (Wn)n∈Z is a family of in-
dependent random variables, and for each n the distribution of Wn is given
by

Wn ∼

Geom(r) if (in, jn) − (in−1, jn−1) = (1, 0),

Geom((p − r)/(1 − r)) if (in, jn) − (in−1, jn−1) = (0,−1).

Proof The proof is identical to the proof of Lemma 4.11, except that it
uses the definition (4.54)–(4.56) of the slowed down process that is associ-
ated with the multicorner growth process, and uses Lemma 4.25 where the
proof of Lemma 4.11 made use of Lemma 4.10. �

From these results we get the following conclusions analogous to the
ones we showed in Section 4.4. First, we get a formula for the expected
value of the slowed down passage times:

EGr(i, j) =
i
r

+
(1 − r) j

p − r
. (4.57)

Second, by choosing an arbitrary value of r (for example r = p/2) in (4.57)
and using monotonicity we get an upper bound for the original passage
times which has the form

EG(i, j) ≤ Cp(i + j) (i, j ≥ 1), (4.58)

where Cp > 0 is a constant that depends on p. This will be needed for the
application of the subadditive ergodic theorem. Third, we have a result on
the asymptotic behavior of the slowed down passage times, whose proof is
completely analogous to Theorem 4.12 and is omitted.

Theorem 4.27 For any x, y > 0 we have the almost sure convergence

1
n

Gr(bnxc, bnyc)→ Φp,r(x, y) :=
x
r

+
(1 − r)y

p − r
as n→ ∞. (4.59)
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Next, with the aid of these results, we can prove a result on the asymp-
totics of the passage times in the original process.

Theorem 4.28 (Asymptotics of the passage times in the multicorner growth
process) There exists a function Φp : [0,∞)2 → [0,∞) such that for
all x, y ≥ 0, if ((in, jn))∞n=1 is a sequence of positions in N2 such that
1
n (in, jn) → (x, y) as n → ∞, then we have the almost sure convergence

1
n

G(in, jn)→ Φp(x, y) as n→ ∞. (4.60)

The function Φp satisfies the same list of properties as the function Ψ in
Theorem 4.13.

Proof The proof is identical to the proof of Theorem 4.13, except for the
following modification: to prove that Φp can be extended to a continuous
function on the x- and y-axes, observe that Φp satisfies the upper bound

Φp(x, y) ≤ Φp,r(x, y) =
x
r

+
y(1 − r)

p − r
,

analogously to (4.32). To get the best bound for a given value of p, take
r∗ = p

√
x/(
√

x +
√

(1 − p)y). For this value, we get after a short computa-
tion that

Φp(x, y) ≤
1
p

(
x + y + 2

√
(1 − p)xy

)
(4.61)

(As in the discussion of the limiting function Ψ, it will turn out at the end
of the analysis that the right-hand side of (4.61) is the correct expression
for Φp.) On the other hand, we have the fairly trivial lower bound

Φp(x, y) ≥
x
p
∨

y
p

that follows from the strong law of large numbers in an analogous manner
to (4.34). The two bounds are asymptotically sharp as (x, y) approaches the
axes, so Φp extends to a continuous function on [0,∞)2 that satisfies

Φp(z, 0) = Φp(0, z) =
z
p
. �

Using Theorem 4.28, one can prove the existence of a limit shape as we
did in Theorem 4.15. The proof of the following result is similar to the
proof of that result and is omitted.
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Theorem 4.29 Define a set

DMCG,p =
{
(x, y) ∈ [0,∞)2 : Φp(x, y) ≤ 1

}
. (4.62)

As n → ∞, the scaled planar set n−1setλ(n) converges in probability to the
set DMCG,p.

It remains to find the explicit form of the function Φp. As before, the idea
is to use the relationship between the slowed down and original passage
times to obtain an equation relating Φp to the functions Φp,r, which can
then be solved by inverting a Legendre transform. The equation, which is
analogous to (4.38) and is proved in exactly the same manner, is as follows.

Theorem 4.30 For any x, y ≥ 0 and 0 < α < 1 we have

Φp,r(x, y) = max
0≤u≤x

{u
r

+ Φp(x − u, y)
}

∨ max
0≤v≤x

{
(1 − r)v

p − r
+ Φp(x, y − v)

}
. (4.63)

Once again, it will be enough to consider (4.63) in the case x = y = 1,
where it takes the form

1
r

+
1 − r
p − r

= Φp,r(1, 1)

= max
0≤u≤1

{u
r

+ Φp(1 − u, 1)
}
∨ max

0≤u≤1

{
(1 − r)u

p − r
+ Φp(1, 1 − u)

}
.

Because of the symmetry of Φp, it is sufficient to consider the range of
values 0 < r ≤ 1 −

√
1 − p, which are the values (check!) where 1/r ≥

(1 − r)/(p − r) and therefore the first maximum dominates the second.
Denoting a function fp(u) = −Φp(1 − u, 1) and setting s = 1/r, we get the
equation

s +
s − 1

ps − 1
= max

0≤u≤1

{
su − fp(u)

} (
s ≥

1
p

(
1 +

√
1 − p

))
, (4.64)

which we recognize as having an obvious connection to a statement about
Legendre transforms.

The function fp is a monotone nondecreasing, continuous and convex
function on [0, 1] that satisfies fp(1) = −1/p. Extend it to a function on R
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by setting

f̃p(u) =

 fp(u) if 0 ≤ u ≤ 1,

∞ otherwise.

Then we can rewrite (4.64) in the from

s +
s − 1

ps − 1
= sup

u∈R

{
su − f̃p(u)

} (
s ≥

1
p

(
1 +

√
1 − p

))
.

The extended function f̃p is lower-semicontinuous and convex. Its Legen-
dre transform hp(s) = f̃ ∗p (s) = supu∈R{su − f̃p(u)} is a convex function that
satisfies hp(s) = s+ (s−1)/(ps−1) for s ≥ 1

p

(
1 +

√
1 − p

)
. Furthermore, it

is monotone nondecreasing (since the supremum in its definition is always
attained for nonnegative values of u), so, since its right-derivative at the
point s0 = 1

p

(
1 +

√
1 − p

)
satisfies

h′p(s0+) =
d
ds

∣∣∣s=s0

(
s +

s − 1
ps − 1

)
= 1 −

1 − p
(ps0 − 1)2 = 0,

it follows by an argument similar to that used in Section 4.6 that
hp(s) = hp(s0) = 2s0 for s ≤ s0. That is, we have

hp(s) =


s +

s − 1
ps − 1

if s ≥ 1
p

(
1 +

√
1 − p

)
,

2
p

(
1 +

√
1 − p

)
if s ≤ 1

p

(
1 +

√
1 − p

)
.

Applying Theorem 4.17, we can recover fp as the Legendre transform of
hp. This leads (after some trivial examination of end cases which we leave
to the reader) to the calculus problem of finding the value of s that maxi-
mizes us − s − s−1

ps−1 . The solution is

s∗ =
1
p

1 +

√
1 − p
√

1 − u


and the maximum value is us∗ − s∗ − s∗−1

ps∗−1 , which after a short computation
results in

fp(u) = −
1
p

(
2 − u + 2

√
(1 − p)(1 − u)

)
.

From this result, we can obtain, arguing exactly as in Section 4.6, the fol-
lowing result.
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Theorem 4.31 The function Φp is given by

Φp(x, y) =
1
p

(
x + y + 2

√
(1 − p)xy

)
. (4.65)

Combining (4.65) with Theorem 4.29 finishes the proof of the limit
shape theorem for the multicorner growth process, Theorem 4.24, which
was our goal.5

Exercises

4.1 (KK) Given numbers α1, . . . , αk > 0, let X1, . . . , Xk be independent random
variables such that X j ∼ Exp(α j) for 1 ≤ j ≤ k. Define random variables

Y = argmin(X1, . . . , Xk),

Z = min(X1, . . . , Xk).

Show that Y and Z are independent, Z has distribution Exp(α1 + . . . + αk),
and the distribution of Y is given by

P(Y = j) =
α j

α1 + . . . + αk
(1 ≤ j ≤ k).

4.2 (KK) Prove that if a ∈ R and (Xn)∞n=1 is a sequence of random variables,
defined on the same probability space, such that Xn → a in probability, then
there is a subsequence (Xnk )∞k=1 such that Xnk → a almost surely.

4.3 (KK) Let X1, X2, . . . , be a sequence of i.i.d. random variables such that
EX1 = 0 and EX4

1 < ∞. Prove that there exists a constant C > 0 such that
for any a > 0 we have

P


∣∣∣∣∣∣∣

n∑
k=1

Xk

∣∣∣∣∣∣∣ > a

 ≤ C
n2a4 .

4.4 (KK) Using the notation of Section 4.4, define Zi, j = min(Xi+1, j,Yi, j+1). By
strengthening the reasoning employed in Lemma 4.11, prove that the random
variables (Zi, j)∞i, j=0 form a family of i.i.d. variables with distribution Exp(1).

4.5 (KK) Prove that Theorem 4.20 implies Theorem 4.21.
4.6 (K) Prove that in the superadditivity inequality (4.28), we have equality if

and only if the vectors (x1, y1) and (x2, y2) are linearly dependent.
4.7 (KKKK) (Mountford–Guiol [90]) Let G(i, j) denote the passage times in

the corner growth process, and let Ψ(x, y) = (
√

x+
√

y)2. Prove the existence
of constants C, c, ε > 0 such that for all i, j ≥ 1 we have that

P
(

1
i + j

∣∣∣∣∣∣G(i, j) − Ψ

(
i

i + j
,

j
i + j

)∣∣∣∣∣∣ ≥ (i + j)−ε
)
≤ Ce−c(i+ j)ε .
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4.8 Given positions (a, b), (i, j) ∈ N2 with (a, b) � (i, j), the (random) unique
path in Z(a, b; i, j) for which the maximum in the definition (4.13) of the
passage times in last-passage percolation is attained is called the geodesic
from (a, b) to (i, j).

(a) (KKK) Fix x, y ≥ 0. Let ((in, jn))∞n=1 be a sequence of positions in N2

such that in/n → x, jn/n → y as n → ∞. Use the results of Exercises 4.6
and 4.7 above to show that as n→ ∞, the geodesics from (1, 1) to (in, jn)
converge almost surely after scaling to a straight line from (0, 0) to (x, y),
in the following precise sense: if we denote the geodesic from (1, 1) to
(in, jn) by (pn

k , q
n
k)an

k=0 (where clearly an = in + jn − 1), then we have that

max
0≤k≤an

∥∥∥∥∥1
n

(pn
k , q

n
k) −

k
an

(x, y)
∥∥∥∥∥ a.s.
−−−−→
n→∞

0.

(b) (KKK) Formulate and prove an analogous statement for the limit shape
of the geodesics from (0, 0) to (in, jn) in the slowed down last-passage
percolation model with parameter α > 0, defined in (4.15)–(4.17).

4.9 (KK) (Fristedt [46]) Given an integer partition λ = (λ1, . . . , λm), for each
k ≥ 1 we denote by νk = νk(λ) the number of parts of λ equal to k, and refer
to νk as the multiplicity of k in λ. The numbers (νk)∞k=1 satisfy νk ≥ 0 for
all k and

∑∞
k=1 kνk = |λ|. Conversely, it is easy to see that any sequence of

numbers satisfying these conditions is the sequence of multiplicities for a
unique partition.
Fix a number 0 < x < 1. Let N1,N2, . . . be a sequence of independent
random variables such that Nk ∼ Geom0(1 − xk), that is, P(Nk = m) =

(1 − xk)xkm for m ≥ 0, and denote N =
∑∞

k=0 kNk.

(a) Prove that N < ∞ almost surely.
(b) Let Λ be the random integer partition for which the part multiplicities are

given by N1,N2, . . .. Show that for any partition µ ∈ P∗ we have that

Px(Λ = µ) =
x|µ|

F(x)
,

where F(x) =
∏∞

k=1(1 − xm)−1. (The notation Px emphasizes the depen-
dence of the probability on the parameter x.) Deduce that

Px(N = n) =
p(n)xn

F(x)
(n ≥ 0), (4.66)

where p(n) denotes the number of partitions of n, and that for any n ≥ 0,
conditioned on the event {N = n}, Λ is uniformly distributed over the set
P(n) of partitions of order n.
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(c) Deduce from parts (a) and (b) above the identity

F(x) = 1 +

∞∑
n=1

p(n)xn.

(This is Euler’s product formula, which was also proved in Exercise 1.16.)

(d) Show that the parts of the conjugate partition Λ′, in the usual decreasing
order, can be recovered using the relation

Λ′k =

∞∑
m=k

Nm (m ≥ 1)

(with the convention that Λ′k = 0 if k is greater than the number of parts
of Λ′).

4.10 (a) (KKK) Let xn = e−π/
√

6n = 1 − π√
6n

+ O
(

1
n

)
. Using the notation of

Exercise 4.9 above, show that when the parameter x in the definition of
the random partition Λ is taken as xn, when n→ ∞ we have that

Exn (N) = n
(
1 + O

(
1
√

n

))
, (4.67)

Varxn (N) = (1 + o(1))
2
√

6
π

n3/2. (4.68)

(b) (KKK) Denote by Λ(n) the random partition Λ with the choice of pa-
rameter x = xn. Show that Λ(n) satisfies the following limit shape result:
if we define a function φn : [0,∞)→ [0,∞) encoding Λ as in (1.17) by

φn(x) = n−1/2Λ
(n)
bn1/2 x+1c,

then we have the convergence in probability

φn(x)→ −
1
c

log
(
1 − e−cx) as n→ ∞,

where c = π/
√

6. Note that this result can be interpreted in terms of the
convergence in probability of the planar set setΛ(n) to a limit set ∆Unif,
which has the symmetric description

∆Unif = {(x, y) : x, y ≥ 0, e−cx + e−cy = 1}.

However, the convergence will be in a weaker sense than that of the limit
shape theorems we proved for the Plancherel growth process and corner
growth process, since the set ∆Unif has horizontal and vertical asymptotes
so is unbounded; see Fig. 4.8.
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Figure 4.8 The limit shape ∆Unif of uniformly random partitions.

(c) (KKK) Show that the partition generating function F(x) has the asymp-
totic expansion

log F(e−s) =
π2

6s
+

1
2

log s −
1
2

log(2π) + o(1) (4.69)

as s↘ 0. (A proof can be found in [91].)

(d) (KKK) Show that as n→ ∞ we have that

Pxn (N = n) = (1 + o(1))
1√

2πVarxn (N)
. (4.70)

Note that, in view of the relations (4.67) and (4.68), this can be thought of
as the statement that the random variable N, defined as the sum of many
independent components, satisfies a “local central limit theorem at 0”;
the technique of proof should use the standard Fourier-analytic method of
proving local central limit theorems – see, e.g., chapter 3 of [33] – but is
technically hard because the variables being summed are not identically
distributed, which turns the problem into a somewhat challenging exercise
in complex analysis.

(e) (KK) Combine the relations (4.66), (4.69), and (4.70) to obtain a proof
of the Hardy–Ramanujan asymptotic formula (1.16) for p(n).
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(f) (KKKK) (Temperley [133], Szalay–Turán [130], Vershik [141]) For
each n ≥ 1, let λ(n) denote a uniformly random partition of n. Prove that
the random partitions λ(n) have the same limit shape ∆Unif as the random
partitions Λ(n); that is, they satisfy the same result as in part (b) above.

4.11 (KKKKK) A plane partition is the three-dimensional analogue of a Young
diagram. Formally, if n ≥ 0 is an integer, a plane partition of order n is an in-
finite array (ai, j)i, j≥1 of nonnegative integers such that n =

∑
i, j ai, j and such

that ai, j ≥ ai+1, j ∨ai, j+1 for all i, j ≥ 1. Graphically one can visualize a plane
partition as a stack of n unit cubes stacked against a corner of three large
walls in a monotonically decreasing fashion; ai, j corresponds to the height
of the stack of cubes above the unit square [i − 1, i] × [ j − 1, j] × {0}.
Find a formula for the limit shape for the corner growth process in three
dimensions, corresponding to a random walk on the graph of plane partitions
in which one starts with the empty plane partition of order 0 and successively
adds cubes, each time choosing the position of where to add the new cube
uniformly at random from the available positions.

4.12 A domino is a rectangle in the plane, aligned with the x- and y-axes and
having dimensions 2×1 or 1×2. A representation of a set S ⊂ R2 as a union
of dominos with disjoint interiors is called a domino tiling of S .

(a) (K) Show that the number of domino tilings of the 2×n rectangle [0, n]×
[0, 2] is Fn+1, the (n + 1)th Fibonacci number.

(b) (KKK) (Elkies–Kuperberg–Larsen–Propp [37]) Let n ≥ 1. The Aztec
diamond of order n, denoted ADn, is the union of lattice squares [ j, j +

1] × [k, k + 1], (a, b ∈ Z), that are contained in the rotated square {(x, y) :
|x|+ |y| ≤ n + 1} (see Fig. 4.9). Prove that the number of domino tilings of
ADn is 2n(n+1)/2.

(c) (KKK) (Elkies et al. [37]) In a domino tiling of ADn, a horizontal
domino is a domino of the form [a, a + 2] × [b, b + 1] for some a, b ∈ Z,
and is called north-going if a + b + n is even or south-going if a + b + n
is odd. A vertical domino has the form [a, a + 1] × [b, b + 2] for some
a, b ∈ Z, and is called west-going if a + b + n is even or east-going if
a + b + n is odd.
Prove that the following algorithm, known as the domino shuffling al-
gorithm, will recursively generate a uniformly random domino tiling of
ADn:

Step 1. Start by choosing at random one of the two tilings of AD1, each
with equal probability.

Step 2. For each 1 ≤ k ≤ n − 1, transform the tiling of ADk into a tiling
of ADk+1 by carrying out the following steps:
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Figure 4.9 The Aztec diamond of order 3 and one of its 64
domino tilings.

• Destruction: Any pair of dominos consisting of a north-going
domino directly below a south-going domino is removed; any
pair of dominos consisting of an east-going domino directly
to the left of a west-going domino is removed.

• Sliding: Each remaining domino slides one step in the direc-
tion it is heading, that is, north-going dominos to the north,
and so on. (It needs to be shown that after the sliding no two
dominos attempt to occupy the same square.)

• Creation: The dominos now occupy a region of the form
ADk+1 \ E, where (it needs to be shown) the closure of E has
the property that it can be represented in a unique way as the
union of 2 × 2 blocks with disjoint interiors. For each such
2 × 2 block, fill it with two newly created dominos which
are chosen as either two horizontal or two vertical dominos,
according to the result of a fair coin toss, performed indepen-
dently of all other random choices.

Note: As part of the proof of correctness of the algorithm, one can obtain
a proof of the claim of part (b) above.

4.13 (Jockusch-Propp-Shor [60]) Given a domino tiling of ADn, two dominos
are called adjacent if they share a lattice edge of Z2. The north arctic re-
gion of the tiling is the union of all north-going dominos that are connected
to a domino touching the “north pole” (0, n) via a chain of adjacent north-
going dominos (the reason for the name is that the dominos in this region are
“frozen” into a rigid brickwork pattern). Similarly, the south arctic region
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is the union of south-going dominos connected to the south pole (0,−n), the
east arctic region is the union of east-going dominos connected to the east
pole (−n, 0) and the west arctic region is the union of west-going dominos
connected to the west pole (n, 0). These four arctic regions are collectively
referred to as the arctic region of the tiling. The region tiled by dominos not
in the arctic region is called the temperate region.

(a) (KK) Show that the north arctic region N can be encoded in terms of a
Young diagram whose box positions (i, j) are the addresses of the north-
going dominos in N in a rotated coordinate system based at the north
pole. More precisely, position (i, j) corresponds to the 2 × 1 rectangle
[ j − i − 1, j − i + 1] × [n − i − j + 1, n − i − j + 2] (that is, a north-going
domino in the top row of ADn would have position (1, 1); the two possible
rectangles that may contain north-going dominos in the row below to the
top row are associated with positions (2, 1) and (1, 2); etc.). Prove that the
set of positions (i, j) ∈ N2 thus defined from the dominos in N is the set
of cells of a Young diagram.

(b) (KK) Show that whenever Step 2 in the domino shuffling algorithm de-
scribed above is executed to “grow” a domino tiling of ADn into a domino
tiling of ADn+1, the Young diagram encoded by the north arctic region as
described above grows exactly according to the growth rule (4.52) of the
multicorner growth process with p = 1/2.

(c) (KK) With the help of Theorem 4.24, deduce from the result of part
(d) above the following result, known as the “arctic circle” theorem (see
Fig. 4.10).

Theorem 4.32 (Arctic circle theorem for domino tilings of the Aztec dia-
mond) For each n ≥ 1, let Tn denote a uniformly random domino tiling
of the Aztec diamond ADn, and denote its temperate region by Tempn. As
n → ∞, the shape of the temperate region Tempn converges in proba-
bility after scaling to the disk D = {(x, y) : x2 + y2 ≤ 1/2} inscribed
within the diamond (the scaling limit of the discrete Aztec diamonds)
{(x, y) : |x| + |y| = 1}. More precisely, for any ε > 0 we have that

P
(
(1 − ε)D ⊂

1
n

Tempn ⊂ (1 + ε)D
)
→ 1 as n→ ∞.
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Figure 4.10 A uniformly random domino tiling of the Aztec
diamond AD50, sampled by domino shuffling.





5

The corner growth process: distributional
results

Chapter summary. In 1997, Kurt Johansson discovered that the corner
growth process we studied in the previous chapter is directly related to
longest increasing subsequences in generalized permutations. This con-
nection can be studied via the RSK algorithm, which is an extension of
the Robinson–Schensted algorithm discussed in Chapter 1, leading to a re-
markable explicit representation for the distribution of the passage times,
that is itself related to Wishart matrices from random matrix theory. Ap-
plying ideas from the theory of orthogonal polynomials and asymptotic
analysis techniques, we prove Johansson’s result that the distribution of the
passage times converges to the Tracy–Widom distribution F2.

5.1 The fluctuations of G(m, n) and the Tracy–Widom distribution

In previous chapters we studied two natural processes of randomly growing
Young diagrams, and derived the limiting shapes for both: the Plancherel
growth process, which was used in Chapter 1 to solve the Ulam–Hammersley
problem of deriving the (first-order) asymptotics of the maximal increas-
ing subsequence length in a random permutation; and the corner growth
process, which we analyzed in Chapter 4, where we also saw it bears an
interesting relation to other natural random processes such as the totally
asymmetric simple exclusion process and random domino tilings.

Although the conceptual resemblance between these two processes is
satisfying, our analysis of the corner growth process involved probabilistic
techniques with very little combinatorial content, and, in particular, had
nothing to do with the mathematics of longest increasing subsequences,
which is ostensibly the subject of this work.

273
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It may thus come as a pleasant surprise that there is a much deeper con-
nection, discovered by Kurt Johansson in 1997, between the corner growth
process, longest increasing subsequences, and many of the ideas and con-
cepts discussed in earlier chapters of this book. Our goal in this chapter is
to study this connection and pursue it to its (rather beautiful) set of logical
conclusions, following Johansson’s landmark paper [62]. Ultimately, we
will be led to a much deeper understanding of the passage times associated
with the corner growth process and the multicorner growth process. The
culmination of our efforts will be in the proof of the following result about
the limiting distribution of the passage times.

Theorem 5.1 (Limit law for the passage times) For x, y > 0 define func-
tions

Ψ(x, y) = (
√

x +
√

y)2, (5.1)

σ(x, y) = (xy)−1/6(
√

x +
√

y)4/3. (5.2)

Let (mk)∞k=1, (nk)∞k=1 be sequences of positive integers with the properties
that

mk, nk → ∞ as k → ∞, (5.3)

0 < lim inf
k→∞

mk

nk
< lim sup

k→∞

mk

nk
< ∞. (5.4)

Then as k → ∞, the passage times G(mk, nk) associated with the corner
growth process converge in distribution after rescaling to the Tracy–Widom
distribution F2 defined in (2.3). More precisely, we have

P
(
G(mk, nk) − Ψ(mk, nk)

σ(mk, nk)
≤ t

)
−−−→
k→∞

F2(t) (t ∈ R). (5.5)

Because of the connection between the corner growth process and Rost’s
particle process described in the previous chapter (Section 4.7), Theorem 5.1
can be formulated equivalently as a statement about the limiting distribu-
tion as n,m → ∞ of the time when the mth leading particle has made its
nth move in Rost’s particle process. A far-reaching generalization of this
result for the case of the Asymmetric Simple Exclusion Process (ASEP), a
generalization of Rost’s particle process in which particles can move both
to the left and to the right, was proved by Tracy and Widom [137].
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5.2 Longest increasing subsequences in generalized permutations

We start with a few fairly simple combinatorial observations. One clue that
the corner growth process and its cousin, the multicorner growth process,
may be related to longest increasing subsequences is that the definition of
the passage times in (4.13) involves taking a maximum. Johansson noticed
that, in the case of the multicorner growth process, the passage times can
in fact be interpreted literally as maximal (weakly) increasing subsequence
lengths in certain sequences of numbers that (unlike permutations) may
involve repetitions.

To make this observation precise, we make the following definitions. A
generalized permutation of length k and row bounds (m, n) is a two-line
array of integers that has the form

σ =

i1 i2 · · · ik

j1 j2 · · · jk

 ,
where 1 ≤ i1, . . . , ik ≤ m, 1 ≤ j1, . . . , jk ≤ n, and where the columns are
ordered lexicographically, in the sense that if s < t then either is < it, or
is = it and js ≤ jt. Denote by Pk

m,n the set of generalized permutations of
length k and row bounds (m, n). If σ =

(
i1 ··· ik
j1 ··· jk

)
is a generalized permuta-

tion and 1 ≤ s1 < . . . < sd ≤ k is a sequence of column positions, we refer
to the generalized permutation

( is1 ··· isd
js1 ··· jsd

)
as a subsequence of σ, and call

such a subsequence increasing if js1 ≤ . . . ≤ jsd . Note that generalized per-
mutations are indeed generalizations of ordinary permutations (interpreted
as two-line arrays in the usual way), and the definition of an increasing sub-
sequence generalizes that concept for an ordinary permutation. If σ ∈ Pk

m,n,
as for ordinary permutations let L(σ) denote the maximal length of an in-
creasing subsequence of σ. Equivalently, L(σ) is the maximal length of a
weakly increasing subsequence of the bottom row of σ.

One last definition we will need is an alternative way to encode elements
ofPk

m,n as matrices. LetMk
m,n denote the set of m×n matrices (ai, j)1≤i≤m,1≤ j≤n

with nonnegative integer entries satisfying
∑

i, j ai, j = k. We can associate
with a generalized permutation σ ∈ Pk

m,n a matrix Mσ = (ai, j)i, j ∈ M
k
m,n by

setting ai, j to be the number of columns in σ equal to
(

i
j

)
. For example, the

matrix associated with the generalized permutation

σ =

1 1 1 1 2 2 2 2 3 3
1 1 4 5 3 3 3 5 2 5

 , (5.6)
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(considered as an element of P10
3,5) is

Mσ =


2 0 0 1 1
0 0 3 0 1
0 1 0 0 1

 .
Conversely, given the matrix Mσ we can recover σ by writing a two-line
array containing ai, j copies of

(
i
j

)
for each 1 ≤ i ≤ m, 1 ≤ j ≤ n and sorting

the columns lexicographically. Thus, we have the following easy result.

Lemma 5.2 The map σ 7→ Mσ defines a bijection between Pk
m,n and

Mk
m,n.

It is natural to ask what the function σ 7→ L(σ) looks like when we
interpret generalized permutations as matrices, that is, how is L(σ) com-
puted in terms of the associated matrix Mσ. The answer to this question
involves a familiar expression from our study of last passage percolation in
the previous chapter.

Lemma 5.3 If M = (ai, j)i, j ∈ M
k
m,n and σ ∈ Pk

m,n is the generalized
permutation associated to it via the bijection of Lemma 5.2, then

L(σ) = max

 d∑
`=0

ap` ,q` : (p`, q`)d
`=0 ∈ Z(1, 1; m, n)

 (5.7)

whereZ(1, 1; m, n) is the set of up-right paths from (1, 1) to (m, n), defined
in Section 4.3.

Proof Denote the expression on the right-hand side of (5.7) by L̃(M).
First, we show that L̃(M) ≤ L(σ). Let (p`, q`)d

`=0 ∈ Z(1, 1; m, n). Let µ be
the generalized permutation

µ =

( ap0 ,q0 columns︷    ︸︸    ︷
p0

q0

· · ·

· · ·

p0

q0

ap1 ,q1 columns︷    ︸︸    ︷
p1

q1

· · ·

· · ·

p1

q1

· · ·

· · ·

apd ,qd columns︷     ︸︸     ︷
pd

qd

· · ·

· · ·

pd

qd

)
.

Then clearly µ is a subsequence of σ, and because (p`, q`)d
`=0 is an up-right

path, it is also easy to see that it is an increasing subsequence, and has
length

∑d
`=0 ap` ,q` . It follows that

∑d
`=0 ap` ,q` ≤ L(σ). Since this inequality

holds for an arbitrary up-right path in Z(1, 1; m, n), we have shown that
L̃(M) ≤ L(σ).

To see that the opposite inequality L̃(M) ≥ L(σ) holds, let µ =
(

i1 ··· is
j1 ··· js

)
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be an increasing subsequence of σ of maximal length s = L(σ). Let
(
γ1
δ1

)
,

. . . ,
(
γr
δr

)
be a list of the distinct columns of µ, in the order in which they

appear in µ; recall that each column
(
γt
δt

)
appears at most aγt ,δt times in µ, so

we have that
∑r

t=1 aγt ,δt ≥ s. But now note that by the definition of (γt, δt)r
t=1,

for each 1 ≤ t ≤ r − 1 the differences γt+1 − γt and δt+1 − δt are both
nonnegative and at least one of them is positive. It follows that there is an
up-right path (p`, q`)d

`=0 ∈ Z(1, 1; m, n) that contains all the pairs (γt, δt).
From this we get the chain of inequalities

L̃(M) ≥
d∑
`=0

ap` ,q` ≥

r∑
t=1

aγt ,δt ≥ s = L(σ),

which proves the claim. �

From now on, we also use the notation L(M) to denote the right-hand
side of (5.7), which by the above result is equal to the maximal increasing
subsequence length in σ, where σ and M are the equivalent ways of think-
ing about generalized permutations. Comparing (5.7) with (4.13), we have
the following immediate corollary.

Corollary 5.4 Let 0 < p < 1, and let (τi, j)i, j≥1 be an array of i.i.d. random
variables with the geometric distribution Geom(p). Let (G(i, j))i, j≥1 be the
passage times in last-passage percolation with the array (τi, j)i, j≥1 of clock
times, associated with the multicorner growth process (see Theorem 4.23).
For each m, n ≥ 1 let Mm,n be the matrix Mm,n = (τi, j)1≤i≤m, 1≤ j≤n. Then the
passage times have the representation

G(m, n) = L(Mm,n) (m, n ≥ 1). (5.8)

The problem of understanding the passage times in the multicorner growth
process has thus been reduced to the study of the generalized permuta-
tion statistic L(·) of a random rectangular matrix of i.i.d. geometrically dis-
tributed random variables. It is of course far from obvious that this reduc-
tion makes the problem any easier or more tractable; however, similarly
to the ideas we encountered in Chapter 1, it turns out that maximal in-
creasing subsequence lengths of generalized permutations are related to the
mathematics of Young tableaux. By using an extension of the Robinson–
Schensted algorithm discussed in Chapter 1 we will be able to derive a
striking explicit formula for the distribution function of the passage times
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(not only for the multicorner growth process, but also for the corner growth
process associated with exponentially distributed clock times), which will
be the starting point of a powerful analysis. We discuss the relevant com-
binatorial ideas in the next two sections.

5.3 Semistandard Young tableaux and the
Robinson–Schensted–Knuth algorithm

Recall from Section 1.6 that the Robinson–Schensted algorithm maps a
permutation σ ∈ Sk to a triple (λ, P,Q), where λ is a Young diagram of
order k, and P and Q are Young tableaux of shape λ. Donald E. Knuth dis-
covered [70] an extension of the algorithm to the case of generalized per-
mutations. The extended algorithm has become known as the Robinson–
Schensted–Knuth (RSK) algorithm. Starting from a generalized permu-
tation σ ∈ Pk

m,n, its output will still be a triple (λ, P,Q) where λ is a Young
diagram of order k, but now P and Q will be λ-shaped arrays of integers
that are generalizations of the “standard” kind of Young tableaux we are
used to, and are known as semistandard Young tableaux.

The basic idea is the same and involves “growing” the diagram λ and
the tableaux P and Q starting from an empty diagram. Let us start with
the tableau P: as before, it plays the role of the insertion tableau, and is
formed by the application of a sequence of insertion steps in which the
entries of the bottom row of the two-line array σ are inserted one by one
into the existing tableau, enlarging it – and the associated diagram λ – by
one cell. The insertion is performed using the same rules as described on
p. 16 (originally in the context of the patience sorting algorithm) and in
Section 1.6; the only difference is that the sequence of numbers being in-
serted may contain repetitions. For clarity, let us state how this works more
explicitly. As with the Robinson–Schensted algorithm, each entry from the
bottom row of σ is inserted into the first row of the growing tableau P,
which leads to a cascade of “bumping” events and recursive insertions into
rows below the first row, according to the following rules:

1. A number x being inserted into a row of a tableau will be placed in the
leftmost position of the row whose current entry is (strictly) bigger than
x. If there are no such positions, x is placed in an unoccupied position
to the right of all currently occupied positions.
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2. If x was placed in a position already occupied by a number y, then y
gets bumped down to the next row where it will be inserted recursively
according to rule 1 above.

As an illustration, inserting the number 2 into the tableau

1 1 2 2 4 4

3 3 4 6

4 5

results in the new tableau

1 1 2 2 2 4

3 3 4 4

4 5 6

It is useful to associate with each insertion step a bumping sequence,
which is the sequence of positions at which the entry of the tableau P
changed. In the preceding example, the bumping sequence is (5, 1), (4, 2),
(3, 3).

Next, the tableau Q plays the role of the recording tableau just as in the
Robinson–Schensted case; after each insertion step, we add a single entry
to Q by setting the entry in the just-added cell of the shape λ to the number
taken from the top row of σ directly above the bottom-row entry that was
just inserted into P. As an example, readers can verify that applying the
algorithm to the generalized permutation σ in (5.6) produces the following
insertion and recording tableaux:

1 1 2 3 3 5 5

3 5

4

1 1 1 1 2 2 3

2 2

3

From the example we see that P and Q are not arbitrary arrays of num-
bers but still have some useful monotonicity properties, although they are
not standard Young tableaux. Given a Young diagram λ, define a semis-
tandard Young tableau (or semistandard tableau) to be a filling of the
cells of λ with positive integers, such that rows are weakly increasing and
columns are strictly increasing.
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Lemma 5.5 (a) When a number x is inserted into a semistandard tableau
T , the bumping sequence (a1, 1), . . . (ak, k) is weakly monotone, that is,
ai ≥ ai+1 for all i.

(b) Given a semistandard tableau T and numbers x ≥ y, let (a1, 1), . . .,
(ak, k) and (b1, 1), . . ., (bm,m) be the bumping sequences associated
with first inserting x into T and then inserting y into the tableau ob-
tained from T by the first insertion. Then we have m ≤ k and bi ≥ ai

for 1 ≤ i ≤ m.

(c) The insertion tableau P computed by the RSK algorithm is a
semistandard tableau.

(d) The recording tableau Q computed by the RSK algorithm is a
semistandard tableau.

(e) During the application of the RSK algorithm, equal entries in the
recording tableau Q are added from left to right.

Claim (a) of Lemma 5.5 is trivial, and each of the subsequent claims is
straightforward to prove from the definitions and from the previous claims.
The formal proof is left to the reader (Exercise 5.2); for more details see
[125], Section 7.11.

Note that the last claim in the lemma is particularly useful, since it im-
plies that, as with the simpler case of the Robinson–Schensted algorithm,
the original generalized permutation σ can be recovered from the tableaux
P and Q. As before, this is done by applying a sequence of deletion steps
to the tableau P, with the starting point for each deletion being the leftmost
cell from among the cells containing the maximal entry of the recording
tableau Q. After applying the deletion to P, the cell from which the dele-
tion began is removed also from Q, and the process is repeated until both
tableaux have been “emptied.” Each deletion step also yields as a byprod-
uct a column

(
i
j

)
of σ, and Lemma 5.5(e) guarantees that this choice for

the order in which to apply the deletions is the correct one to recover the
columns of σ precisely in reverse order.

One final property of the RSK algorithm is its connection to longest
increasing subsequences, which is similar to the case of the Robinson–
Schensted algorithm.
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Lemma 5.6 If the RSK algorithm associates the triple (λ, P,Q) with the
generalized permutation σ, then we have

L(σ) = λ1 (the length of the first row of λ).

Proof If σ =
(

i1 ··· ik
j1 ··· jk

)
, recall that L(σ) is the maximal length of a weakly

increasing subsequence in the sequence J = ( j1, . . . , jk). Following the
evolution of the first row of the insertion tableau, we see that we are effec-
tively performing a patience sorting procedure on J (see Section 1.5). The
proof is now identical to the proof of Lemma 1.7. �

Summarizing the preceding discussion, we have outlined the proof of
the following important result.

Theorem 5.7 The RSK algorithm is a bijection between the set Pk
m,n of

generalized permutations of length k and row bounds (m, n) and the set of
triples (λ, P,Q) where λ is a Young diagram, P is a semistandard Young
tableau of shape λ and entries from {1, . . . ,m}, and Q is a semistandard
Young tableau of shape λ and entries from {1, . . . , n}. Under this bijection,
L(σ) is equal to the length of the first row of λ.

Exercises 5.3 and 5.4 provide some simple numerical examples, which
are highly recommended as a way to get a better intuitive feel of this elegant
but nontrivial construction.

5.4 An enumeration formula for semistandard tableaux

Another tool we need for our analysis of the passage times in the multi-
corner growth process is the following enumeration formula for semistan-
dard Young tableaux.1

Theorem 5.8 Let λ = (λ1, . . . , λm) be a Young diagram. For any n ≥ m,
the number of semistandard Young tableaux of shape λ with entries from
{1, . . . , n} is given by ∏

1≤i< j≤n

λi − λ j + j − i
j − i

, (5.9)

where λi is interpreted as 0 for i greater than the number of parts of λ.

Note that in the case n < m the requirement of strict monotonicity along
columns means that there are no semistandard tableaux of shape λ.
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Our approach to the proof of Theorem 5.8 will be to transform the prob-
lem into that of enumerating a different family of combinatorial objects
known as Gelfand–Tsetlin patterns. Formally, a Gelfand–Tsetlin (GT)
pattern with n rows is a triangular array of positive integers

G = (gi, j)1≤ j≤i≤n

such that the inequalities gi+1, j ≤ gi, j < gi+1, j+1 hold for all applicable
indices i, j. Here is an example of a pattern with five rows:

3
3 4

1 4 6
1 2 6 7

1 2 5 7 8

Given a GT pattern with n rows, we can use it to construct a semistandard
Young tableau T according to the following recipe: for each 1 ≤ i ≤ n, the
ith row of the pattern encodes a Young diagram λ(i) whose parts are

(gi,i − i, . . . , gi,2 − 2, gi,1 − 1)

with any trailing zeroes removed. With this definition, it is easy to see that
the properties of the GT pattern imply that for any 2 ≤ i ≤ n, λ(i−1) is
contained in λ(i). The semistandard Young tableau T is then defined as the
array of shape λ(n) obtained by writing for each 1 ≤ i ≤ n the entry i in all
the cells of the “skew-shape” which is the difference λ(i) \ λ(i−1) (where λ(0)

is interpreted as the empty diagram ∅) between two successive diagrams on
the list.

To illustrate this construction, the GT pattern in the preceding example
leads to the Young diagrams

λ(1) = (2),

λ(2) = (2, 2),

λ(3) = (3, 2),

λ(4) = (3, 3),

λ(5) = (3, 3, 2),
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and the associated semistandard tableau is therefore

1 1 3

2 2 4

5 5

We omit the easy verification of the fact that the array of numbers result-
ing from this construction is in general a semistandard Young tableau. We
also leave to the reader (Exercise 5.5) to verify that the construction can be
inverted, in the following precise sense.

Lemma 5.9 Let λ be a Young diagram with m parts, and let n ≥ m. Define
numbers x1, . . . , xn by

x j = λn+1− j + j (1 ≤ j ≤ n).

Then the construction above defines a bijection between the set of Gelfand–
Tsetlin patterns with n rows and bottom row (x1, . . . , xn) and the set of
semistandard Young tableaux of shape λ with entries from {1, . . . , n}.

By the lemma, the proof of Theorem 5.8 has been reduced to proving
the following result on the enumeration of GT patterns with given bottom
row.

Theorem 5.10 For any n ≥ 1 and integers 1 ≤ x1 < . . . < xn, the number
of Gelfand–Tsetlin patterns with bottom row (x1, . . . , xn) is given by∏

1≤i< j≤n

x j − xi

j − i
. (5.10)

Proof Denote by Wn(x1, . . . , xn) the number of GT patterns with bottom
row (x1, . . . , xn). By partitioning the patterns enumerated by Wn(x1, . . . , xn)
according to their (n − 1)th row (y1, . . . , yn−1), we see that the family of
functions Wn satisfies the recurrence

Wn(x1, . . . , xn) =
∑

(y1 ,...,yn−1)
∀ j x j≤y j<x j+1

Wn−1(y1, . . . , yn−1)

=

x2−1∑
y1=x1

x3−1∑
y2=x2

. . .

xn−1∑
yn−1=xn−1

Wn−1(y1, . . . , yn−1),
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or equivalently

Wn(x1, . . . , xn) =
x2

S
y1=x1

x3

S
y2=x2

. . .
xn

S
yn−1=xn−1

Wn−1(y1, . . . , yn−1), (5.11)

where we introduce a modified summation operator

b

S
u=a

f (u) =

b−1∑
u=a

f (u) (a, b ∈ Z, a < b).

It is natural to extend the definition of Sb
u=a f (u) by setting Sb

u=a f (u) = 0 if
a = b and Sb

u=a f (u) = −Sa
u=b f (u) if a > b. With this extended definition,

the recurrence (5.11) gives meaning to Wn(x1, . . . , xn) for arbitrary integer
values x1, . . . , xn. Note also the following easy facts. First, the modified
summation operator satisfies

c

S
u=a

f (u) =
b

S
u=a

f (u) +
c

S
u=b

f (u)

for any integers a, b, c. Second, if f (u1, . . . , ud) is a polynomial in u1, . . . , ud

of total degree m with a (not necessarily unique) highest-order monomial
c
∏d

j=1 uα j

j , where m =
∑

j α j, then Sb
u1=a f (u1, . . . , ud) is a polynomial in

a, b, u2, . . . , ud of total degree m + 1 which contains the two monomials
c

α1+1 bα1+1 ∏d
j=2 uα j

j and − c
α1+1 aα1+1 ∏d

j=2 uα j

j of degree m + 1.
Third, we claim that if f (y1, . . . , yn−1) is an antisymmetric polynomial in

y1, . . . , yn−1 then

g(x1, . . . , xn) =
x2

S
y1=x1

x3

S
y2=x2

. . .
xn

S
yn−1=xn−1

f (y1, . . . , yn−1)

is in turn antisymmetric in x1, . . . , xn. To check this, fix 2 ≤ j ≤ n − 2, and
write

−g(. . . , x j+1, x j, . . .)

= −

x j+1

S
y j−1=x j−1

x j

S
y j=x j+1

x j+2

S
y j+1=x j

S
[all other yi’s]

f (y1, . . . , yn−1)

= S
[other yi’s]

 x j

S
y j−1=x j−1

+

x j+1

S
y j−1=x j

 x j+1

S
y j=x j

 x j+1

S
y j+1=x j

+

x j+2

S
y j+1=x j+1

 f (y1, . . . , yn−1)
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= S
[other yi’s]

[ x j

S
y j−1=x j−1

x j+1

S
y j=x j

x j+1

S
y j+1=x j

f (y1, . . . , yn−1)

+

x j+1

S
y j−1=x j

x j+1

S
y j=x j

x j+1

S
y j+1=x j

f (y1, . . . , yn−1)

+

x j+1

S
y j−1=x j

x j+1

S
y j=x j

x j+2

S
y j+1=x j+1

f (y1, . . . , yn−1)

+

x j

S
y j−1=x j−1

x j+1

S
y j=x j

x j+2

S
y j+1=x j+1

f (y1, . . . , yn−1)
]
.

Here, we see that in the bracketed expression the first three triple summa-
tions vanish by the antisymmetry of f . This leaves

S
[other yi’s]

x j

S
y j−1=x j−1

x j+1

S
y j=x j

x j+2

S
y j+1=x j+1

f (y1, . . . , yn−1) = g(x1, . . . , xn).

We have shown that g(x1, . . . , x j+1, x j, . . . , xn) = −g(x1, . . . , x j, x j+1, . . . , xn).
The verification of antisymmetry for the remaining cases j = 1 and j = n−1
is similar and is left to the reader.

We can now prove by induction on n that Wn(x1, . . . , xn) is given by (5.10).
For n = 1 the claim is trivial. Assuming the claim is true for Wn−1, the re-
currence (5.11) gives that

Wn(x1, . . . , xn) =

n−2∏
j=1

1
j!
·

x2

S
y1=x1

x3

S
y2=x2

. . .
xn

S
yn−1=xn−1

∏
1≤i< j≤n−1

(y j − yi).

By the above observations, this is an antisymmetric polynomial of total
degree n(n − 1)/2 in x1, . . . , xn. By considering the monomial y0

1y1
2 . . . y

n−2
n−1

of the Vandermonde product being summed, we see that Wn(x1, . . . , xn) has
a highest-order monomial x0

1x1
2 . . . xn−1

n with leading coefficient
∏n−1

j=1( j!)−1.
To conclude, now use a well-known property of the Vandermonde prod-

uct
∏

1≤i< j≤n(x j − xi), namely that it is the unique (up to multiplication by a
constant) antisymmetric polynomial in n variables of total degree n(n−1)/2
(see Exercise 5.6). Together with the above observations this proves that
Wn(x1, . . . , xn) =

∏n
j=1( j!)−1 ∏

1≤i< j≤n(x j − xi). �
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5.5 The distribution of G(m, n)

Using the combinatorial tools developed in the previous sections, we are
now ready to prove an important explicit formula for the distribution of
the passage times in the corner growth process and the multicorner growth
process.

Theorem 5.11 For 0 < p < 1 and k ≥ 0 let

w(p)
k (x) =

(
x + k

k

)
(1 − p)x,

Wk(x) = xke−x.

For any m ≥ n ≥ 1, define numerical factors

Cm,n,p =
pmn · ((m − n)!)n

(1 − p)mn+n(n−1)/2 · n!
·

n−1∏
j=0

1
j!(m − n + j)!

, (5.12)

Dm,n =
1
n!

n−1∏
j=0

1
j!(m − n + j)!

. (5.13)

Then the distribution function of the passage times associated with the mul-
ticorner growth process with parameter p is given for any m ≥ n ≥ 1 by

P(G(m, n) ≤ t) = Cm,n,p

btc+n−1∑
x1,...,xn=0

∏
1≤i< j≤n

(xi − x j)2
n∏

i=1

w(p)
m−n(xi). (5.14)

The distribution function of the passage times associated with the corner
growth process is given by

P(G(m, n) ≤ t) = Dm,n

∫ t

0
. . .

∫ t

0

∏
1≤i< j≤n

(xi − x j)2
n∏

j=1

Wm−n(x j) dx1 . . . dxn.

(5.15)

Proof Denote S m,n =
∑m

i=1
∑n

j=1 τi, j, where τi, j are the Geom(p)-distributed
i.i.d. clock times associated with the multicorner growth process. Let k ≥ 0.
Conditioned on the event {S m,n = k}, the matrix Mm,n = (τi, j)1≤i≤m, 1≤ j≤n is
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inMk
m,n. For any matrix M = (ai, j)i, j ∈ M

k
m,n, we have

P(Mm,n = M) =

m∏
i=1

n∏
j=1

P(τi, j = mi, j) =
∏

i, j

(
p(1 − p)ai, j−1

)
=

(
p

1 − p

)mn

(1 − p)k.

It follows that

P(S m,n = k) =
∑

M∈Mk
m,n

P(Mm,n = M) =

(
p

1 − p

)mn

(1 − p)k
∣∣∣Mk

m,n

∣∣∣ ,
and therefore also

P(Mm,n = M | S m,n = k) =
∣∣∣Mk

m,n

∣∣∣−1
.

That is, the conditional distribution of Mm,n given the event {S m,n = k} is
the uniform distribution onMk

m,n. (The cardinality ofMk
m,n is unimportant

since it will end up cancelling out by the end of the computation, but in
case you are curious about its value, see Exercise 5.7.) We now proceed to
evaluate the probability P(G(m, n) ≤ t) by conditioning on S m,n and making
use of (5.8). Assume for convenience that t is an integer (clearly, knowing
(5.14) for integer t implies the general case). We have

P(G(m, n) ≤ t) =

∞∑
k=0

P(S m,n = k)P(G(m, n) ≤ t | S m,n = k)

=

∞∑
k=0

P(S m,n = k)P(L(Mm,n) ≤ t | S m,n = k)

=

∞∑
k=0

(
p

1 − p

)mn

(1 − p)k
∣∣∣∣{M ∈ Mk

m,n | L(M) ≤ t
}∣∣∣∣ . (5.16)

Now the RSK algorithm can be brought to bear: by the correspondence
between matrices and triples (λ, P,Q), the cardinality of the set of matrices
inMk

m,n satisfying L(M) ≤ t can be represented as∣∣∣∣{M ∈ Mk
m,n | L(M) ≤ t

}∣∣∣∣ =
∑

λ`k,λ1≤t

N(λ,m, n), (5.17)

where for a Young diagram λ of order k, N(λ,m, n) denotes the number
of pairs (P,Q) of semistandard Young tableaux of shape λ such that P has
entries from {1, . . . ,m} and Q has entries from {1, . . . , n}. Recalling that we
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assumed that m ≥ n, note that N(λ,m, n) = 0 if λ has more than n parts,
by the strict monotonicity of semistandard tableaux along columns. For λ
with at most n parts, λ j = 0 if j > n, so, by Theorem 5.8, we have

N(λ,m, n) =
∏

1≤i< j≤m

λi − λ j + j − i
j − i

·
∏

1≤i< j≤n

λi − λ j + j − i
j − i

=
Um−n

UnUm

∏
1≤i< j≤n

(
λi − λ j + j − i

)2
·

n∏
i=1

m∏
j=n+1

(λi + j − i),

where we denote Uk =
∏

1≤i< j≤k( j− i) = 1!2! . . . (k−1)!. Note that a simple

rearrangement of terms shows that Um−n/UmUn =
(∏n−1

j=0 j!(m − n + j)!
)−1

.
Now, denoting x j = λ j + n − j for j = 1, . . . , n, the x j’s satisfy
x1 > x2 > . . . > xn ≥ 0, so we can rewrite this as

N(λ,m, n) =
Um−n

UnUm

∏
1≤i< j≤n

(xi − x j)2 ·

n∏
i=1

m∏
j=n+1

(xi + j − n)

=
Um−n

UnUm

∏
1≤i< j≤n

(xi − x j)2 ·

n∏
j=1

(x j + m − n)!
x j!

=
Um−n

UnUm
((m − n)!)n

∏
1≤i< j≤n

(xi − x j)2 ·

n∏
j=1

(
x j + m − n

m − n

)
. (5.18)

The condition
∑n

j=1 λ j = k translates to
∑n

j=1 x j = k +
n(n−1)

2 , and λ1 ≤ t
translates to x1 ≤ t + n − 1. So, combining the relations (5.16)–(5.18), we
get that

P(G(m, n) ≤ t)

=

(
p

1 − p

)mn ∞∑
k=0

(1 − p)k
∑

λ`k,λ1≤t

N(λ,m, n)

= pmn(1 − p)−mn−n(n−1)/2 Um−n

UnUm
((m − n)!)n

×

∞∑
k=0


∑

0≤xn<...<x1≤t+n−1∑
j x j=k+n(n−1)/2

∏
1≤i< j≤n

(xi − x j)2
n∏

j=1

(
x j + m − n

m − n

)
· (1 − p)

∑n
j=1 x j


= n! Cm,n,p

∑
0≤xn<...<x1≤t+n−1

∏
1≤i< j≤n

(xi − x j)2
n∏

j=1

(
x j + m − n

m − n

)
· (1 − p)

∑n
j=1 x j .
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In this expression the summand is symmetric in x1, . . . , xn. Replacing the
sum by a summation over unordered sequences 0 ≤ x1, . . . , xn ≤ t + n − 1
exactly cancels out the n! factor (and does not add any new contributions
coming from vectors (x1, . . . , xn) with nondistinct coordinates, because of
the (xi − x j)2 factors), giving

Cm,n,p

t+n−1∑
x1,...,xn=0

∏
1≤i< j≤n

(xi − x j)2
n∏

j=1

(
(1 − p)x j

(
x j + m − n

m − n

))

= Cm,n,p

t+n−1∑
x1,...,xn=0

∏
1≤i< j≤n

(xi − x j)2
n∏

j=1

w(p)
m−n(x j).

This finishes the proof of (5.14).
Next, we prove (5.15) by taking a limit of (5.14) as p↘ 0 and using the

well-known fact from elementary probability that if (Xp)0<p<1 is a family

of random variables where Xp ∼ Geom(p) then pXp
d
−−→ Exp(1) as p↘ 0.

Redenote the geometric clock times τi, j discussed in the first part of
the proof by τ

(p)
i, j , to emphasize their dependence on p, and redenote the

corresponding passage times by G(p)(m, n). Let (Ti, j)i, j≥1 be an array of i.i.d.
random times with the Exp(1) distribution, and let

H(m, n) = max

 k∑
`=0

Tp` ,q` : (p`, q`)k
`=0 ∈ Z(1, 1; m, n)


be the associated passage times. Fix m ≥ n ≥ 1. By the relationship
mentioned above between the geometric and exponential distributions, we

have the convergence in distribution (pτ(p)
i, j )1≤i≤m, 1≤ j≤n

d
−−→ (Ti, j)1≤i≤m, 1≤ j≤n

as p ↘ 0. Since the summation and maximum operations are continuous,
we also get that

p G(p)(m, n)
d
−−→ H(m, n) as p↘ 0.

It follows that P(H(m, n) ≤ t) = limp↘0 P(G(p)(m, n) ≤ t/p). To evaluate
the limit, note first that, for u ≥ 0, we have that as p↘ 0,

w(p)
k (u/p) =

1
k!

k∏
j=1

(
u
p

+ j
)

(1 − p)u/p =
1
k!

uk + O(p)
pk e−u+O(p)

= (1 + O(p))
1

pkk!
(Wk(u) + O(p)),
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with the constant implicit in the big-O notation being uniform as u ranges
over a compact interval [0,T ]. Hence we can write P

(
G(p)(m, n) ≤ t

p

)
as an

approximate multidimensional Riemann sum that is seen to converge to a
corresponding multidimensional integral. That is, we have

P
(
G(p)(m, n) ≤

t
p

)

= Cm,n,p

⌊
t
p

⌋
+n−1∑

x1,...,xn=0

∏
1≤i< j≤n

(xi − x j)2
n∏

i=1

w(p)
m−n(xi)

= Cm,n,p p−n(n−1)

⌊
t
p

⌋
+n−1∑

x1,...,xn=0

∏
1≤i< j≤n

(pxi − px j)2
n∏

i=1

w(p)
m−n

(
pxi

p

)
= (1 + O(p))Cm,n,p p−n(n−1)

×

∫ t

0
. . .

∫ t

0

∏
1≤i< j≤n

(ui − u j)2
n∏

i=1

(
Wm−n(ui) + O(p)

pm−n(m − n)!

)
du1 . . . dun

pn

= (1 + O(p))
Cm,n,p p−mn

((m − n)!)n

×

∫ t

0
. . .

∫ t

0

∏
1≤i< j≤n

(ui − u j)2
n∏

i=1

Wm−n(ui) du1 . . . dun.

Taking the limit as p↘ 0 gives (5.15) with the normalization constant Dm,n

being given by (5.13), as claimed. �

5.6 The Fredholm determinant representation

For most of the remainder of the chapter, we focus on the passage times
G(m, n) in the case of the corner growth process. The case of the multi-
corner growth process can be treated using the same techniques; see Sec-
tion 5.13.

The next major step in our analysis will be to transform the represen-
tation (5.15) for the distribution function of G(m, n) into a new form in-
volving a Fredholm determinant, which is more suitable for asymptotic
analysis. The determinant involves a family of special functions called
the Laguerre polynomials, which we define now. For an integer α ≥ 0,
the Laguerre polynomials with parameter α are the family of polynomials
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(`αn (x))∞n=0 defined by

`αn (x) =

(
n!

(n + α)!

)1/2 n∑
k=0

(−1)n+k

k!

(
n + α

k + α

)
xk. (5.19)

(The Laguerre polynomials are also defined more generally for arbitrary
real α ≥ 0 by replacing factorials with gamma-function factors in the ob-
vious way, but we will need only the case of integer α.) We also define
the associated Laguerre kernels with parameter α to be the sequence of
functions Lα

n : R × R→ R, (n ≥ 0), given by

Lα
n (x, y) =

√
n(n + α) · xα/2yα/2e−x/2e−y/2

×


`αn (x)`αn−1(y) − `αn−1(x)`αn (y)

x − y if x , y,

(`αn )′(x)`n−1(x) − (`αn−1)′(x)`αn (x) if x = y.
(5.20)

Theorem 5.12 For any m ≥ n ≥ 1, the distribution of the passage times
G(m, n) in the corner growth process is given by the Fredholm determinant

P(G(m, n) ≤ t) = det
(
I − (Lm−n

n )[t,∞)

)
= 1 +

n∑
k=1

(−1)k

k!

∫ ∞

t
. . .

∫ ∞

t

k
det
i, j=1

(
Lm−n

n (xi, x j)
)

dx1 . . . dxk.

(5.21)

The leap from (5.15) to (5.21) is admittedly a rather nonobvious one,
and relies on techniques from the theory of orthogonal polynomials. We
develop the necessary ideas in the next two sections, and use them to prove
Theorem 5.12 in Section 5.9.

5.7 Orthogonal polynomials

Our discussion of orthogonal polynomials will be a minimal one tailored
to our present needs; in particular, for simplicity we focus on the so-called
absolutely continuous case. See the box on p. 294 for more background on
the general theory. The construction of a family of orthogonal polynomials
starts with a weight function, which is a measurable function w : R →
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[0,∞) with the properties that∫
R

w(x) dx > 0,
∫
R

w(x)|x|n dx < ∞ (n ≥ 0).

We associate with such a function the inner product 〈·, ·〉w defined for func-
tions f , g : R→ R by

〈 f , g〉w =

∫
R

f (x)g(x) w(x) dx

whenever the integral converges absolutely. (As usual, the inner product
induces a norm ‖ f ‖w = 〈 f , f 〉1/2w ; the set of functions for which ‖ f ‖w < ∞,
with the convention that two functions f , g are considered equal if ‖ f −
g‖w = 0, is the Hilbert space L2(R,w(x) dx).) A sequence of polynomials
(pn(x))∞n=0 is called the family of orthogonal polynomials associated with
w(x) if the pn’s satisfy the following properties:

1. pn is a polynomial of degree n.
2. pn has a positive leading coefficient.
3. The pn are orthonormal with respect to the measure w(x) dx. That is,

for all m, n ≥ 0 we have

〈pn, pm〉w =

∫
R

pn(x)pm(x) w(x) dx = δmn =

1 if m = n,

0 otherwise.
(5.22)

Note the use of the definite article in the preceding definition, suggesting
uniqueness of such a family. Indeed, we have the following fundamental
result.

Theorem 5.13 (Existence and uniqueness of orthogonal polynomial fami-
lies) Given a weight function w(x), there exists a unique family of orthog-
onal polynomials associated with it.

Proof The proof of existence is essentially the Gram–Schmidt orthogo-
nalization procedure applied to the sequence of monomials 1, x, x2, . . . in
the inner product space L2(R,w(x) dx). We take p0(x) = 〈1, 1〉1/2w , and for
n ≥ 1 define pn(x) inductively in terms of p0, . . . , pn−1 as

pn(x) =
xn −

∑n−1
k=0〈x

n, pk(x)〉w pk(x)∥∥∥xn −
∑n−1

k=0〈xn, pk(x)〉w pk(x)
∥∥∥

w

.

Note that, by induction, assuming that pk is a polynomial of degree k for



5.7 Orthogonal polynomials 293

all 0 ≤ k < n, we have that xn −
∑n−1

k=0〈x
n, pk(x)〉w pk(x) is a monic polyno-

mial of degree n. This implies that the denominator in the definition of pn

is positive and that pn is a polynomial of degree n with positive leading co-
efficient. The orthonormality is also easy to verify inductively just as with
the standard Gram–Schmidt procedure.

To verify uniqueness, assume that (qn)∞n=0 is another family satisfying
properties 1–3 in the preceding definition. An easy corollary of proper-
ties 1–2 is that for any n ≥ 0 we have that

span{p0, . . . , pn} = span{q0, . . . , qn} = span{1, . . . , xn} =: Polyn(R).

It is easy to see that we must have q0 = p0 =
(∫

R w(x) dx
)−1/2

. Assume by
induction that we proved that qk = pk for all 0 ≤ k ≤ n − 1. Then by prop-
erty 3, both pn and qn are orthogonal to p0, . . . , pn−1 and are therefore in
the orthogonal complement of (the n-dimensional space) Polyn−1(R) con-
sidered as a vector subspace of (the (n + 1)-dimensional space) Polyn(R).
This orthogonal complement is one-dimensional, so pn and qn are propor-
tional to each other. By properties 1–2 and the case m = n of property 3, it
is easy to see that they must be equal. �

Various specific choices of the weight function w(x) lead to interesting
families of polynomials, the most important of which are named after fa-
mous 18th- and 19th-century mathematicians who pioneered the field. For
example, when w(x) = 1[0,1](x) one obtains the Legendre polynomials;
w(x) = e−x2

leads to the Hermite polynomials; w(x) = 1/
√

1 − x2 gives
the Chebyshev polynomials, etc. These so-called classical families of or-
thogonal polynomials often arise naturally as answers to concrete questions
and have found applications in many areas of pure and applied mathemat-
ics. See the box on the next page for a list of the more common families
and some of their uses.

Continuing with the general theory, denote the leading coefficient of pn

by κn. For convenience, we also denote p−1 ≡ 0 and let κ−1 denote an
arbitrary real number.

Lemma 5.14 (Three-term recurrence) Let (An)∞n=1 and (Cn)∞n=1 be given
by

An =
κn

κn−1
, Cn =

κnκn−2

κ2
n−1

.



294 The corner growth process: distributional results

Orthogonal polynomials and their applications

Orthogonal polynomials were first studied by the Russian mathematician
Pafnuty Chebyshev in the 19th century in connection with the study of con-
tinued fraction expansions. The classical orthogonal polynomials, which
are specific families of orthogonal polynomials studied by and named af-
ter well-known mathematicians of the era, have found many applications in
diverse areas of mathematics. Since they satisfy fairly simple linear second-
order differential equations, they arise naturally in connection with many im-
portant problems of analysis and mathematical physics. The table below lists
the families of classical orthogonal polynomials and a few of their applica-
tions. For more information on the general theory, refer to [5], [131].

Family Weight function Applications

Hermite e−x2
Quantum harmonic oscilla-
tor, diagonalization of the
Fourier transform, GUE random
matrices

Chebyshev 1/
√

1 − x2 Polynomial interpolation

Legendre 1[−1,1](x) Spherical harmonics, multipole
expansions

Jacobi (1 − x)α(1 + x)β1[−1,1](x) Representations of SU(2)

Laguerre e−x xα1[0,∞)(x) the hydrogen atom, Wishart
random matrices

Orthogonal polynomial ensembles are random point processes that
arise in various settings, most notably as eigenvalue distributions in random
matrix theory. The key property that makes their detailed analysis possi-
ble is that they are determinantal point processes whose correlation kernel
is the reproducing kernel of an orthogonal polynomial family. See the sur-
vey [72] for more information and many examples. For extensive informa-
tion about applications of orthogonal polynomials to random matrix theory,
see [4], [30], [42], [88].

There are real numbers (Bn)∞n=1 such that the orthogonal polynomials (pn)∞n=0

satisfy the recurrence relation

pn(x) = (Anx + Bn)pn−1(x) −Cn pn−2(x) (n ≥ 1). (5.23)

Proof Define qn(x) = pn(x) − Anxpn−1(x). The subtraction cancels the
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highest-order term xn, so we get that deg qn < n. It follows that qn(x) can
be expressed as a linear combination of p0, . . . , pn−1. By (5.22) and stan-
dard linear algebra, the coefficients in this linear combination are the inner
products of qn with p0, . . . , pn−1:

qn(x) =

n−1∑
k=0

〈qn, pk〉w pk(x).

But note that

〈qn, pk〉w = 〈pn, pk〉 − An〈xpn−1, pk〉w = −An

∫
R

xpn−1(x)pk(x) w(x) dx

= −An〈pn−1, xpk〉w,

and this is equal to 0 if 0 ≤ k ≤ n − 3, since in that case the polynomial
xpk(x) is of degree k + 1 ≤ n − 2 and is therefore expressible as a linear
combination of p0, . . . , pn−2, and in particular is orthogonal to pn−1. So, we
have shown that actually qn is expressible as

qn(x) = 〈qn, pn−1〉w pn−1(x) + 〈qn, pn−2〉w pn−2(x) =: Bn pn−1(x) − Dn pn−2(x),

or equivalently that

pn(x) = (Anx + Bn)pn−1(x) − Dn pn−2,

for some numbers Bn,Dn. The value of Dn can be found by assuming in-
ductively that (5.23) holds for n ≥ 1, and writing

0 = 〈pn, pn−2〉w = 〈Anxpn−1 + Bn pn−1 − Dn pn−2, pn−2〉w

= An〈xpn−1, pn−2〉w + Bn〈pn−1, pn−2〉w − Dn〈pn−2, pn−2〉w

= An〈pn−1, xpn−2〉w − Dn

= An〈pn−1, (κn−2/κn−1)pn−1 + [lin. combination of p0, . . . , pn−2] 〉w − Dn

= An
κn−2

κn−1
− Dn,

which gives that Dn = An
κn−2
κn−1

= κnκn−2

κ2
n−1

= Cn, as claimed. �

Next, for any n ≥ 0 define a kernel Kn : R × R→ R by

Kn(x, y) =

n−1∑
k=0

pk(x)pk(y).
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Kn is called the nth reproducing kernel associated with the family of or-
thogonal polynomials (pn)∞n=0. It is easy to see that if we interpret Kn in the
usual way as a linear operator acting on functions f ∈ L2(R,w(x) dx) by

(Kn f )(x) =

∫
R

Kn(x, y) f (y) dy,

then Kn is simply the orthogonal projection operator onto the linear sub-
space span{p0, . . . , pn−1} = span{1, . . . , xn−1} of L2(R,w(x) dx). In particu-
lar, if f is a polynomial of degree ≤ n − 1 then Kn f = f .

It is also useful to note that Kn(x, y) = Kn(y, x), that is, Kn is symmetric,
and furthermore it is a positive-semidefinite kernel, in the sense that for any
numbers x1, . . . , xm ∈ R, the matrix Kx1,...,xm = (Kn(xi, x j))m

i, j=1 is positive-
semidefinite. To check this, take a vector u = (u1, . . . , um) (considered as a
column vector) and note that

u>Kx1,...,xm u =

m∑
i, j=1

uiu jKn(xi, x j)

=

n−1∑
k=0

m∑
i, j=1

uiu j pk(xi)pk(x j) =

n−1∑
k=0

 m∑
i=1

uiu j pk(xi)

2

≥ 0. (5.24)

Theorem 5.15 (The Christoffel–Darboux formula) The reproducing
kernel can be expressed in terms of just two successive polynomials
pn−1(x), pn(x), as follows:

Kn(x, y) =


κn−1
κn
·

pn(x)pn−1(y) − pn−1(x)pn(y)
x − y if x , y,

κn−1
κn

(
p′n(x)pn−1(x) − pn(x)p′n−1(x)

)
if x = y.

Proof The case x = y is proved by taking the limit as y → x in the case
x , y, using L’Hôpital’s rule. For the case x , y, use (5.23) to write

pk(x)pk−1(y) − pk−1(x)pk(y)

=
(
(Ak x + Bk)pk−1(x) −Ck pk−2(x)

)
pk−1(y)

− pk−1(x)
(
(Aky + Bk)pk−1(y) −Ck pk−2(y)

)
= Ak(x − y)pk−1(x)pk−1(y) + Ck

(
pk−1(x)pk−2(y) − pk−2(x)pk−1(y)

)
.
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Equivalently,

pk−1(x)pk−1(y) =
κk−1

κk
·

pk(x)pk−1(y) − pk−1(x)pk(y)
x − y

−
κk−2

κk−1
·

pk−1(x)pk−2(y) − pk−2(x)pk−1(y)
x − y

.

Summing this equation over k = 1, . . . , n gives a telescopic sum that eval-
uates to

Kn(x, y) =

n∑
k=1

pk−1(x)pk−1(y) =
κn−1

κn
·

pn(x)pn−1(y) − pn−1(x)pn(y)
x − y

,

as claimed. �

5.8 Orthogonal polynomial ensembles

Orthogonal polynomials arise in certain probabilistic settings in connec-
tion with a class of random processes known as orthogonal polynomial
ensembles, which we describe next. Given a weight function w(x), we as-
sociate with it a family of probability densities f (n)

w : Rn → [0,∞), n =

1, 2, . . .. For each n, f (n)
w is given by

f (n)
w (x1, . . . , xn) =

1
Zn

∏
1≤i< j≤n

(xi − x j)2
n∏

j=1

w(x j), (5.25)

where

Zn =

∫
. . .

∫
Rn

∏
1≤i< j≤n

(xi − x j)2
n∏

j=1

w(x j) dx1 . . . dxn. (5.26)

If X(n)
w = (X(n)

w,1, . . . , X
(n)
w,n) is a random vector that has f (n)

w as its probability
density function, we say that X(n)

w is the nth orthogonal polynomial en-
semble associated with the weight function w. Note that the coordinates of
X(n)

w have a random order, but since the density of X(n)
w is a symmetric func-

tion of x1, . . . , xn, their order structure is a uniformly random permutation
in Sn and is statistically independent of the values of the coordinates, so it
is natural to ignore the ordering and interpret X(n)

w as a random set of n real
numbers ξ(n)

w,1 < . . . < ξ(n)
w,n, that is, as a random point process (see Chap-

ter 2). Now, if the density (5.25) consisted of just the factor
∏n

j=1 w(x j),
we would have a rather uninteresting point process of n i.i.d. points sam-
pled according to the weight function w(x) (normalized to be a probability
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density). What makes things more interesting is the addition of the Van-
dermonde factor

∏
1≤i< j≤n(xi − x j)2, which effectively adds a “repulsion”

between the random points X(n)
w,1, . . . , X

(n)
w,n. We see below that this results

in the existence of nice determinantal formulas for various quantities as-
sociated with the process X(n)

w , and that the orthogonal polynomial family
(pn(x))∞n=0 associated with the weight function w(x) enters the picture in a
natural way.

Lemma 5.16 Let (Z,Σ, µ) be a finite measure space. For any n ≥ 1 and
for any bounded measurable functions f1, . . . , fn, g1, . . . , gn : Z → R, we
have

n
det
i, j=1

(∫
Z

fi(x)g j(x) dµ(x)
)

=
1
n!

∫
. . .

∫
Zn

n
det
i, j=1

(
fi(x j)

) n
det
i, j=1

(
gi(x j)

) n∏
j=1

dµ(x j).

Proof ∫
. . .

∫
Zn

n
det
i, j=1

(
fi(x j)

) n
det
i, j=1

(
gi(x j)

) n∏
j=1

dµ(x j)

=
∑
σ,τ∈Sn

sgn(σ) sgn(τ)
n∏

j=1

∫
Z

fσ( j)(x)gτ( j)(x) dµ(x)

=
∑
π∈Sn

∑
σ,τ∈Sn
σ◦τ−1=π

sgn(σ ◦ τ−1)
n∏

j=1

∫
Z

fσ( j)(x)gτ( j)(x) dµ(x)

=
∑
π∈Sn

∑
σ,τ∈Sn
σ◦τ−1=π

sgn(π)
n∏

k=1

∫
Z

fπ(k)(x)gk(x) dµ(x)

= n!
∑
π∈Sn

sgn(π)
n∏

k=1

∫
Z

fπ(k)(x)gk(x) dµ(x)

= n!
n

det
i, j=1

(∫
Z

fi(x)g j(x) dµ(x)
)
. �

Lemma 5.17 If f : R → R is a bounded measurable function, then we
have

E

 n∏
j=1

f (X(n)
w, j)

 =
n−1
det
i, j=0

(∫
R

pi(x)p j(x) f (x) w(x) dx
)
. (5.27)

Proof Note that the Vandermonde product
∏

1≤i< j≤n(x j− xi) can be rewrit-
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ten as

∏
1≤i< j≤n

(x j − xi) =
n

det
i, j=1

(
x j−1

i

)
=

1∏n−1
j=0 κ j

n
det
i, j=1

(
p j−1(xi)

)
.

(This does not use the orthonormality property but simply the fact that p j

is a polynomial of degree j with leading coefficient κ j, so the matrix on
the right-hand side is obtained from the standard Vandermonde matrix by
applying a triangular sequence of elementary row operations.) We therefore
get, using Lemma 5.16 (with the obvious parameters Z = R and dµ(x) =

w(x) dx), that

E

 n∏
j=1

f (X(n)
w, j)

 =
1
Zn

∫
. . .

∫
Rn

∏
1≤i< j≤n

(xi − x j)2
n∏

j=1

(
f (x j)w(x j) dx j

)
=

1
Zn

∏n−1
j=0 κ

2
j

∫
. . .

∫
Rn

n
det
i, j=1

(
f (xi)p j−1(xi)

) n
det
i, j=1

(
p j−1(xi)

)
×

n∏
j=1

w(x j) dx1 . . . dxn

=
n!

Zn
∏n−1

j=0 κ
2
j

n
det
i, j=1

(∫
R

pi−1(x)p j−1(x) f (x) w(x) dx
)
.

This is similar to (5.27) except for the presence of the numerical fac-
tor n!

Zn
∏n−1

j=0 κ
2
j
. However, we showed that this relation holds for an arbitrary

bounded measurable function f . Specializing to the case f ≡ 1, and now
finally using the orthonormality relation (5.22), shows that this factor is
equal to 1, which proves the result for general f . �

Corollary 5.18 The normalization constant Zn defined in (5.26) is given
by

Zn =
n!∏n−1
j=0 κ

2
j

.

Theorem 5.19 For any Borel set E ⊂ R, the probability that all the points
X(n)

w,1, . . . , X
(n)
w,n in the orthogonal polynomial ensemble X(n)

w lie outside of E
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can be represented as a Fredholm determinant, namely

P(X(n)
w,1, . . . , X

(n)
w,n < E)

= det
(
I − (Kn)| L2(E,w(x) dx)

)
= 1 +

n∑
m=1

(−1)m

m!

∫
. . .

∫
Em

m
det
i, j=1

(
Kn(xi, x j)

) m∏
j=1

w(x j) dx1 . . . dxm.

(5.28)

Proof Let f : R→ R be the function f (x) = 1R\E(x) = 1 − 1E(x). Apply-
ing Lemma 5.17, we have

P(X(n)
w,1, . . . , X

(n)
w,n < E)

= E

 n∏
j=1

f (X(n)
w, j)

 =
n−1
det
i, j=0

(∫
R

pi(x)p j(x)(1 − 1E(x))w(x) dx
)

=
n−1
det
i, j=0

(
δi j −

∫
R

pi(x)p j(x)1E(x)w(x) dx
)

= 1 +

n∑
m=1

(−1)m

m!

∑
0≤i1,...,im≤n−1

m
det
k,`=1

(∫
R

pik (x)pi` (x)1E(x)w(x) dx
)

(if you find the last transition confusing, refer to equation (2.21) and the re-
mark immediately following it). Applying Lemma 5.16 and interchanging
the summation and integration operations, this can be rewritten as

1+

n∑
m=1

(−1)m

m!

∫
. . .

∫
Rm

[
1

m!

∑
0≤i1,...,im≤n−1

m
det
k,`=1

(
pik (x`)

)
×

m
det
k,`=1

(
pik (x`)1E(x`)

)] m∏
k=1

(w(xk) dxk)

= 1 +

n∑
m=1

(−1)m

m!

∫
. . .

∫
Rm

[
1

m!

∑
0≤i1,...,im≤n−1

m
det
k,`=1

(
pik (x`)

) m
det
k,`=1

(
pik (x`)

)]

×

m∏
k=1

(1E(xk) w(xk) dxk) .

In this last expression, the inner m-fold summation can be interpreted as an
m-fold integration with respect to the counting measure on {0, . . . , n − 1},
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so Lemma 5.16 can be applied again, transforming our expression into

1+

n∑
m=1

(−1)m

m!

∫
. . .

∫
Rm

m
det
k,`=1

 n−1∑
i=0

pi−1(xk)p j−1(x`)

 m∏
k=1

(1E(xk) w(xk) dxk)

= 1 +

n∑
m=1

(−1)m

m!

∫
. . .

∫
Em

m
det
i, j=1

(
Kn(xi, x j)

) m∏
j=1

w(x j) dx1 . . . dxm,

which is precisely the right-hand side of (5.28). �

Closely related to the existence of the identity (5.28) is the fact that the
orthogonal polynomial ensemble X(n)

w is a determinantal point process (of
the absolutely continuous variety; see the discussion in Chapter 2) whose
correlation kernel is related to the reproducing kernel Kn(x, y). The follow-
ing result makes this precise.

Theorem 5.20 Define a modified version K̃n(x, y) of the reproducing ker-
nel by

K̃n(x, y) =
√

w(x)w(y)K(x, y).

For any 1 ≤ m ≤ n, the marginal joint density function of the first m
coordinates (X(n)

w,1, . . . , X
(n)
w,m) of X(n)

w is given by

f (n,m)
w (x1, . . . , xm) =

(n − m)!
n!

m
det
i, j=1

(
K̃n(xi, x j)

)
.

We will not need Theorem 5.20 for our purposes. See Exercises 5.9 and
5.10 for a proof idea.

5.9 The Laguerre polynomials

We collect here a few elementary properties of the Laguerre polynomials
`αn (x) defined in (5.19). For convenience, define a simpler variant

Lαn (x) =

n∑
k=0

(−1)k

k!

(
n + α

k + α

)
xk

so that `αn (x) = (−1)n
√

n!
(n+α)! Lαn (x). Note that Lαn (x) is an nth degree poly-

nomial with leading coefficient (−1)n/n!. It is also immediate to check that
(Lαn )′(x) = −Lα+1

n−1 (x), or equivalently in terms of `αn (x) we have

(`αn )′(x) =
√

n`α+1
n−1 (x). (5.29)
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Lemma 5.21 The polynomials Lαn (x) satisfy

Lαn (x) =
1
n!

exx−α
dn

dxn

(
e−xxn+α) (n ≥ 0). (5.30)

Proof By the Leibniz rule dn

dxn ( f g) =
∑n

k=0

(
n
k

)
f (k)g(n−k), we have

dn

dxn

(
e−xxn+α) =

n∑
k=0

(
n
k

)
(−1)ke−x(n + α)(n + α − 1) . . . (k + α + 1)xk+α

= n!e−xxα
n∑

k=0

(−1)k

k!

(
n + α

k + α

)
xk. �

Lemma 5.22 The polynomials Lαn (x) satisfy∫ ∞

0
Ln(x)Lm(x)e−xxα dx =

(n + α)!
n!

δnm (n,m ≥ 0). (5.31)

Proof Assume without loss of generality that n ≥ m. By (5.30), the left-
hand side of (5.31) can be written as

1
n!

∫ ∞

0

dn

dxn

(
e−xxn+α) Lαm(x) dx.

Integrating by parts n times repeatedly gives

(−1)n

n!

∫ ∞

0
e−xxn+α dnLαm(x)

dxn dx =

0 if n > m,
1
n!

∫ ∞
0

e−xxn+α dx =
(n+α)!

n! if n = m,

as claimed. �

Corollary 5.23 The Laguerre polynomials `αn (x) are the orthogonal poly-
nomials associated with the weight function Wα(x) = xαe−x1[0,∞)(x).

Using the Christoffel–Darboux formula (Theorem 5.15) we now see that
the Laguerre kernel Lα

n (x, y) defined in (5.20) is a slightly modified version
of the reproducing kernel Kα

n associated with the Laguerre polynomials
`αn (x). More precisely, we have the relation

Lα
n (x, y) =

√
Wα(x)Wα(y)Kα

n (x, y). (5.32)

Proof of Theorem 5.12 By Theorem 5.11, the probability P(G(m, n) ≤
t) is equal to the probability that all the points of the orthogonal poly-
nomial ensemble X(n)

Wm−n
associated with the weight function Wm−n(x) =

e−xxm−n1[0,∞)(x) lie in the interval [0, t]. By Theorem 5.19, this probability
is expressed by the Fredholm determinant (5.28), where w(x) = Wm−n(x),



5.9 The Laguerre polynomials 303

the set E is taken as [0, t] and Kn = Km−n
n is the nth reproducing kernel asso-

ciated with the Laguerre polynomials (`m−n
n )∞n=0 (which we proved above are

the orthogonal polynomials for the weight function Wm−n(x)). Making the
appropriate substitutions according to (5.32), the weight factors Wm−n(x j)
cancel out and we get precisely the identity (5.21). �

The preceding observations relating the distribution of the passage times
G(m, n) to the orthogonal polynomial ensemble X(n)

Wm−n
, in combination with

Corollary 5.18, also give an alternative way to derive the value of the
normalization constant Dm,n in (5.13), (5.15). Readers should check that
the value obtained from this approach is in agreement with (5.13) (Exer-
cise 5.12).

A final property of the Laguerre polynomials we will make use of is
a contour integral representation, which will be the starting point of an
asymptotic analysis we undertake in the next few sections.

Lemma 5.24 The polynomial `αn (x) has the contour integral representa-
tion

`αn (x) =

(
n!

(n + α)!

)1/2 1
2πi

∮
|z|=r

exz(1 − z)n+α

zn+1 dz. (5.33)

where r is an arbitrary positive number.

Proof The function exz(1− z)n+α is (for fixed x ∈ R and integers n, α ≥ 0)
an entire function of a complex variable z. Its power series expansion can
be computed as

exz(1 − z)n+α =

∞∑
k=0

xkzk

k!
·

n+α∑
j=0

(−1) j

(
n + α

j

)
z j

=

∞∑
m=0

(−1)m

 m∑
k=0

(−1)k

k!

(
n + α

m − k

)
xk

 zm.

In particular, the coefficient of zn is (−1)nLαn (x), so by the residue theorem
we have

Lαn (x) =
(−1)n

2πi

∮
|z|=r

exz(1 − z)n+α

zn+1 dz. (5.34)

which is equivalent to (5.33). �
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5.10 Asymptotics for the Laguerre kernels

Having derived the Fredholm determinant representation (5.21) for the dis-
tribution function of the passage times, the next step toward our goal of
proving Theorem 5.1 is to study the asymptotics of the Laguerre kernels
Lα

n (x, y) = Lm−n
n (x, y) appearing in this representation. We will prove that

after appropriate scaling these kernels converge to the Airy kernel A(·, ·)
(defined in (2.1)); together with some auxiliary bounds, we will be able to
deduce convergence of the Fredholm determinants and thus prove Theo-
rem 5.1.2

The assumptions in Theorem 5.1 lead us to consider the asymptotic
regime in which m, n → ∞ together in such a way that the ratio m/n is
bounded away from 0 and∞. We may assume without of loss of generality
that m ≥ n (which is required for (5.21) to hold), since the distribution of
G(m, n) is symmetric in m and n. Given real variables s, t, we introduce
scaled variables x, y (which depend implicitly on m and n) given by

x = Ψ(m, n) + σ(m, n)t,

y = Ψ(m, n) + σ(m, n)s.

It is convenient to eliminate the variable m by introducing the real-valued
parameter γ = m/n, and writing

m = γn, (5.35)

α = m − n = (γ − 1)n. (5.36)

Denote further

β = (1 +
√
γ)2, (5.37)

σ0 = γ−1/6(1 +
√
γ)4/3, (5.38)

so that we may write

x = βn + σ0n1/3t, (5.39)

y = βn + σ0n1/3s. (5.40)

Thus, the asymptotics we are interested in involve letting n→ ∞ while γ is
allowed to range over a compact interval [1,Γ] for some arbitrary constant
1 < Γ < ∞, with γn always assumed to take integer values. In other words,
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we let γ range over the set [1,Γ]n, which for convenience is defined by

[1,Γ]n = {γ ∈ [1,Γ] : γn ∈ N}. (5.41)

(Note that the choice to use the parameter γ in place of m offers mainly
a psychological advantage, since it allows one to think of m, n as tending
to infinity together such that their ratio m/n stays approximately constant;
indeed, the original formulation of Theorem 5.1 in [62] assumes explicitly
that m/n converges to some fixed limit γ ≥ 1.) As a final notational device,
let Λn(t, s) denote a rescaled version of the Laguerre kernel, defined by

Λn(t, s) = σ0n1/3Lα
n (x, y) = σ0n1/3Lα

n (βn + σ0n1/3t, βn + σ0n1/3s). (5.42)

Theorem 5.25 (Airy asymptotics for the Laguerre kernels) The scaled
Laguerre kernels satisfy the following properties:

(a) For any Γ > 1 and s, t ∈ R, Λn(s, t) → A(s, t) as n → ∞, uniformly as
γ ranges over [1,Γ]n.

(b) For any T > 0, we have

sup
n≥1

sup
γ∈[1,Γ]n

sup
s∈[−T,T ]

Λn(s, s) < ∞. (5.43)

(c) For any ε > 0, there is a number T such that

sup
n≥1

sup
γ∈[1,Γ]n

∫ ∞

T
Λn(s, s) ds < ε. (5.44)

Proof of Theorem 5.1 assuming Theorem 5.25 Using the notation above,

P
(G(m, n) − Ψ(m, n)

σ(m, n)
≤ t

)
= P (G(m, n) ≤ Ψ(m, n) + σ(m, n)t) = P

(
G(m, n) ≤ βn + σ0n1/3t

)
= 1 +

∞∑
k=1

(−1)k

k!

∫ ∞

βn+σ0n1/3t
. . .

∫ ∞

βn+σ0n1/3t

k
det
i, j=1

(
Lα

n (xi, x j)
)

dx1 . . . dxk

= 1 +

∞∑
k=1

(−1)k

k!

∫ ∞

t
. . .

∫ ∞

t

k
det
i, j=1

(
Λn(ti, t j)

)
dt1 . . . dtk,

where the last transition involved a change of variables x j = βn + σ0n1/3t j,
( j = 1, . . . , k). Our goal is to show that as n → ∞, this Fredholm determi-
nant converges to

F2(t) = 1 +

∞∑
k=1

(−1)k

k!

∫ ∞

t
. . .

∫ ∞

t

n
det
i, j=1

(
A(ti, t j)

)
dt1 . . . dtn,
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uniformly as γ ranges over [1,Γ]n. Let ε > 0 be given. Fix some large
number T > |t| whose value will be specified later. We have the bound∣∣∣∣∣∣P

(
G(m, n) − Ψ(m, n)

σ(m, n)
≤ t

)
− F2(t)

∣∣∣∣∣∣ ≤ ∞∑
k=1

1
k!

(I(n)
k,T + J(n)

k,T + Mk,T ), (5.45)

where we define

I(n)
k,T =

∫ T

t
. . .

∫ T

t

∣∣∣∣∣ k
det
i, j=1

(
Λn(ti, t j)

)
−

k
det
i, j=1

(
A(ti, t j)

)∣∣∣∣∣dt1 . . . dtk,

J(n)
k,T = k

∫ ∞

T

∫ ∞

t
. . .

∫ ∞

t

∣∣∣∣∣ k
det
i, j=1

(
Λn(ti, t j)

)∣∣∣∣∣dt1 . . . dtk,

Mk,T = k
∫ ∞

T

∫ ∞

t
. . .

∫ ∞

t

∣∣∣∣∣ k
det
i, j=1

(
A(ti, t j)

)∣∣∣∣∣dt1 . . . dtk.

We now estimate each of the quantities I(n)
k,T , J

(n)
k,T ,Mk,T separately. We use

Hadamard’s inequality (2.29) from Chapter 2; note that this inequality is
applicable to both the matrices (A(ti, t j))k

i, j=1 and (Λn(ti, t j))k
i, j=1 since they

are symmetric and positive-semidefinite (see Exercise 2.18 and (5.24)).
First, for Mk,T we have

Mk,T ≤ k
∫ ∞

T

∫ ∞

t
. . .

∫ ∞

t

k∏
i=1

A(ti, ti) dt1 . . . dtk

= k
∫ ∞

T
A(s, s) ds ·

(∫ ∞

t
A(s, s) ds

)k−1

,

By Lemma 2.24,
∫ ∞

T
A(s, s) ds can be made arbitrarily small by choosing

T large enough. In particular, for large enough T we will have that
∞∑

k=1

1
k!

Mk,T ≤

∞∑
k=1

k
k!

(∫ ∞

t
A(s, s) ds

)k−1

·

∫ ∞

T
A(s, s) ds

= exp
(∫ ∞

t
A(s, s) ds

)
·

∫ ∞

T
A(s, s) ds < ε. (5.46)

Second, J(n)
k,T can be bounded using similar reasoning, by noting that

J(n)
k,T ≤ k

∫ ∞

T

∫ ∞

t
. . .

∫ ∞

t

k∏
i=1

Λn(ti, ti) dt1 . . . dtk

= k
∫ ∞

T
Λn(s, s) ds ·

(∫ ∞

t
Λn(s, s) ds

)k−1

.



5.10 Asymptotics for the Laguerre kernels 307

By part (c) of Theorem 5.25, by choosing T large enough we can again
ensure that

∞∑
k=1

1
k!

J(n)
k,T ≤

∞∑
k=1

k
k!

(∫ ∞

t
Λn(s, s) ds

)k−1

·

∫ ∞

T
Λn(s, s) ds < ε (5.47)

for all n ≥ 1 and all γ ∈ [1,Γ]n. Let T be chosen so that both (5.46) and
(5.47) are satisfied. Next, by part (a) of Theorem 5.25, we have for each
k ≥ 1 that∣∣∣∣∣ k

det
i, j=1

(
Λn(ti, t j)

)
−

k
det
i, j=1

(
A(ti, t j)

)∣∣∣∣∣ −−−→n→∞
0 (t1, . . . , tk ∈ [t,T ]),

uniformly as γ ranges over [1,Γ]n, and furthermore, by part (b) and (2.29),
we have for (t1, . . . , tk) ∈ [t,T ]k that∣∣∣∣∣ k

det
i, j=1

(
Λn(ti, t j)

)
−

k
det
i, j=1

(
A(ti, t j)

)∣∣∣∣∣
≤

(
sup
n≥1

sup
γ∈[1,Γ]n

sup
s∈[t,T ]

Λn(s, s)
)k

+

(
sup

s∈[t,T ]
A(s, s) ds

)k

≤ Ckkk/2 (5.48)

for some constant C > 0. It follows by the bounded convergence theorem
that I(n)

k,T → 0 as n → ∞, for any fixed k ≥ 1. Therefore also for any fixed
integer N ≥ 1 we have that

N∑
k=1

1
k!

I(n)
k,T −−−→n→∞

0.

To finish the proof, we claim that N can be chosen large enough so that (for
all n ≥ 1 and all γ ∈ [1,Γ]n)

∞∑
k=N+1

1
k!

I(n)
k,T < ε. (5.49)

Indeed, from (5.48) we get that I(n)
k,T ≤ (T − t)kCkkk/2, so that

∞∑
k=N+1

1
k!

I(n)
k,T <

∞∑
k=N+1

(T − t)kCkkk/2

k!
,

which decays to 0 as N → ∞.
Combining the above results (5.45), (5.46), (5.47), (5.48), and (5.49)
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gives finally that

lim sup
n→∞

∣∣∣∣∣∣P
(
G(m, n) − Ψ(m, n)

σ(m, n)
≤ t

)
− F2(t)

∣∣∣∣∣∣
≤

N∑
k=1

1
k!

I(n)
k,T +

∞∑
k=N+1

1
k!

I(n)
k,T +

∞∑
k=1

1
k!

(J(n)
k,T + Mk,T )

≤ 0 + ε + ε + ε = 3ε.

Since ε was an arbitrary positive number, this finishes the proof. �

The analysis leading up to a proof of Theorem 5.25 is presented in the
next two sections. The following lemma will provide a helpful entry point.

Lemma 5.26 Assume the notational conventions (5.35)–(5.42). Define
functions

An(x) = γ1/4n1/2
(

n!
(γn)!

)1/2

e−x/2xα/2, (5.50)

h1(z) = 1, (5.51)

h2(z) =
√
γ

z
1 − z

− 1, (5.52)

h3(z) = z −
1

1 +
√
γ
, (5.53)

h4(z) = h2(z)h3(z), (5.54)

and for a function h(z) of a complex variable, denote

In(h, x) =
1

2πi

∮
|z|=r

exz(1 − z)γn

zn+1 h(z) dz. (5.55)

Then the Laguerre kernel Lα
n (x, y) can be represented as

Lα
n (x, y) =

An(x)An(y) · In(h1, x)In(h2, y) − In(h2, x)In(h1, y)
x − y if x , y,

An(x)2(In(h2, x)In(h3, x) − In(h1, x)In(h4, x)
)

if x = y.
(5.56)

Proof Rewrite the case x , y of (5.20) as

Lα
n (x, y) =

√
n · γn · e−x/2xα/2e−y/2yα/2

×
`αn (x)(`αn−1(y) − `αn (y)) − (`αn−1(x) − `αn (x))`αn (y)

x − y
, (5.57)
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and note that, by (5.33), we have

`αn (x) =

(
n!

(γn)!

)1/2 1
2πi

∮
|z|=r

exz(1 − z)γn

zn+1 dz

=

(
n!

(γn)!

)1/2

In(h1, x), (5.58)

`αn−1(x) =

(
(n − 1)!

(γn − 1)!

)1/2 1
2πi

∮
|z|=r

exz(1 − z)γn−1

zn dz

=

(
n!

(γn)!

)1/2 1
2πi

∮
|z|=r

exz(1 − z)γn

zn+1 ·
√
γ

z
1 − z

dz, (5.59)

and therefore also

`αn−1(x) − `αn (x) =

(
n!

(γn)!

)1/2

In(h2, z). (5.60)

Thus, the right-hand side of (5.57) is equal to

An(x)An(y) ·
In(h1, x)In(h2, y) − In(h2, x)In(h1, y)

x − y
,

as claimed. Similarly, to prove the claim in the case x = y, first rewrite
Lα

n (x, x), using (5.20) and (5.29), in the somewhat convoluted form

Lα
n (x, x) =

√
n · γn · e−xxα

(
(`αn−1(x) − `αn (x))

(√
n`α+1

n−1 (x) −
1

1 +
√
γ
`αn (x)

)
− `αn (x)

(√
n − 1`α+1

n−2 −
√

n`α+1
n−1 (x)

−
1

1 +
√
γ
`αn−1(x) +

1
1 +
√
γ
`αn (x)

))
. (5.61)

Now observe that, similarly and in addition to (5.58)–(5.60), we have the
relations

√
n`α+1

n−1 (x) =

(
n!

(γn)!

)1/2

In(z, x),

√
n − 1`α+1

n−2 (x) =

(
n!

(γn)!

)1/2

In

(
√
γ

z2

1 − z
, x

)
which therefore also gives that

√
n`α+1

n−1 (x) −
1

1 +
√
γ
`αn (x) =

(
n!

(γn)!

)1/2

In(h3, x). (5.62)
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and
√

n − 1`α+1
n−2 −

√
n`α+1

n−1 (x) −
1

1 +
√
γ
`αn−1(x) +

1
1 +
√
γ
`αn (x)

=

(
n!

(γn)!

)1/2

In(h4, x). (5.63)

Combining (5.58), (5.60), (5.61), (5.62), and (5.63) gives the desired rep-
resentation for Lα

n (x, x). �

Readers may have noticed that the choice of functions h1, h2, h3, h4 in the
representation (5.56) is not unique, and indeed is more complicated than
might seem necessary. However, as we will see later, this choice is care-
fully crafted to bring about a cancellation of leading terms in an asymptotic
expansion. The constant 1/(1 +

√
γ) which appears in the definition of h3

and in some of the formulas in the proof above also plays an important role
that will become apparent in the next section.

5.11 Asymptotic analysis of In(h, x)

We now reach the main part of the analysis, in which we study the asymp-
totic behavior as n → ∞ of In(h, x). (Because of Lemma 5.26, our main
interest is of course with h = h j for j = 1, 2, 3, 4.) The main asymptotic
result is the following one.

Theorem 5.27 Let Γ > 1 and let t ∈ R. Define

r0 =
1

1 +
√
γ
, (5.64)

g0 = 1 +
√
γ + γ log

(
1 −

1
1 +
√
γ

)
+ log(1 +

√
γ). (5.65)

Let h(z) be a function of a complex variable z and of the parameter γ, that
is analytic in z in the unit disk and depends continuously on γ ∈ [1,∞).
Assume that h(z) has a zero of order k at z = r0, where 0 ≤ k < 7; that is,
it has the behavior

h(z) = ak(z − r0)k + O(|z − r0|
k+1) (5.66)

in a neighborhood of r0, where ak , 0, and ak may depend on γ but k does
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not. Then for any t ∈ R and Γ > 1, we have as n→ ∞ that

In(h, x) =
(
Ai(k)(t) + O

(
n−1/24

))
akγ

(k+1)/6(1 +
√
γ)−(4k+1)/3

× n−(k+1)/3 exp
(
g0n + σ0tr0n1/3

)
, (5.67)

uniformly as γ ranges over [1,Γ]n.

The assumption 0 ≤ k < 7 above can be dropped at the cost of a modifi-
cation to the exponent −1/24 in the error term, but the result as formulated
above suffices for our needs.

Proof In the proof that follows, we leave to the reader the easy verifica-
tion that all constants that appear in asymptotic bounds, whether explicit
or implicit in the big-O notation, can be chosen in a way that the estimates
hold uniformly as γ ranges over [1,Γ]n, with Γ > 1 being an arbitrary fixed
number. Aside from the need for such verification, we may now treat γ as
a parameter whose value can be thought of as fixed.

Recall that Ai(t) is the Airy function defined in (2.1), which also has
the equivalent definition (2.67). More generally, the derivatives of the Airy
function are given by (2.68).

To start the analysis, define a function

g(z) = βz + γLog(1 − z) − Log z, (5.68)

where as before Log(w) denotes the principal value of the complex loga-
rithm function. Note that g(z) is analytic in {z : |z| < 1,−π < arg z < π},
and that (5.55) can be rewritten as

In(h, x) =
1

2πi

∮
|z|=r

eσ0tn1/3z exp
[
n(βz + γLog(1 − z) − Log z)

]
h(z)

dz
z

=
1

2πi

∮
|z|=r

exp
(
ng(z) + σ0tn1/3z

)
h(z)

dz
z
. (5.69)

The form of this integral is suitable for the application of the saddle point
method, a standard technique of asymptotic analysis. See the box on the
next page for more background on this important method. The key idea is
to find the correct deformation of the contour of integration such that the
main contribution to the integral will come from a small part of the contour
around a single point known as the saddle point.
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The saddle point method

The saddle point method (also known as the stationary phase method or
method of steepest descent) is a powerful technique of asymptotic analy-
sis that is widely applicable to problems in analysis, combinatorics, number
theory and many other areas. The idea is to first represent a quantity of inter-
est as a contour integral in the complex plane, then to deform the integration
contour in such a way that the bulk of the contribution to the integral comes
from the vicinity of a single point (or, in more general versions, a small set
of points) known as the saddle point. One then estimates the contribution
near the saddle point using a Taylor approximation, and separately shows
that the contribution away from the saddle point is asymptotically negligible.

Many of the simplest applications of the method involve an integral of
the form

1
2πi

∮
|z|=r

eng(z) dz
z

(5.70)

for some function g(z), where the radius of integration r is arbitrary and n is
large. Under certain reasonable assumptions, it can be shown that r should
be chosen so that the contour passes through the saddle point, which is the
solution to the equation g′(z) = 0.

A standard textbook example is to use the saddle point method to prove
Stirling’s approximation formula for n!. Start with the elementary identity

nne−n

n!
=

1
2πi

∮
|z|=r

en(z−1)

zn+1 dz,

which fits the template (5.70) with g(z) = z − 1 − Log z. Solving the equation
g′(z) = 0 gives z = 1. Setting r = 1 and parametrizing the integral gives

nne−n

n!
=

1
2π

∫ π

−π

exp(ng(eit)) dt = In + Jn,

where In = 1
2π

∫ ε

−ε
exp(ng(eit)) dt, Jn = 1

2π

∫
(−π,π)\(−ε,ε)

exp(ng(eit)) dt, and where

we set ε = n−2/5. Using the Taylor approximation g(eit) = − 1
2 t2 + O(|t|3) that

is valid near t = 0 and the relation |ew| = eRe w, it is now straightforward
(Exercise 5.19) to show that

In = (1 + O(n−1/5))(2πn)−1/2, |Jn| = O(e−n), (5.71)

which gives the result

n! = (1 + O(n−1/5))
√

2πn(n/e)n, (5.72)

a version of Stirling’s formula with an explicitly bounded (though suboptimal)
error term. See Exercises 5.20 and 5.21 for more examples.
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To motivate the computation, consider first the simplest case where t = 0
and h(z) = h1(z) = 1, in which the integral (5.69) reduces to the simpler
expression

1
2πi

∮
|z|=r

exp
(
ng(z)

)dz
z
.

The integration contour is a circle around the origin, and in this case there
is no need to consider more general contours, but the radius of integration
r is arbitrary, and we will choose it to pass at – or very near to – the saddle
point. To find the saddle point, according to the recipe explained in the
box on page 312, we have to solve the equation g′(z) = 0. This gives the
condition

g′(z) = β −
γ

1 − z
−

1
z

=
βz(1 − z) − γz − (1 − z)

z(1 − z)
= 0, (5.73)

or βz2 − 2(1 +
√
γ)z + 1 = 0, which gives z = 1

1+
√
γ

= r0; that is, the saddle
point lies on the positive real axis, and the “ideal” radius of integration
is the constant r0 defined in (5.64). (Actually, in our particular situation it
will turn out to be preferable to take a slightly smaller radius of integration
that does not actually pass through the saddle point.) The asymptotics will
end up being determined by the behavior of g(z) near the saddle point; in
other words, by the first few Taylor coefficients of g(z) at z = r0. Note
that the constant coefficient g(r0) is precisely g0 defined in (5.65). The next
coefficient is g′(r0), which is equal to 0 by design, and the next coefficient
after that is g′′(r0)/2, which turns out to also be 0:

g′′(r0) =
1
r2

0

−
γ

(1 − r0)2 = (1 +
√
γ)2 − γ

(
1 +
√
γ

√
γ

)2

= 0.

Finally, denote g3 = −g′′′(r0). We leave to the reader to check that

g3 =
2(1 +

√
γ)4

√
γ

. (5.74)

To summarize, g(z) has the behavior

g(z) = g0 −
1
6 g3(z − r0)3 + O

(
(z − r0)4

)
(5.75)

for z in a neighborhood of r0.
Let us get back from the motivating case to the case of general t and

general h. The inclusion of the additional factors h(z) · exp(σ0tn1/3z) in the
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integrand does affect the asymptotics, but we shall see that the same radius
of integration can still be used. As noted earlier, for the radius of integration
we will use a value slightly smaller than r0, specifically

r = r0 − n−1/3

(any constant multiple of n−1/3 can be used here). We are ready to start esti-
mating the contour integral (5.69). Parametrizing the contour of integration
as z = reiθ, −π ≤ θ ≤ π, gives

In(h, x) =
1

2π

∫ π

−π

exp
(
ng(reiθ) + σ0tn1/3reiθ

)
h(reiθ) dθ.

We divide this into two parts, accounting separately for the contributions
from the vicinity of the saddle point and away from it, by writing In(h, x) =

Qn + Wn, where

Qn =
1

2π

∫ ε

−ε

exp
(
ng(reiθ) + σ0tn1/3reiθ

)
h(reiθ) dθ,

Wn =
1

2π

∫
(−π,π)\(−ε,ε)

exp
(
ng(reiθ) + σ0tn1/3reiθ

)
h(reiθ) dθ,

and where we set ε = n−7/24.

Analysis of Qn. Make the change of variables θ = n−1/3w. The range
|θ| ≤ ε translates to |w| ≤ n1/24. In this range, using the Taylor expansions
(5.66), (5.75), we see that the following estimates hold uniformly in w:

reiθ = (r0 − n−1/3)(1 + iwn−1/3 + O(w2n−2/3))

= r0 + (−1 + ir0w)n−1/3 + O(n−7/12), (5.76)

g(reiθ) = g0 + 1
6 g3(r0 − reiθ)3 + O(n−4/3)

= g0 + 1
6 g3

(
(1 − ir0w)n−1/3 + O(n−7/12)

)3
+ O(n−4/3)

= g0 + 1
6 g3(1 − ir0w)3n−1 + O(n−7/6), (5.77)

h(reiθ) = ak

(
(−1 + ir0w)n−1/3

)k
+ O

((
| − 1 + ir0w|n−1/3

)k+1
)

= ak(−1 + ir0w)kn−k/3 + O
(
n−

7
24 (k+1)

)
. (5.78)

(Note that the assumption 0 ≤ k < 7 implies that 7(k + 1)/24 > k/3, so the
error term in (5.78) is of smaller order of magnitude than the exact term
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preceding it.) The integral Qn therefore becomes

Qn =
n−1/3

2π

∫ n1/24

−n1/24
exp(g0n + σ0r0tn1/3)

× exp
(

1
6 g3(1 − ir0w)3 + σ0t(−1 + ir0w) + O(n−1/6)

)
×

(
ak(−1 + ir0w)kn−k/3 + O

(
n−

7
24 (k+1)

))
dw

= (1 + O(n−1/6))akn−(k+1)/3 exp(g0n + σ0r0tn1/3)

×
1

2π

∫ n1/24

−n1/24
exp

(
1
6 g3(1 − ir0w)3 + σ0t(−1 + ir0w)

)
× ((−1 + ir0w)k + O(n−1/24)) dw,

(5.79)

where we have O(n−(7−k)/24) = O(n−1/24) because of the assumption that
k ≤ 6. In the last integral, we consider the main term and the O(n−1/24)
error term separately. First, the main term (with the 1/2π factor included)
looks like it should converge to the Airy-type integral

1
2π

∫ ∞

−∞

exp
(

1
6 g3(1 − ir0w)3 + σ0t(−1 + ir0w))

)
(−1 + ir0w)kdw. (5.80)

Indeed, the difference between the two integrals can be estimated by
writing∣∣∣∣∣∣

∫
R\(−n1/24,n1/24)

exp
(

1
6 g3(1 − ir0w)3 + σ0t(−1 + ir0w))

)
(−1 + ir0w)k dw

∣∣∣∣∣∣
≤ 2

∫ ∞

n1/24
exp

[
Re

(
1
6 g3(1 − ir0w)3 + σ0t(−1 + ir0w))

)]
· | − 1 + ir0w|k dw

= 2
∫ ∞

n1/24
exp

(
1
6 g3(1 − 3r2

0w2) − σ0t
)
· | − 1 + ir0w|k dw,

and this is easily seen to be bounded by an expression of the form Ce−cn1/12

for some constants C, c > 0 (which depend on t and Γ). Furthermore, the
integral (5.80) can be evaluated by making the change of variables v =

r0(g3/2)1/3ν. Noting thatσ0 = (g3/2)1/3 (see (5.38) and (5.74)), and making
use of (2.68), we get that (5.80) is equal to

σ−k
0

2π

∫ ∞

−∞

exp
( 1

3 (σ0 − iv)3 + t(−σ0+iv)
)
(−σ0 + iv)k dv

r0σ0

= γ(k+1)/6(1 +
√
γ)−(4k+1)/3 Ai(k)(t).
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Next, for the O(n−1/24) error term, note similarly that∣∣∣∣∣ ∫
R\(−n1/24,n1/24)

exp
(

1
6 g3(1 − ir0w)3 + σ0t(−1 + ir0w))

)
O(n−1/24) dw

∣∣∣∣∣
≤ O(n−1/24)

∫ n1/24

−n1/24
exp

(
1
6 g3(1 − 3r2

0w2) − σ0t
)

dw = O(n−1/24).

Combining the above observations gives that

Qn =
(
Ai(k)(t) + O

(
n−1/24

))
akγ

(k+1)/6(1 +
√
γ)−(4k+1)/3

× n−(k+1)/3 exp
(
g0n + σ0tr0n1/3

)
. (5.81)

Analysis of Wn. Denote M = sup
{
|h(z)| : |z| < 1/(1 +

√
Γ)

}
. Trivially, we

have

|Wn| ≤
1

2π

∫
(−π,π)\(−ε,ε)

∣∣∣∣exp
(
ng(reiθ) + σ0tn1/3reiθ

)∣∣∣∣ · |h(reiθ)|dθ

≤
M
2π

∫
(−π,π)\(−ε,ε)

exp
(
Re

(
ng(reiθ) + σ0tn1/3reiθ

))
dθ

≤
M
2π

exp
(
σ0tn1/3r cos ε

) ∫
(−π,π)\(−ε,ε)

exp
(
n Re g(reiθ)

)
dθ.

In the last bound, we claim that the expression Re g(reiθ) in the integrand is
an increasing function of cos θ, and therefore as θ ranges over
(−π, π) \ (−ε, ε) it takes its maximum precisely at θ = ε, so we can fur-
ther write

|Wn| ≤ M exp
(
n Re g(reiε) + σ0tn1/3r

)
≤ M exp

(
n Re g(reiε) + σ0tn1/3r0 − σ0t

)
. (5.82)

To prove this, observe that, from the definition (5.68) of g(z), we have

Re g(reiθ) = Re
[
βreiθ + γLog(1 − reiθ) − Log(reiθ)

]
= βr cos θ + 1

2γ log
(
(1 − r cos θ)2 + r2 sin2 θ

)
− log r

= βr cos θ + 1
2γ log(1 + r2 − 2r cos θ) − log r = h(r, cos θ),

where

h(r, s) = βrs + 1
2γ log(1 + r2 − 2rs) − log r (−1 ≤ s ≤ 1).
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Now differentiate h(r, s) with respect to s; we have

∂h(r, s)
∂s

= βr + 1
2γ(−2r)

1
1 + r2 − 2rs

= r
(
β −

γ

1 + r2 − 2rs

)
= r

(
β −

γ

(1 − r)2 + 2r(1 − s)

)
≥ r

(
β −

γ

(1 − r)2

)
≥ r

(
β −

γ

(1 − r0)2

)
= 0,

so h(r, cos θ) is indeed an increasing function of cos θ.
Having proved (5.82), note that the estimates (5.76) and (5.77) apply to

θ = ε, with the corresponding value of w being equal to n1/24, so we get
that

n Re g(reiε) = ng0 + 1
6 g3 Re(1 − ir0n1/24)3 + O(n−1/6)

= ng0 + 1
6 g3(1 − 3r2

0n1/12) + O(n−1/6) ≤ ng0 − cn1/12 + C

for some constants C, c > 0. Combining this with (5.82), we have shown
that

|Wn| ≤ M exp
(
g0n + σ0tr0n1/3 − σ0t − cn1/12 + C

)
. (5.83)

The estimates (5.81) and (5.83) together prove (5.67). �

Theorem 5.28 Under the same assumptions as in Theorem 5.27, there
exist constants C, c > 0 that depend on h(z) and Γ, such that for all n ≥ 1,
γ ∈ [1,Γ]n, and t ∈ R, we have

|In(h, x)| ≤ Cn−(k+1)/3 exp
(
g0n + σ0tr0n1/3 − ct

)
. (5.84)

Proof We use the notation and computations from the proof of Theo-
rem 5.27. By (5.79), there exist constants C′,C′′, c > 0, independent of n
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and γ ∈ [1,Γ]n, such that

|Qn| ≤ C′n−(k+1)/3 exp
(
g0n + σ0tr0n1/3

)
×

∫ ∞

−∞

exp
[
Re

(
1
6 g3(1 − ir0w)3 + σ0t(−1 + ir0w)

)]
×(| − 1 + ir0w|k + O(1)) dw

= C′n−(k+1)/3 exp
(
g0n + σ0tr0n1/3 − σ0t

)
×

∫ ∞

−∞

exp
(

1
6 g3(1 − 3r2

0w2)
)
·(| − 1 + ir0w|k + O(1)) dw

≤ C′′n−(k+1)/3 exp
(
g0n + σ0tr0n1/3 − ct

)
.

The fact that |Wn| satisfies a similar bound is immediate from (5.83). Since
In(h, x) = Qn + Wn, this finishes the proof. �

5.12 Proof of Theorem 5.25

Lemma 5.29 For fixed t ∈ R we have

An(x) = (1 + O(n−1/5))n1/2 exp
(
−g0n − σ0r0tn1/3

)
as n→ ∞, (5.85)

uniformly as γ ranges over [1,Γ]n. Furthermore, there exists a constant
C > 0 such that for all t ∈ R, n ≥ 1 and γ ∈ [1,Γ]n, we have

An(x) ≤ Cn1/2 exp
(
−g0n − σ0r0tn1/3

)
. (5.86)

Proof By the version (5.72) of Stirling’s approximation, we have

(
n!

(γn)!

)1/2

= (1 + O(n−1/5))

 √
2πn(n/e)n√

2πγn(γn/e)γn

1/2

= (1 + O(n−1/5))γ−1/4n(1−γ)n/2e−(1−γ)n/2γ−γn/2. (5.87)

The factor xα/2e−x/2 in An(x) behaves asymptotically (for fixed t as n→ ∞)
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as

xα/2e−x/2 =
(
βn + σ0tn1/3

)(γ−1)n/2
exp

(
−
βn
2
−
σ0tn1/3

2

)
= (1 +

√
γ)(γ−1)nn(γ−1)n/2

(
1 +

σ0t
β

n−2/3
)(γ−1)n/2

× exp
(
−
βn
2
−
σ0tn1/3

2

)
= (1 + O(n−1/3))(1 +

√
γ)(γ−1)nn(γ−1)n/2

× exp
(
−
βn
2
−
σ0tn1/3

2
+
σ0t
β

(
γ − 1

2

)
n1/3

)
. (5.88)

So we get that

An(x) = (1 + O(n−1/5))n1/2 exp
[
σ0tn1/3

(
−

1
2

+
γ − 1

2β

)]
× exp

[
n
(
γ − 1

2
−
γ

2
log γ + (γ − 1) log(1 +

√
γ) −

β

2

)]
.

It is easy to check the coefficients of n and σ0tn1/3 in the exponent are
equal to −g0 and −r0, respectively, so we get (5.85). A variant of the same
computation gives (5.86), by noting that the constant implicit in the error
term O(n−1) in (5.87) is independent of t, and that in (5.88) the asymptotic
estimate(

1 +
σ0t
β

n−2/3
)(γ−1)n/2

= (1 + O(n−1/3)) exp
(
σ0t

(
γ − 1

2β

)
n1/3

)
,

in which the constant implicit in the error term does depend on t, can be
replaced (using the standard fact that 1 + u ≤ eu for all u ∈ R) by an
inequality (

1 +
σ0t
β

n−2/3
)(γ−1)n/2

≤ exp
(
σ0t

(
γ − 1

2β

)
n1/3

)
which holds for all n and t. �

Proof Theorem 5.25(a) We use the representation (5.56) for the Laguerre
kernel, together with the asymptotic results we proved for above for In(h, x)
and An(x). Specifically, we apply Theorem 5.27 with h = h j, j = 1, 2, 3, 4,
defined in (5.51)–(5.54). The relevant values of k and ak for each function
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h j are easy to compute and are as follows:

h1(z) = 1 : k = 0, ak = 1,

h2(z) =
√
γ z

1−z − 1 : k = 1, ak =
(1+
√
γ)2

√
γ
,

h3(z) = z − r0 : k = 1, ak = 1,

h4(z) = h2(z)h3(z) : k = 2, ak =
(1+
√
γ)2

√
γ
.

Start with the case t , s. In this case, combining (5.56), (5.67), and (5.85)
gives that

Λn(t, s) = σ0n1/3An(x)An(y) ·
In(h1, x)In(h2, y) − In(h2, x)In(h1, y)

x − y

= n1/3 ·
1 + O(n−1/5)
n1/3(t − s)

· n1/2n1/2
(
γ1/6(1 +

√
γ)−1/3

) (
γ1/3(1 +

√
γ)−5/3

)
× n−1/3n−2/3 (1 +

√
γ)2

√
γ

[
(Ai(t) + O(n−

1
24 ))(Ai′(s) + O(n−

1
24 ))

− (Ai′(t) + O(n−
1
24 ))(Ai(s) + O(n−

1
24 ))

]
=

(
1 + O(n−1/5)

) (Ai(t) Ai′(s) − Ai(s) Ai′(t)
t − s

+ O(n−1/24)
)

= A(t, s) + O(n−1/24).

Similarly, in the case t = s we have

Λn(t, t) = σ0n1/3An(x)2(In(h2, x)In(h3, x) − In(h1, x)In(h4, y)
)

=
(
1 + O(n−1/5)

)
n4/3

(
γ−1/6(1 +

√
γ)4/3

) (1 +
√
γ)2

√
γ

(
γ2/3(1 +

√
γ)−10/3

)
×

(
n−2/3n−2/3(Ai′(t) + O(n−

1
24 ))(Ai′(t) + O(n−

1
24 ))

− n−1/3n−1(Ai(t) + O(n−
1
24 ))(Ai′′(t) + O(n−

1
24 ))

)
=

(
1 + O(n−1/5)

) (
Ai′(t)2 − Ai(t) Ai′′(t) + O(n−1/24)

)
= A(t, t) + O(n−1/24). �

Proof Theorem 5.25(b)–(c) The representation (5.56) combined with the
inequalities (5.84) and (5.86) gives that for some constants c,C′ > 0, we
have

|Λn(t, t)| ≤ C′e−2ct
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for all n ≥ 1, t ∈ R and γ ∈ [1,Γ]n. This immediately gives (5.43) and
(5.44). �

5.13 The passage times in the multicorner growth process

The analysis in Sections 5.6–5.12 carries over in a more or less straightfor-
ward way to the case of the multicorner growth process, but the required
computations and estimates are more complicated. In this section we for-
mulate the main results for this case. The details of the proofs can be found
in Johansson’s paper [62] and in chapter 5 of [115].

First, there is a version of the Fredholm determinant representation (5.21)
for the case of the multicorner growth process. The determinant involves
a discrete family of kernels M(p)

n : N0 × N0 → R (where N0 = N ∪ {0})
called the Meixner kernels, which is associated with a family of orthogo-
nal polynomials called the Meixner polynomials. For any integer K ≥ 0
and 0 < p < 1, the Meixner polynomials with parameters K and p are the
family of polynomials (M(K,p)

n (x))∞n=0 defined by

M(K,p)
n (x) =

pK/2(1 − p)n/2(
n+K−1

n

)1/2

n∑
k=0

(1 − p)−k

(
x
k

)(
−x − K
n − k

)
.

The Meixner polynomials satisfy the orthogonality relation

∞∑
x=0

M(K,p)
i (x)M(K,p)

j (x)
(
x + K − 1

K − 1

)
(1 − p)x = δi j (i, j ≥ 0),

which means they are a family of discrete orthogonal polynomials, that is,
they are orthogonal with respect to the discrete measure µ(K,p)(x) defined
by µ(K,p)(x) =

(
x+K−1

K−1

)
(1 − p)x on N0. Next, define the associated Meixner

kernels M(K,p)
n : N0 × N0 → R by

M(K,p)
n (x, y) =

((
x + K − 1

K − 1

)(
y + K − 1

K − 1

)
(1 − p)x+y

)1/2

×


M(K,p)

n (x)M(K,p)
n−1 (y) − M(K,p)

n−1 (x)M(K,p)
n (y)

x − y if x , y,

(M(K,p)
n )′(x)M(K,p)

n−1 (x) − (M(K,p)
n−1 )′(x)M(K,p)

n (x) if x = y.

(5.89)
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Theorem 5.30 For any m ≥ n ≥ 1, the distribution of the passage
times G(m, n) in the multicorner growth process is given by the Fredholm
determinant

P(G(m, n) ≤ t) = det
(
I − (Mm−n+1

n ){n+t,n+t+1,...}

)
= 1 +

n∑
k=1

(−1)k

k!

∞∑
x1,...,xk=n+t

n
det
i, j=1

(
Mm−n+1

n (xi, x j)
)
. (5.90)

By performing an asymptotic analysis of the Meixner polynomials and
Meixner kernel, using an appropriate contour integral representation and
the saddle point method, one can use (5.90) to prove the following result
analogous to Theorem 5.1.

Theorem 5.31 (Limit law for the multicorner growth process passage times)
Let 0 < p < 1. For x, y > 0 define

Φp(x, y) =
1
p

(
x + y + 2

√
(1 − p)xy

)
,

ηp(x, y) =
(1 − p)1/6

p
(xy)−1/6

(√
x +

√
(1 − p)y

)2/3 (√
y +

√
(1 − p)x

)2/3
.

Let (mk)∞k=1, (nk)∞k=1 be sequences of positive integers with the properties
that

mk, nk → ∞ as k → ∞,

0 < lim inf
k→∞

mk

nk
< lim sup

k→∞

mk

nk
< ∞.

Then as k → ∞, the passage times G(mk, nk) associated with the multi-
corner growth process converge in distribution after rescaling to the Tracy–
Widom distribution F2. More precisely, we have

P
(
G(mk, nk) − Φp(mk, nk)

ηp(mk, nk)
≤ t

)
−−−→
k→∞

F2(t) (t ∈ R).

5.14 Complex Wishart matrices

To conclude this chapter, we point out another intriguing connection be-
tween the corner growth process and a seemingly unrelated problem in
probability theory involving random matrices known as complex Wishart
matrices. We will not treat this topic in detail; for the proofs of Theo-
rems 5.32 and 5.33 below, see chapter 4 of [4].
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Given integers m ≥ n ≥ 1, the complex Wishart matrix Wm,n is a random
n × n positive-definite Hermitian matrix constructed as follows. Let

A = (X j,k + iY j,k)1≤ j≤n,1≤k≤m

be a random n×m rectangular matrix whose real and imaginary parts are a
family of independent and identically distributed random variables X j,k,Y j,k

all having the normal distribution N(0, 1/2). (The distribution of the com-
plex entries Z j,k = X j,k + iY j,k is referred to as the standard complex normal
distribution and denoted NC(0, 1). Note that they satisfy E|Z j,k|

2 = 1.) Now
let

Wm,n = AA∗,

which by construction is automatically Hermitian and positive-semidefinite
(and, it is not hard to see, actually positive-definite with probability 1).

The distribution of Wm,n is of some importance in statistics, where it is
known as (a special case of) the complex Wishart distribution.3

To understand the Wishart distribution, we first parametrize the space
of matrices in which Wm,n takes its values. Denote by Hn the set of n ×
n Hermitian matrices with complex entries, and denote by H+

n ⊂ Hn the
subset of positive-semidefinite matrices in Hn. We write a generic element
M ∈ Hn as

M = (x j,k + iy j,k)1≤ j,k≤n.

Since M∗ = M, one can consider as free parameters the elements lying on
or above the main diagonal (with the diagonal elements being purely real
numbers), namely (x j, j)1≤ j≤n∪(x j,k, y j,k)1≤ j<k≤n. For convenience we identify
Hermitian matrices with their sets of free parameters, which allows us to
think of Hn as the n2-dimensional space Rn2

. With this identification, the
standard Lebesgue measure on Rn2

can be written as

dM =

n∏
j=1

dx j, j

∏
1≤ j<k≤n

dx j,k dy j,k. (5.91)

Note that H+
n is an open subset of Hn.

The matrix Wm,n can now be thought of as an n2-dimensional random
vector. The simplest description of its distribution is in terms of its joint
density (with respect to the Lebesgue measure (5.91)), given in the follow-
ing result.
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Theorem 5.32 (Density of complex Wishart matrices) The complex Wishart
matrix Wm,n has the n2-dimensional joint probability density function

f (M) =
1
γm,n

det(M)m−ne− tr M (M ∈ H+
n ), (5.92)

where γm,n is a normalization constant given by

γm,n = πn
n∏

j=0

(m − n + j)!.

It is interesting to note that the density (5.92) is a function only of det M
and tr M, both of which are invariants under conjugation by a unitary ma-
trix. This reflects the fact (which is not hard to prove, either from (5.92)
or directly from the definition) that the distribution of Wm,n is invariant un-
der unitary conjugation, that is, for any n × n unitary matrix U, the matrix
U∗Wm,nU is equal in distribution to Wm,n.

Another way of formulating the preceding invariance property is as the
statement that the density (5.92) can be expressed as a function of the
eigenvalues of Wm,n. Denote the eigenvalues (which are real and positive,
since Wm,n ∈ H+

n ), arranged in increasing order, by ξ1 < . . . < ξn. In terms
of the eigenvalues, the density (5.92) becomes

f (M) =
1
γm,n

n∏
j=1

ξm−n
j e−

∑n
j=1 ξ j (M ∈ H+

n ). (5.93)

Using (5.93) one can prove the following result giving a formula for the
joint density of the eigevalues ξ1, . . . , ξn.

Theorem 5.33 (Eigenvalue distribution of complex Wishart matrices) Let
m ≥ n ≥ 1, and let Dm,n be defined as in (5.13). The joint density of the
eigenvalues ξ1 < . . . < ξn of the Wishart random matrix Wm,n is

f (x1, . . . , xn) = n!Dm,n

n∏
j=1

(e−x j xm−n
j )

∏
1≤i< j≤n

(xi − x j)2 (0 ≤ x1 ≤ . . . ≤ xn).

(5.94)

This expression looks familiar from our studies of the corner growth
process. Indeed, a quick comparison with (5.25) identifies (5.94) as being
precisely the density function of the orthogonal polynomial ensemble asso-
ciated with the weight function Wm−n(x) = e−xxm−n and the related Laguerre
polynomials, which in turn we saw was related to the distribution of the
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passage times G(m, n). (Note that (5.94) gives the density for the ordered
eigenvalues, whereas (5.25) treats the points of the orthogonal polynomial
ensemble as an unordered set.) The precise connection is summarized in
the following result.

Theorem 5.34 The passage time G(m, n) in the corner growth process is
equal in distribution to the maximal eigenvalue ξn of the complex Wishart
random matrix Wm,n.

Proof Let λ1, . . . , λn be the eigenvalues of Wm,n where we have random-
ized the order of ξ1, . . . , ξn, that is, we set

λk = ξσ(k), k = 1, . . . , n,

where σ is a uniformly random permutation in Sn, chosen independently of
Wm,n. Then since the formula on the right-hand side of (5.94) is symmetric
in x1, . . . , xn, it is easy to see that λ1, . . . , λn have joint density function

g(x1, . . . , xn) = Dm,n

n∏
j=1

(e−x j xm−n
j )

∏
1≤i< j≤n

(xi − x j)2 (x1, . . . , xn ∈ R).

It follows that

P(µn ≤ t) = P
(
(λ1, . . . , λn) ∈ (−∞, t]n

)
=

∫
. . .

∫
(−∞,t]n

g(x1, . . . , xn) dx1 . . . dxn

= Dm,n

∫ t

−∞

. . .

∫ t

−∞

n∏
j=1

(e−x j xm−n
j )

∏
1≤i< j≤n

(xi − x j)2 dx1 . . . dxn,

which by (5.15) is precisely P(G(m, n) ≤ t). �

In light of the above result, Theorem 5.1 takes on a new meaning as
a result on the limiting distribution of the maximal eigenvalue of a large
complex Wishart matrix Wm,n when m, n → ∞ in such a way that the ratio
m/n is bounded away from infinity.45

Exercises

5.1 (KK) Show that in Theorem 5.1, the convergence (5.5) need not hold if the
condition (5.4) is omitted.

5.2 (KKK) Prove Lemma 5.5.
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5.3 (K) Find the triple (λ, P,Q) associated to the generalized permutation

σ =

 1 2 2 2 4 5 5 6 8 8 10
6 3 3 4 2 1 2 3 2 3 1


by the RSK algorithm.

5.4 (K) Find the generalized permutation associated via the (inverse) RSK al-
gorithm to the Young diagram λ = (5, 5, 1, 1) and semistandard tableaux

P =

1 2 3 3 3

2 3 4 4 5

5

8

, Q =

1 1 1 2 3

2 2 3 4 5

4

6

.

5.5 (K) Prove Lemma 5.9.
5.6 (KK) Prove that if f (x1, . . . , xk) is an antisymmetric polynomial of total

degree k(k − 1)/2, then there is a constant c such that

f (x1, . . . , xn) = c
∏

1≤i< j≤n

(xi − x j).

5.7 (K) Show that the number of sequences (a1, . . . , ad) with nonnegative inte-
ger coordinates that satisfy

∑d
j=1 a j = k is equal to

(
d−1+k

k

)
. Deduce that the

number of generalized permutations of length k and row bounds (m, n) is

|Pk
m,n| = |M

k
m,n| =

(
mn − 1 + k

k

)
.

5.8 (KK) Use Lemma 5.16 to prove the Cauchy–Binet formula, which states
that if a square matrix C = (ci, j)1≤i, j≤n = AB is the product of two rectangular
matrices A = (ai, j)1≤i≤n,1≤ j≤m and B = (bi, j)1≤i≤m,1≤ j≤n, then

det(C) =
∑

1≤k1<...<kn≤m

n
det
i,`=1

(
ai,k`

) n
det
`, j=1

(
bk` , j

)
.

5.9 (KK) Let K : R × R→ R be a kernel with the property that∫ ∞

−∞

K(x, y)K(y, z) dy = K(x, z) (x, z ∈ R).

Denote r =
∫ ∞
−∞

K(x, x) dx. Prove that for any m ≥ 1 and x1, . . . , xm ∈ R we
have ∫ ∞

−∞

m
det
i, j=1

(
K(xi, x j)

)
dxn = (r − m + 1)

m
det
i, j=1

(
K(xi, x j)

)
.

5.10 (KK) Use the result of Exercise 5.9 above to prove Theorem 5.20.
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5.11 (K) Use the result of Exercise 5.9 above to get a new proof of Corollary 5.18.
5.12 (K) Use Corollary 5.18 to rederive the expression (5.13) for the normaliza-

tion constants Dm,n in (5.15).
5.13 (KK) Show that the Laguerre polynomial `αn (x) satisfies the differential

equation

x f ′′(x) + (α + 1 − x) f ′(x) + n f (x) = 0.

5.14 (KK) Prove the generating function identity
∞∑

n=0

Lαn (x)tn = (1 − t)−(1+α) exp
(
−

tx
1 − t

)
.

5.15 (KK) Show that the Laguerre polynomial `αn (x) has n real and positive roots.
5.16 (KKK) Prove that the joint density (5.94) of the eigenvalues of the Wishart

random matrix Wm,n takes its unique maximum at the point (ζ1, . . . , ζn),
where ζ1 < . . . < ζn are the roots of the Laguerre polynomial `m−n−1

n (x).

5.17 (KKK) The Hermite polynomials (hn(x))∞n=0 are the sequence of orthog-
onal polynomials associated with the weight function w(x) = e−x2/2; that
is, for each n ≥ 0, hn(x) is a polynomial of degree 0 with positive leading
coefficient, and the polynomials hn(x) satisfy the orthonormality relation∫ ∞

−∞

hn(x)hm(x)e−x2/2 dx = δnm (n,m ≥ 0).

Prove that the Hermite polynomials have the following properties:

(a) hn(x) =
(−1)n√
√

2πn!
ex2/2 dn

dxn

(
e−x2/2

)
.

(b) hn(x) =
(n!)1/2

(2π)1/4

bn/2c∑
k=0

(−1)k

2kk!(n − 2k)!
xn−2k.

(c) The leading coefficient of hn(x) is κn =
(√

2π n!
)−1/2

.
(d) The exponential generating function of the hn (normalized to be monic

polynomials) is
∞∑

n=0

hn(x)
κnn!

tn = ext−t2/2.

5.18 (KK) Use Corollary 5.18 and the properties of the Hermite polynomials
from Exercise 5.17 above to prove for any n ≥ 1 the n-dimensional integra-
tion identity∫

. . .

∫
Rn

∏
1≤i< j≤n

(xi − x j)2 e−
1
2
∑n

j=1 x2
j dx1 . . . dxn = (2π)n/2

n−1∏
j=1

j!.
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Deduce that the formula given on p. 84 for the normalization constant Zn in
the joint density of the eigenvalues of a random Gaussian Unitary Ensemble
(GUE) matrix is correct.

5.19 (KK) Prove (5.71).
5.20 (a) (KK) Use the saddle point method to prove that(

2n
n

)
= (1 + o(1))

4n
√
πn
.

(b) (KK) The nth central trinomial coefficient cn is defined as the coeffi-
cient of xn in the expansion of the polynomial (1+ x+ x2)n in powers of x.
Use the saddle point method to derive and prove an asymptotic formula
for cn as n→ ∞.

5.21 (KKK) (Chowla–Herstein–Moore [25]) Let In denote the number of invo-
lutions of order n, that is, permutations σ ∈ Sn such that σ2 = id. Use the
saddle point method together with the contour integral representation

In =
1

2πi

∮
|z|=r

ez+z2/2

zn+1 dz

(an immediate corollary of the result of Exercise 1.11(c)) to get a new proof
of the asymptotic formula (1.61).

5.22 (Angel–Holroyd–Romik [7]) Given permutations π, σ ∈ Sn, we say that σ
covers π, and denote π ↗ σ, if σ is for some 1 ≤ j ≤ n − 1 such that
π( j) < π( j + 1), σ is obtained from π by transposing the adjacent elements
π( j), π( j+1) of π and leaving all other elements of π in place (in other words,
σ = π◦τ j where τ j denotes the jth adjacent transposition; see Exercise 3.8).
Fix n ≥ 1. Denote N =

(
n
2

)
. Define a random walk (σn

k)0≤k≤N on Sn, called
the directed adjacent transposition random walk, by setting σn

0 = id and,
conditionally on the event that σn

k = π, choosing σn
k+1 to be a uniformly

random permutation σ chosen from among the permutations such that π ↗
σ. If we define the inversion number of a permutation σ by

inv(σ) = #{1 ≤ j < k ≤ n : σ( j) > σ(k)},

then it is easy to see that inv(σn
k) = k and in particular at time N =

(
n
2

)
the random walk reaches the unique permutation with maximal inversion
number N =

(
n
2

)
, namely the reverse permutation revn = (n, . . . , 2, 1) defined

in Exercise 3.8; once it reaches revn the random walk terminates.
It is natural to interpret this process as a particle system, which can be de-
scribed as follows: n particles numbered 1, . . . , n are arranged in a line. Ini-
tially particle k is in position k. Now successively swap the positions of an
adjacent pair (i, j) that is chosen uniformly at random from among the pairs
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σ5
0 = 1 2 3 4 5

σ5
1 = 2 1 3 4 5

σ5
2 = 2 1 3 5 4

σ5
3 = 2 1 5 3 4

σ5
4 = 2 1 5 4 3

σ5
5 = 2 5 1 4 3

σ5
6 = 2 5 4 1 3

σ5
7 = 2 5 4 3 1

σ5
8 = 5 2 4 3 1

σ5
9 = 5 4 2 3 1

σ5
10 = 5 4 3 2 1

Figure 5.1 An example of a directed adjacent transposition
random walk with n = 5. The numbers in bold highlight the
trajectory of particle number 3.

for which i < j until for each 1 ≤ k ≤ n the particle that started in position k
is in position n + 1 − k. See Fig. 5.1 for an example, which also shows how
one can graphically track the trajectory of individual particles.
Next, construct a continuous-time version of the random walk (σn

k)0≤k≤N in a
manner analogous to the construction of the continuous-time corner growth
process from its discrete-time counterpart. More precisely, associate with
each permutation σ ∈ Sn a random variable Xσ with the exponential dis-
tribution Exp(out(σ)), where out(σ) denotes the number of permutations τ
such that σ ↗ τ (that is, the out-degree of σ in the directed graph with
adjacency relation “↗”). The random variables (Xσ)σ∈Sn are taken to be in-
dependent of each other and of the random walk (σn

k)k. Define a sequence of
random times 0 = S 0 < S 1 < . . . < S N < S N+1 = ∞ by setting

S k+1 = S k + Xσ on the event {σn
k = σ}

for 0 ≤ k ≤ N − 1. The continous-time random walk is the process (πn
t )t≥0 of

Sn-valued random variables defined by setting

πn
t = σn

k on the event {S k ≤ t < S k+1}.

(a) (KKK) Show that the continuous-time process has the following equiv-
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alent description. With each pair (k, k + 1) of adjacent positions associate
a Poisson process of unit intensity on [0,∞), which can be written as an
increasing sequence Ek = {0 = T k

0 < T k
1 < T k

2 < . . .} of times such
that the increments (T k

m+1 − T k
m)m≥0 are i.i.d. with the exponential distri-

bution Exp(1). The different processes Ek are taken to be independent.
The random permutation process (πn

t )t≥0 is defined by setting πn
0 = id and

modifying the permutations precisely at the times T k
m (1 ≤ k ≤ n − 1,

m > 0), according to the rule that at each time T k
m, the particles at (i, j) at

positions (k, k + 1) swap their positions if and only if i < j.

(b) (KKKK) For 1 ≤ j ≤ n, define the finishing time of particle j to be
the last time when particle j moved, that is,

T n
j = sup

{
t > 0 : (πn

t )−1( j) , n + 1 − j
}
.

and define the total finishing time by

T n
∗ = max{T n

j : 1 ≤ j ≤ n} = inf
{
t > 0 : πn

t = revn
}
.

Prove that the joint distribution of the finishing times can be expressed in
terms of the passage times G(a, b; i, j) in the corner growth process. More
precisely, we have the equality in distribution{

T n
j : 1 ≤ j ≤ n

} d
=

{
Rn

j−1 ∨ Rn
j : 1 ≤ j ≤ n

}
,

where we define

Rn
j = G( j, 1; n − 1, j) (1 ≤ j ≤ n − 1),

Rn
0 = Rn

n = 0.

As a result we also have the representation

T n
∗

d
= max

{
G( j, 1; n − 1, j) : 1 ≤ j ≤ n − 1

}
for the distribution of the total finishing time.

(c) (KK) Deduce from part (b) above together with the results we proved in
Chapters 4 and 5 the following results about the asymptotic behavior of
the finishing times.

Theorem 5.35 (Uniform asymptotics for the finishing times) Denote
g(x) = 1+2

√
x(1 − x). As n→ ∞, we have the convergence in probability

max
1≤ j≤n

∣∣∣∣∣1n T n
j − g( j/n)

∣∣∣∣∣ P
−−−−→
n→∞

0,
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and, as a consequence,
1
n

T n
∗

P
−−−−→
n→∞

2.

Theorem 5.36 (Fluctuations of the finishing times) Let ( jk)∞k=1 and (nk)∞k=1
be sequences of positive integers with the properties

1 ≤ jk ≤ nk,

jk, nk → ∞,

0 < lim inf
k→∞

jk
nk

< lim sup
k→∞

jk
nk

< 1.

Then as k → ∞ the finishing time T n
j = T nk

jk
converges in distribution after

scaling to the Tracy–Widom distribution F2. More precisely, we have

T nk
jk
− Ψ( jk, nk + 1 − jk)

σ( jk, n + 1 − jk)
d
−−→ F2 as n→ ∞,

where Ψ(·, ·) and σ(·, ·) are defined in (5.1) and (5.2).

(d) (KKKK) Prove that asymptotically as n → ∞ we have for any t ≥ 0
that

(
n
2

)−1

inv(πn
nt)

P
−−−−→
n→∞


2
3 t − 1

15 t2 if 0 ≤ t < 1,

1 − 2
15 t−1/2(2 − t)3/2(1 + 2t) if 1 ≤ t < 2,

1 if t ≥ 2.

(e) (KKKKK) Find sequences (an)∞n=1, (bn)∞n=1 and a nontrivial probability
distribution F such that we have the convergence in distribution

T n
∗ − an

bn

d
−−−−→
n→∞

F.





Appendix

Kingman’s subadditive ergodic theorem

In Chapters 1 and 4 we make use of Kingman’s subadditive
ergodic theorem, an advanced result from probability theory. This ap-
pendix gives a brief discussion of this important result in a version suited
to our needs. The starting point is the following well-known elementary
lemma in real analysis, known as Fekete’s subadditive lemma.

Lemma A.1 (Fekete’s subadditive lemma) If (an)∞n=1 is a sequence of non-
negative numbers that satisfies the subadditivity property

am+n ≤ an + am (n,m ≥ 1),

Then the limit limn→∞
an
n exists and is equal to infn≥1

an
n .

The condition of subadditivity appears naturally in many places, making
Fekete’s lemma an extremely useful fact. John F. C. Kingman [69] discov-
ered that subadditivity can be applied in a probabilistic setting to a family
of random variables, with equally powerful consequences. His theorem (in
a version incorporating a small but significant improvement added later by
Liggett [76]) is stated as follows.

Theorem A.2 (Kingman’s subadditive ergodic theorem) Let (Xm,n)0≤m<n

be a family of random variables, defined on some probability space, that
satisfies:

1 X0,n ≤ X0,m + Xm,n for all m < n.
2 For any k ≥ 1, the sequence (Xnk,(n+1)k)∞n=1 is a stationary sequence.
3 For any m ≥ 1, the two sequences (X0,k)∞k=1 and (Xm,m+k)∞k=1 have the same

joint distribution.
4 E|X0,1| < ∞, and there exists a constant M > 0 such that for any n ≥ 1,

EX0,n ≥ −Mn.

333
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Then

(a) limit γ = limn→∞
E(X0,n)

n exists and is equal to infn≥1
E(X0,n)

n .
(b) The limit X = limn→∞

X0,n

n exists almost surely, and satisfies E(X) = γ.
(c) If the stationary sequences (Xnk,(n+1)k)∞n=1 are ergodic for any k ≥ 1,

then X = γ almost surely.

Note that conclusion (a) is a straightforward consequence of Fekete’s
lemma.

For the proof, see [76] or [33], chapter 7. Both the formulation of the
theorem and its proof make reference to concepts and results from ergodic
theory, which are beyond the scope of this book and may be unfamiliar to
some readers. It is comforting, however, to notice that for our applications
in Chapters 1 and 4 we can use the following special case of the theo-
rem that avoids reference to ergodicity, relying instead on more elementary
concepts.

Theorem A.3 (Kingman’s subadditive ergodic theorem; i.i.d. case) Let
(Xm,n)0≤m<n be a family of random variables, defined on some probability
space, that satisfies:

1 X0,n ≤ X0,m + Xm,n for all m < n.
2 For any k ≥ 1, the sequence (Xnk,(n+1)k)∞n=1 is a sequence of independent

and identically distributed random variables.
3 For any m ≥ 1, the two sequences (X0,k)∞k=1 and (Xm,m+k)∞k=1 have the same

joint distribution.
4 E|X0,1| < ∞, and there exists a constant M > 0 such that for any n ≥ 1,

EX0,n ≥ −Mn.

Then the limit γ = limn→∞
E(X0,n)

n exists and is equal to infn≥1
E(X0,n)

n . Fur-
thermore, we have the convergence 1

n X0,n → γ almost surely.

Theorem A.3 can be proved in an identical manner to the proof of Theo-
rem A.2, except that instead of applying Birkhoff’s pointwise ergodic the-
orem one invokes the strong law of large numbers.



Notes

Chapter 1

1 Hammersley’s paper [54], based on his Berkeley symposium talk, is written in an
unusual informal and entertaining style and is worth reading also for the insights it
offers as to the way mathematical research is done.

2 Actually Logan and Shepp only proved that lim infn→∞ `n/
√

n ≥ 2, but it is this
proof that was the real breakthrough. Vershik and Kerov proved the same result but
also found the relatively simple argument (Section 1.19) that proves the upper
bound lim supn→∞ `n/

√
n ≤ 2.

3 The Erdős–Szekeres theorem was mentioned by Ulam in his original paper [138]
as the motivation for studying the maximal monotone subsequence length of a
random permutation.

4 The plural form of tableau when used in its math context is tableaux; when used in
the original (nonmathematical) meaning, tableaux is still the standard plural form
but tableaus is also considered acceptable in American English.

5 Part (a) of Theorem 1.10 is due to Schensted [113], and part (b) is due to
Schützenberger [114].

6 The effect on the recording tableau Q of reversing the order of the elements of σ is
more subtle so we do not discuss it here; see [71, Section 5.1.4] and Chapter 3
(specifically, Theorem 3.9.4) of [112].

7 Hardy and Ramanujan proved (1.16) as a corollary of a much more detailed
asymptotic expansion they obtained for p(n). Their result was later improved by
Hans Rademacher, who used similar techniques to derive a remarkable convergent
infinite series for p(n). See [8] for more details on this celebrated result.

8 Varadhan was awarded the Abel prize in 2007 for his fundamental contributions to
probability theory and in particular to the theory of large deviations.

9 The following simple example demonstrates that the typical behavior in a
probabilistic experiment need not always coincide with the “least exponentially
unlikely” behavior: when making n independent coin tosses of a coin with bias
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p = 2/3, the typical sequence of results will contain approximately 2n/3 “heads”
and n/3 “tails,” but the most likely sequence consists of a succession of n heads, an
outcome which as a function of the parameter n is exponentially more likely than
any single outcome in the “typical” region.

10 The relation (1.34) corrects a sign error from [79] which (in a nice demonstration
of the way errors can propagate through the scientific literature) was repeated in
[28] and [101].

11 A version of Lemma 1.21, due to Boris Pittel, appeared in [101].
12 The question of identifying the irreducible representation of maximal dimension in

the symmetric group may have been mentioned for the first time in a 1954 paper
by Bivins, Metropolis, Stein, and Wells [14] (see also [10], [87]).

13 The Plancherel growth process was first named and considered systematically by
Kerov, who analyzed in [66] the limiting dynamics of the growth process, which
provides an alternative approach to understanding the limit shape of
Plancherel-random Young diagrams. The same growth process is also implicit in
earlier works such as [51], [143].

Chapter 2

1 See the papers by Frieze [45], Bollobás-Brightwell [16], Talagrand [132] ,
Deuschel-Zeitouni [32], Seppäläinen [118]; and the related papers by
Aldous-Diaconis [2], Johansson [61], and Seppäläinen [116] that gave new proofs
of Theorem 1.1.

2 The graph in Fig. 2.1 was generated from numerical data computed by Prähofer
and Spohn [102].

3 This extremely elegant proof is one of the outstanding research achievements
mentioned in Okounkov’s 2006 Fields Medal citation.

4 The heading of Theorem 2.3 refers to the fact that the theorem describes the
limiting distribution of the edge, or maximal, points, of the point process of
modified Frobenius coordinates associated with the Plancherel-random Young
diagram. One can also study the so-called bulk statistics corresponding to the
behavior of the point process away from the edge. Like the edge statistics, the bulk
statistics also reveal interesting parallels with the analogous quantities associated
with eigenvalue distributions in random matrix theory; see [19].

5 Determinantal point processes were first defined in 1975 by Macchi [83], who
referred to them as fermion processes because they arise naturally as descriptions
of many-particle systems in statistical quantum mechanics. See [59], [80], [82],
[81], [121] and [29, Section 5.4] for more details on the general theory and many
examples.

6 Actually this definition corresponds to what is usually called in the literature a
simple point process; one can consider more generally nonsimple point processes,
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where points are allowed to have multiplicity greater than 1, but all the processes
we will consider will be simple.

7 Fredholm determinants play an important role in random matrix theory, integrable
systems and other areas of analysis. For more background see [74], [119], [120].

8 Considering the crucial importance of Nicholson’s approximation to the
developments in Chapter 2, it is unfortunate that the details of the proof of this
result are rather obscure and inaccessible. The result in a form similar to ours is
derived in Section 4 of the Borodin–Okounkov–Olshanski paper [19] from an
earlier and more traditional form of the result presented in Section 8.43 of the
classical reference [145] on Bessel functions by G. N. Watson. However, the
details of Watson’s derivation are difficult to decipher, and appear to be incomplete
(one finds in the text remarks such as “. . . it has been proved, by exceedingly heavy
analysis which will not be reproduced here, that. . . ”). It would be nice to see a
more modern and accessible proof of this important asymptotic result.
Exercise 2.22 suggests a possible approach for developing such a proof.

9 The representation (2.79) for the Airy kernel is mentioned in [26] (see equation
(4.6) in that paper). The proof we give is due to Tracy and Widom [136].

10 This type of difficulty regarding the question of existence and uniqueness of the
Airy process is not uncommon. In probability theory one often encounters the
“foundational” question of whether a stochastic process with prescribed statistical
behavior exists and is unique. To be sure, such questions are important, but
nonetheless one should not be too bothered by this. As a more or less general rule,
if the prescribed statistics “make sense” as probabilistic descriptions of a random
process (i.e., if they are self-consistent in some obvious sense) then, barring
pathological examples that most ordinary practicioners of probability will never
actually encounter, existence and uniqueness can be safely assumed.
Unfortunately, the rigorous verification of these types of claims is usually quite
tedious and can involve heavy machinery from measure theory and functional
analysis.

Chapter 3

1 Erdős–Szekeres permutations and the formulas (3.1) and (3.2) are mentioned in
[71, Exercise 5.1.4.9] and [125, Example 7.23.19(b)]. The results of Sections 3.2
and 3.3 are due to Romik [108].

2 Theorems 3.5 and 3.6 are due to Pittel and Romik [101].
3 The name “arctic circle” is borrowed from an analogous result due to Jockusch,

Propp and Shor [60], known as the arctic circle theorem, which deals with
random domino tilings of a certain planar region; see Exercises 4.12 and 4.13 at
the end of Chapter 4. Two other arctic circle theorems are proved in [28] (see also
[64]) and [98].
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4 This result is proved in [109]. The idea of interpreting the limit shape theorem for
random square Young tableaux in terms of an arctic circle in an associated
interacting particle system was proposed by Benedek Valkó.

Chapter 4

1 The terminology we use in this chapter is somewhat simplified and differs slightly
from that used in the existing literature on the subject. The process we call the
corner growth process is often referred to as the corner growth model with
exponential weights or as directed last-passage percolation on Z2 with
exponential weights; in the context of interacting particle systems, an equivalent
process is known in the literature as the totally asymmetric simple exclusion
process with step initial condition. The process discussed here under the name
“multicorner growth process” (Section 4.8) is referred to elsewhere as the corner
growth model with geometric weights (or last-passage percolation with
geometric weights).

2 In the existing literature on the corner growth process, the variables τi, j are usually
referred to as weights.

3 The totally asymmetric simple exclusion process with step initial condition;
see Note 1.

4 Thorem 4.24 is due to Jockusch, Propp, and Shor [60] in the case p ≤ 1/2, and to
Cohn, Elkies, and Propp [27] in the case p > 1/2.

5 The developments in Sections 4.3, 4.5, 4.6 and 4.8 follow [115]. Note that the idea
of comparing the growth process with a slowed down version of it as a means for
deriving the limit shape goes back to Rost’s original paper [110]. The particular
(rather ingenious) way of slowing down the process described here, which appears
to offer the easiest route to the limit shape theorems, was first introduced in [13].

Chapter 5

1 Theorem 5.8 is a standard result in enumerative combinatorics, being, for example,
an immediate corollary of equation (7.105) on p. 305 of [125]. The proof given
here is due to Elkies, Kuperberg, Larsen, and Propp [37].

2 Our approach to the proof of Theorem 5.1 adapts the saddle point techniques used
by Johansson [62] in the case of the Meixner polynomials to the case of the
Laguerre polynomials, and is also influenced by the presentation of [115]. Another
proof based on different asymptotic analysis techniques appeared in [65].

3 The complex Wishart distribution has a real-valued counterpart that was introduced
in 1928 by the British mathematician and statistician John Wishart [147]. The
complex variant was first defined and studied in 1963 by Goodman [48].

4 A generalization of this result proved by Soshnikov [122] states that under similar
assumptions, for each k ≥ 1 the distribution of the largest k eigenvalues
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(ξn−k+1, . . . , ξn) will converge as n→ ∞ to the joint distribution of the k largest
points in the Airy ensemble (see Section 2.2).

5 The question of the limiting distribution of the maximal eigenvalue can be asked
more generally for Wishart-type matrices (also called sample covariance
matrices) Wm,n = AA∗ in which A is an n × m matrix with i.i.d. entries distributed
according to some given distribution µ over the complex numbers having the same
first- and second-order moments as the standard complex Gaussian distribution
NC(0, 1). According to a general principle of random matrix theory known as
“universality,” one expects to observe convergence to the Tracy–Widom limiting
law F2 for a wide class of entry distributions µ. This was proved in various levels
of generality in [97], [99], [122], [144].
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vanced Lectures in Machine Learning. Springer.

[21] Bressoud, D. 1999. Proofs and Confirmations: The Story of the Alternating Sign
Matrix Conjecture. Cambridge University Press.

[22] Brown, J. W., and Churchill, R. 2006. Fourier Series and Boundary Value Prob-
lems. 7th edition. McGraw-Hill.

[23] Bufetov, A. I. 2012. On the Vershik-Kerov conjecture concerning the Shannon-
McMillan-Breiman theorem for the Plancherel family of measures on the space
of Young diagrams. Geom. Funct. Anal., 22, 938–975.

[24] Ceccherini-Silberstein, T., Scarabotti, F., and Tolli, F. 2010. Representation The-
ory of the Symmetric Groups: The Okounkov-Vershik Approach, Character For-
mulas, and Partition Algebras. Cambridge University Press.

[25] Chowla, S., Herstein, I. N., and Moore, W. K. 1951. On recursions connected
with symmetric groups I. Canad. J. Math., 3, 328–334.

[26] Clarkson, P. A., and McLeod, J. B. 1988. A connection formula for the second
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[115] Seppäläinen, T. Lecture notes on the corner growth model. Unpublished notes

(2009), available at
http://www.math.wisc.edu/˜seppalai/cornergrowth-book/ajo.pdf.
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