Homework Set No. 3 — Probability Theory (235A), Fall 2011
Due: Tuesday 10/18/11 at discussion section

1. Let X be an exponential r.v. with parameter A, i.e., Fy(z) = (1—e )1y c)(z). Define

random variables

Y = |[X]|=sup{ne€Z:n<zx} (“the integer part of X7),
Z = {X}=X-X] (“the fractional part of X”).

(a) Compute the (1-dimensional) distributions of Y and Z (in the case of Y, since it’s a
discrete random variable it is most convenient to describe the distribution by giving the
individual probabilities P(Y = n),n = 0,1,2,...; for Z one should compute either the
distribution function or density function).

(b) Show that Y and Z are independent. (Hint: Check that P(Y =n,Z <t) = P(Y =
n)P(Z <t) for all n and t.)

2. (a) Let X,Y be independent r.v.’s. Define U = min(X,Y), V = max(X,Y). Find
expressions for the distribution functions Fyy and Fy in terms of the distribution functions
of X and Y.

(b) Assume that X ~ Exp(\),Y ~ Exp(u) (and are independent as before). Prove that
min(X,Y) has distribution Exp(A + ). Try to give an intuitive explanation in terms of
the kind of real-life phenomena that the exponential distribution is intended to model (e.g.,
measuring the time for a light-bulb to burn out, or for a radioactive particle to be emitted

from a chunk of radioactive material).

(c) Let Xy, Xs,... be a sequence of independent r.v.’s, all of them having distribution
Exp(1). For each n > 1 denote

M, = max(Xy, Xs,..., X,,) — logn.
Compute for each n the distribution function of M,,, and find the limit (if it exists)

F(z) = lim Fy, (x).
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3. If X,Y arer.v.’s with a joint density fxy, the identity

P((X,Y) EA)://Any(x,y)dxdy

holds for all “reasonable” sets A C R? (in fact, for all Borel-measurable sets, but that
requires knowing what that integral means for a set such as R? \ Q?...). In particular, if
X, Y are independent and have respective densities fx and fy, so fxy(x,y) = fx(x)fy(y),
then

e =Px+r <= [ [ @

Differentiating with respect to t gives (assuming without justification that it is allowed to

differentiate under the integral):

frar = [ " (o)t — @) d.

Use this formula to compute the distribution of X + Y when X and Y are independent
r.v.’s with the following (pairs of) distributions:

1. X ~U[0,1], Y ~ U[0,2].
2. X ~Exp(l), Y ~Exp(1).

3. X ~ Exp(1), =Y ~ Exp(1).

4. (a) Let (A4,)22, be a sequence of events in a probability space. Show that

Liimsup 4, = limsuply,.
n

(The lim-sup on the left refers to the lim-sup operation on events; on the right it refers to
the lim-sup of a sequence of functions; the identity is an identity of real-valued functions on
(2, i.e., should be satisfied for each individual point w € € in the sample space). Similarly,
show (either separately or by relying on the first claim) that

1lim inf A, — lim inf 1An .
n



(b) Let U be a uniform random variable in (0, 1). For each n > 1 define an event A, by
A, ={U < 1/n}.

Note that Y >  P(A,) = co. However, compute P(A, i.0.) and show that the conclusion
of the second Borel-Cantelli lemma does not hold (of course, one of the assumptions of the
lemma also doesn’t hold, so there’s no contradiction).

5. If P,Q are two probability measures on a measurable space (€2, F), we say that P is
absolutely continuous with respect to (), and denote this P << @), if for any A € F,
if Q(A) =0 then P(A) = 0.

Prove that P << () if and only if for any € > 0 there exists a 0 > 0 such that if A € F
and Q(A) < ¢ then P(A) <e.

Hint. Apply a certain famous lemma.

Note. The intuitive meaning of the relation P << (@ is as follows: suppose there is a
probabilistic experiment, and we are told that one of the measures P or () governs the
statistical behavior of the outcome, but we don’t know which one. (This is a situation
that arises frequently in real-life applications of probability and statistics.) All we can do
is perform the experiment, observe the result, and make a guess. If P << @), any event
which is observable with positive probability according to P also has positive Q)-probability,
so we can never rule out @) as the correct measure, although we may get an event with
Q(A) > 0 and P(A) = 0 that enables us to rule out P. If we also have the symmetric
relation () << P, then we can’t rule out either of the measures.



