Homework Set No. 3 - Probability Theory (235A), Fall 2011

Due: Tuesday 10/18/11 at discussion section

1. Let X be an exponential r.v. with parameter λ, i.e., $F_{X}(x)=\left(1-e^{-\lambda x}\right) 1_{[0, \infty)}(x)$. Define random variables

$$
\begin{aligned}
Y & =\lfloor X\rfloor:=\sup \{n \in \mathbb{Z}: n \leq x\} & & \text { ("the integer part of } X " \text {), } \\
Z & =\{X\}:=X-\lfloor X\rfloor & & \text { ("the fractional part of } X \text { "). }
\end{aligned}
$$

(a) Compute the (1-dimensional) distributions of Y and Z (in the case of Y, since it's a discrete random variable it is most convenient to describe the distribution by giving the individual probabilities $\mathbf{P}(Y=n), n=0,1,2, \ldots$; for Z one should compute either the distribution function or density function).
(b) Show that Y and Z are independent. (Hint: Check that $\mathbf{P}(Y=n, Z \leq t)=\mathbf{P}(Y=$ $n) \mathbf{P}(Z \leq t)$ for all n and t.)
2. (a) Let X, Y be independent r.v.'s. Define $U=\min (X, Y), V=\max (X, Y)$. Find expressions for the distribution functions F_{U} and F_{V} in terms of the distribution functions of X and Y.
(b) Assume that $X \sim \operatorname{Exp}(\lambda), Y \sim \operatorname{Exp}(\mu)$ (and are independent as before). Prove that $\min (X, Y)$ has distribution $\operatorname{Exp}(\lambda+\mu)$. Try to give an intuitive explanation in terms of the kind of real-life phenomena that the exponential distribution is intended to model (e.g., measuring the time for a light-bulb to burn out, or for a radioactive particle to be emitted from a chunk of radioactive material).
(c) Let X_{1}, X_{2}, \ldots be a sequence of independent r.v.'s, all of them having distribution $\operatorname{Exp}(1)$. For each $n \geq 1$ denote

$$
M_{n}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)-\log n
$$

Compute for each n the distribution function of M_{n}, and find the limit (if it exists)

$$
F(x)=\lim _{n \rightarrow \infty} F_{M_{n}}(x) .
$$

3. If X, Y are r.v.'s with a joint density $f_{X, Y}$, the identity

$$
\mathbf{P}((X, Y) \in A)=\iint_{A} f_{X, Y}(x, y) d x d y
$$

holds for all "reasonable" sets $A \subset \mathbb{R}^{2}$ (in fact, for all Borel-measurable sets, but that requires knowing what that integral means for a set such as $\mathbb{R}^{2} \backslash Q^{2} \ldots$). In particular, if X, Y are independent and have respective densities f_{X} and f_{Y}, so $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$, then

$$
F_{X+Y}(t)=\mathbf{P}(X+Y \leq t)=\int_{-\infty}^{\infty} \int_{-\infty}^{t-x} f_{X}(x) f_{Y}(y) d y d x
$$

Differentiating with respect to t gives (assuming without justification that it is allowed to differentiate under the integral):

$$
f_{X+Y}(t)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(t-x) d x
$$

Use this formula to compute the distribution of $X+Y$ when X and Y are independent r.v.'s with the following (pairs of) distributions:

1. $X \sim U[0,1], Y \sim U[0,2]$.
2. $X \sim \operatorname{Exp}(1), Y \sim \operatorname{Exp}(1)$.
3. $X \sim \operatorname{Exp}(1),-Y \sim \operatorname{Exp}(1)$.
4. (a) Let $\left(A_{n}\right)_{n=1}^{\infty}$ be a sequence of events in a probability space. Show that

$$
1_{\limsup A_{n}}=\limsup _{n} 1_{A_{n}} .
$$

(The lim-sup on the left refers to the lim-sup operation on events; on the right it refers to the lim-sup of a sequence of functions; the identity is an identity of real-valued functions on Ω, i.e., should be satisfied for each individual point $\omega \in \Omega$ in the sample space). Similarly, show (either separately or by relying on the first claim) that

$$
1_{\liminf A_{n}}=\liminf _{n} 1_{A_{n}} .
$$

(b) Let U be a uniform random variable in (0,1). For each $n \geq 1$ define an event A_{n} by

$$
A_{n}=\{U<1 / n\} .
$$

Note that $\sum_{n=1}^{\infty} \mathbf{P}\left(A_{n}\right)=\infty$. However, compute $\mathbf{P}\left(A_{n}\right.$ i.o. $)$ and show that the conclusion of the second Borel-Cantelli lemma does not hold (of course, one of the assumptions of the lemma also doesn't hold, so there's no contradiction).
5. If P, Q are two probability measures on a measurable space (Ω, \mathcal{F}), we say that P is absolutely continuous with respect to Q, and denote this $P \ll Q$, if for any $A \in \mathcal{F}$, if $Q(A)=0$ then $P(A)=0$.

Prove that $P \ll Q$ if and only if for any $\epsilon>0$ there exists a $\delta>0$ such that if $A \in \mathcal{F}$ and $Q(A)<\delta$ then $P(A)<\epsilon$.

Hint. Apply a certain famous lemma.
Note. The intuitive meaning of the relation $P \ll Q$ is as follows: suppose there is a probabilistic experiment, and we are told that one of the measures P or Q governs the statistical behavior of the outcome, but we don't know which one. (This is a situation that arises frequently in real-life applications of probability and statistics.) All we can do is perform the experiment, observe the result, and make a guess. If $P \ll Q$, any event which is observable with positive probability according to P also has positive Q-probability, so we can never rule out Q as the correct measure, although we may get an event with $Q(A)>0$ and $P(A)=0$ that enables us to rule out P. If we also have the symmetric relation $Q \ll P$, then we can't rule out either of the measures.

