Homework Set No. 4 - Probability Theory (235A), Fall 2011

Due: 10/25/11 at discussion section

1. A function $\varphi:(a, b) \rightarrow \mathbb{R}$ is called convex if for any $x, y \in(a, b)$ and $\alpha \in[0,1]$ we have

$$
\varphi(\alpha x+(1-\alpha) y) \leq \alpha \varphi(x)+(1-\alpha) \varphi(y)
$$

(a) Prove that an equivalent condition for φ to be convex is that for any $x<z<y$ in (a, b) we have

$$
\frac{\varphi(z)-\varphi(x)}{z-x} \leq \frac{\varphi(y)-\varphi(z)}{y-z} .
$$

Deduce using the mean value theorem that if φ is twice continuously differentiable and satisfies $\varphi^{\prime \prime} \geq 0$ then it is convex.
(b) Prove Jensen's inequality, which says that if X is a random variable such that $\mathbf{P}(X \in(a, b))=1$ and $\varphi:(a, b) \rightarrow \mathbb{R}$ is convex, then

$$
\varphi(\mathbf{E} X) \leq \mathbf{E}(\varphi(X))
$$

Hint. Start by proving the following property of a convex function: If φ is convex then at any point $x_{0} \in(a, b), \varphi$ has a supporting line, that is, a linear function $y(x)=a x+b$ such that $y\left(x_{0}\right)=\varphi\left(x_{0}\right)$ and such that $\varphi(x) \geq y(x)$ for all $x \in(a, b)$ (to prove its existence, use the characterization of convexity from part (a) to show that the left-sided derivative of φ at x_{0} is less than or equal to the right-sided derivative at x_{0}; the supporting line is a line passing through the point $\left(x_{0}, \varphi\left(x_{0}\right)\right)$ whose slope lies between these two numbers). Now take the supporting line function at $x_{0}=\mathbf{E} X$ and see what happens.
2. If X is a random variable satisfying $a \leq X \leq b$, prove that

$$
\mathbf{V}(X) \leq \frac{(b-a)^{2}}{4}
$$

and identify when equality holds.
3. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. (independent and identically distributed) random variables with distribution $U(0,1)$. Define events A_{1}, A_{2}, \ldots by

$$
A_{n}=\left\{X_{n}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)\right\}
$$

(if A_{n} occurred, we say that n is a record time).
(a) Prove that A_{1}, A_{2}, \ldots are independent events. Hint: For each $n \geq 1$, let π_{n} be the random permutation of $(1,2, \ldots, n)$ obtained by forgetting the values of $\left(X_{1}, \ldots, X_{n}\right)$ and only retaining their respective order. In other words, define

$$
\pi_{n}(k)=\#\left\{1 \leq j \leq n: X_{j} \leq X_{k}\right\} .
$$

By considering the joint density $f_{X_{1}, \ldots, X_{n}}$ (a uniform density on the n-dimensional unit cube), show that π_{n} is a uniformly random permutation of n elements, i.e. $\mathbf{P}\left(\pi_{n}=\sigma\right)=$ $1 / n$! for any permutation $\sigma \in S_{n}$. Deduce that the event $A_{n}=\left\{\pi_{n}(n)=n\right\}$ is independent of π_{n-1} and therefore is independent of the previous events $\left(A_{1}, \ldots, A_{n-1}\right)$, which are all determined by π_{n-1}.
(b) Define

$$
R_{n}=\sum_{k=1}^{n} 1_{A_{k}}=\#\{1 \leq k \leq n: k \text { is a record time }\}, \quad(n=1,2, \ldots) .
$$

Compute $\mathbf{E}\left(R_{n}\right)$ and $\mathbf{V}\left(R_{n}\right)$. Deduce that if $\left(m_{n}\right)_{n=1}^{\infty}$ is a sequence of positive numbers such that $m_{n} \uparrow \infty$, however slowly, then the number R_{n} of record times up to time n satisfies

$$
\mathbf{P}\left(\left|R_{n}-\log n\right|>m_{n} \sqrt{\log n}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

4. Compute $\mathbf{E}(X)$ and $\mathbf{V}(X)$ when X is a random variable having each of the following distributions:
5. $X \sim \operatorname{Binomial}(n, p)$.
6. $X \sim \operatorname{Poisson}(\lambda)$, i.e., $\mathbf{P}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad(k=0,1,2, \ldots)$.
7. $X \sim \operatorname{Geom}(p)$, i.e,. $\mathbf{P}(X=k)=p(1-p)^{k-1}, \quad(k=1,2, \ldots)$.
8. $X \sim U\{1,2, \ldots, n\}$ (the discrete uniform distribution on $\{1,2, \ldots, n\}$).
9. $X \sim U(a, b)$ (the uniform distribution on the interval $(a, b))$.
10. $X \sim \operatorname{Exp}(\lambda)$
11. (a) If X, Y are independent r.v.'s taking values in \mathbb{Z}, show that

$$
\mathbf{P}(X+Y=n)=\sum_{k=-\infty}^{\infty} \mathbf{P}(X=k) \mathbf{P}(Y=n-k) \quad(n \in \mathbb{Z})
$$

(compare this formula with the convolution formula in the case of r.v.'s with density).
(b) Use this to show that if $X \sim \operatorname{Poisson}(\lambda)$ and $Y \sim \operatorname{Poisson}(\mu)$ are independent then $X+Y \sim \operatorname{Poisson}(\lambda+\mu)$. (Recall that for a parameter $\lambda>0$, we say that $X \sim \operatorname{Poisson}(\lambda)$ if $\mathbf{P}(X=k)=e^{-\lambda} \lambda^{k} / k$! for $\left.k=0,1,2, \ldots\right)$.
(c) Use the same "discrete convolution" formula to prove directly that if $X \sim \operatorname{Bin}(n, p)$ and $Y \sim \operatorname{Bin}(m, p)$ are independent then $X+Y \sim \operatorname{Bin}(n+m, p)$. You may make use of the combinatorial identity (known as the Vandermonde identity or Chu-Vandermonde identity)

$$
\sum_{j=0}^{k}\binom{n}{j}\binom{m}{k-j}=\binom{n+m}{k}, \quad(n, m \geq 0,0 \leq k \leq n+m)
$$

As a bonus, try to find a direct combinatorial proof for this identity. An amusing version of the answer can be found at:

```
http://en.wikipedia.org/wiki/Vandermonde's_identity.
```

6. Prove that if X is a random variable that is independent of itself, then X is a.s. constant, i.e., there is a constant $c \in \mathbb{R}$ such that $\mathbf{P}(X=c)=1$.
