Homework Set No. 7 - Probability Theory (235A), Fall 2011

Due: 11/15/11

1. Prove that if F and $\left(F_{n}\right)_{n=1}^{\infty}$ are distribution functions, F is continuous, and $F_{n}(t) \rightarrow$ $F(t)$ as $n \rightarrow \infty$ for any $t \in \mathbb{R}$, then the convergence is uniform in t.
2. Let $\varphi(x)=(2 \pi)^{-1 / 2} e^{-x^{2} / 2}$ be the standard normal density function.
(a) If X_{1}, X_{2}, \ldots are i.i.d. Poisson(1) random variables and $S_{n}=\sum_{k=1}^{n} X_{k}$ (so $S_{n} \sim$ $\operatorname{Poisson}(n))$, show that if n is large and k is an integer such that $k \approx n+x \sqrt{n}$ then

$$
\mathbf{P}\left(S_{n}=k\right) \approx \frac{1}{\sqrt{n}} \varphi(x) .
$$

Hint: Use the fact that $\log (1+u)=u-u^{2} / 2+O\left(u^{3}\right)$ as $u \rightarrow 0$.
(b) Find $\lim _{n \rightarrow \infty} e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}$.
(c) If X_{1}, X_{2}, \ldots are i.i.d. $\operatorname{Exp}(1)$ random variables and denote $S_{n}=\sum_{k=1}^{n} X_{k}$ (so $S_{n} \sim$ $\operatorname{Gamma}(n, 1)), \hat{S}_{n}=\left(S_{n}-n\right) / \sqrt{n}$. Show that if n is large and $x \in \mathbb{R}$ is fixed then the density of \hat{S}_{n} satisfies

$$
f_{\hat{S}_{n}}(x) \approx \varphi(x)
$$

3. (a) Prove that if $X,\left(X_{n}\right)_{n=1}^{\infty}$ are random variables such that $X_{n} \rightarrow X$ in probability then $X_{n} \Longrightarrow X$.
(b) Prove that if $X_{n} \Longrightarrow c$ where $c \in \mathbb{R}$ is a constant, then $X_{n} \rightarrow c$ in probability.
(c) Prove that if $Z,\left(X_{n}\right)_{n=1}^{\infty},\left(Y_{n}\right)_{n=1}^{\infty}$ are random variables such that $X_{n} \Longrightarrow Z$ and $X_{n}-Y_{n} \rightarrow 0$ in probability, then $Y_{n} \Longrightarrow Z$.
4. (a) Let $X,\left(X_{n}\right)_{n=1}^{\infty}$ be integer-valued r.v.'s. Show that $X_{n} \Longrightarrow X$ if and only if $\mathbf{P}\left(X_{n}=k\right) \rightarrow \mathbf{P}(X=k)$ for any $k \in \mathbb{Z}$.
(b) If $\lambda>0$ is a fixed number, and for each n, Z_{n} is a r.v. with distribution $\operatorname{Binomial}(n, \lambda / n)$, show that

$$
Z_{n} \Longrightarrow \operatorname{Poisson}(\lambda) .
$$

5. Let $f(x)=(2 \pi)^{-1 / 2} e^{-x^{2} / 2}$ be the density function of the standard normal distribution, and let $\Phi(x)=\int_{-\infty}^{x} f(u) d u$ be its c.d.f. Prove the inequalities

$$
\begin{equation*}
\frac{1}{x+x^{-1}} f(x) \leq 1-\Phi(x) \leq \frac{1}{x} f(x), \quad(x>0) \tag{1}
\end{equation*}
$$

Note that for large x this gives a very accurate two-sided bound for the tail of the normal distribution. In fact, it can be shown that

$$
1-\Phi(x)=f(x) \cdot \frac{1}{x+\frac{1}{x+\frac{2}{x+\frac{3}{x+\frac{4}{x+\ldots}}}}}
$$

which gives a relatively efficient method of estimating $\Phi(x)$.
Hint: To prove the upper bound in (1), use the fact that for $t>x$ we have $e^{-t^{2} / 2} \leq$ $(t / x) e^{-t^{2} / 2}$. For the lower bound, use the identity

$$
\frac{d}{d x}\left(\frac{e^{-x^{2} / 2}}{x}\right)=-\left(1+\frac{1}{x^{2}}\right) e^{-x^{2} / 2}
$$

to compute $\int_{x}^{\infty}\left(1+u^{-2}\right) e^{-u^{2} / 2} d u$. On the other hand, show that this integral is bounded from above by $\left(1+x^{-2}\right) \int_{x}^{\infty} e^{-u^{2} / 2} d u$.

