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The USPS Handwritten Digits Dataset

The USPS Handwritten Digit Dataset
The USPS digits data were gathered at the Center of Excellence in
Document Analysis and Recognition (CEDAR) at SUNY Buffalo, as
part of a project sponsored by the US Postal Service.
The dataset is described in the following paper: J. J. Hull: “A
database for handwritten text recognition research,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 16,
no. 5, pp. 550–554, 1994.

First 16 digit images from the training dataset.
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The USPS Handwritten Digits Dataset

This dataset is available at https://www.gaussianprocess.org/gpml/data/ .
There are totally 9298 handwritten single digits between 0 and 9, each of which
consists of 16×16 pixel image.
Half of 9298 digits are designated as training and the other half are as test: use
4649 digits for constructing a classification algorithm, and use the other 4649
digits to test the performance of that algorithm.
Pixel values are normalized to be in the range of [-1, 1].
Each digit image is represented as a 1D vector of length 256 in the MATLAB file
(which you can load into your Julia session using MAT.jl package), so there are
two matrices in the file called train_patterns and test_patterns each of which
is of size 256×4649.
Note that if you want to see a digit of a particular column of these matrices using
Julia like in the figure of the previous page, you need to: 1) reshape each column
to a small matrix of size 16×16; 2) transpose it; and 3) reverse the row indices
before rendering it using heatmap function, i.e.,

using MAT; usps = matread("./usps_resampled.mat");
X = reshape(usps["training_patterns"], 16, 16, 4649);
p16 = [ heatmap(reverse(X[:,:,k]',dims=1), ratio=:equal,

axis=nothing , colorbar=false , framestyle=:none, c=:grays)
for k in 1:16 ];

plot(p16..., layout=(4,4))
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The USPS Handwritten Digits Dataset

The labels are also known for both training and test sets. They are
stored in train_labels and test_labels each of which is of size
10×4649.
Let 𝐴 ∈ ℝ10×4649 be one of these label matrices. Then 𝐴[∶, 𝑗], i.e., 𝑗th
column of 𝐴 describes the label of the 𝑗th digit in the following way.
If that digit represents digit 𝑖 (0 ≤ 𝑖 ≤ 9), then 𝐴[𝑖+1, 𝑗] = +1 and
𝐴[𝑙, 𝑗] = −1 for 𝑙 ≠ 𝑖+1.
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The USPS Handwritten Digits Dataset

Notation

Let 𝑋 = [𝑥1⋯𝑥𝑛] ∈ ℝ𝑑×𝑛 be the data matrix whose columns represent
the digits in the training dataset with 𝑑 = 256, 𝑛 = 4649.
Let 𝑌 = [𝑦1⋯𝑦𝑚] ∈ ℝ𝑑×𝑚 be the data matrix whose columns
represent the digits in the test dataset with 𝑑 = 256, 𝑚=4649.
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Simple Classification Algorithms

The Simplest Classification Algorithm
The simplest classification algorithm is perhaps the following one:

1 Compute the mean (average) digits 𝑚𝑖, 𝑖 = 0,…,9 using the training
digits {𝑥𝑖}𝑖=1∶𝑛, 𝑛 = 4649.

2 For each digit 𝑦𝑗, classify it as digit 𝑘 if 𝑚𝑘 is the closest mean.

The mean digits (centroids) in the training dataset.
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Simple Classification Algorithms

Note that there are many choices as the distance between each test
and training digits, e.g., ℓ𝑝-norm with 1 ≤ 𝑝 ≤∞, and cosine between
them, etc., we decided to use the simplest one, i.e., the Euclidean,
i.e., ℓ2 distance: 𝑑(𝑥𝑖,𝑦𝑗) = ‖𝑥𝑖−𝑦𝑗‖2.
The over all classification rate was 84.66%. More precisely:

GT \ Pred 0 1 2 3 4 5 6 7 8 9
0 656 1 3 4 10 19 73 2 17 1
1 0 644 0 1 0 0 1 0 1 0
2 14 4 362 13 25 5 4 9 18 0
3 1 3 4 368 1 17 0 3 14 7
4 3 16 6 0 363 1 8 1 5 40
5 13 3 3 20 14 271 9 0 16 6
6 23 11 13 0 9 3 354 0 1 0
7 0 5 1 0 7 1 0 351 3 34
8 9 19 5 12 6 6 0 1 253 20
9 1 15 0 1 39 2 0 24 3 314
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Simple Classification Algorithms

The worst test digits (the farthest from the means)
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Simple Classification Algorithms

The Next Simplest Classification Algorithm
The next simplest one should be the so-called 𝑘-nearest neighbor (𝑘-NN)
classification algorithm as follows:

1 Select 𝑘 from small odd integers (i.e., 1, 3, 5, etc.)
2 For each test digit 𝑦𝑗, do:

Compute the distances from 𝑦𝑗 to all the training digits {𝑥𝑖}𝑖=1∶𝑛.
Choose the 𝑘 nearest training digits from 𝑦𝑗.
Check the labels of these 𝑘 neighbors, and take a majority vote, which
is assigned as a class label of 𝑦𝑗.
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Simple Classification Algorithms

𝑘-NN Classification Results

I tested with 𝑘 = 1,3,5 using the kNNClassifier function (in
MLJ.jl).
The classification rates were considerably better than the previous
simplest algorithm, i.e., 96.99%, 96.86%, 96.60%, respectively. More
precisely, for 𝑘 = 3:

GT \ Pred 0 1 2 3 4 5 6 7 8 9
0 778 0 4 2 0 1 0 0 0 1
1 0 643 0 0 1 0 1 0 1 1
2 5 2 436 5 0 1 0 5 1 0
3 3 0 1 402 0 5 0 0 4 3
4 1 2 3 0 417 0 3 1 0 16
5 4 0 3 13 0 329 3 0 1 2
6 3 1 1 0 2 3 404 0 0 0
7 0 1 0 0 3 0 0 392 0 6
8 1 2 1 3 2 3 1 3 312 3
9 0 0 1 1 2 0 0 4 1 390
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Classification Using SVD Bases

Classification Using SVD Bases

We use the first 𝑘 left singular vectors {𝑢1…,𝑢𝑘} of the SVD of the
training digits. For each digit, we pool the training images
corresponding to that digit, and compute the SVD. In other words,
for each digit class, we compute the SVD.
Since we only need the first 𝑘 terms of the SVD, we only need to use
svds function in Arpack.jl, which can specify 𝑘 as an input argument.
Let 𝑋 (𝑗) be a matrix of size 𝑑×𝑛𝑗 whose columns are training images
corresponding to digit 𝑗 (hence 𝑛𝑗 is the number of training images
corresponding to digit 𝑗), 𝑗 = 0,1,…,9.
Let the first 𝑘 terms of SVD of 𝑋 (𝑗) be 𝑈 (𝑗)

𝑘 Σ(𝑗)𝑘 𝑉 (𝑗)T
𝑘 where

𝑈 (𝑗)
𝑘 ∈ ℝ𝑑×𝑘, Σ(𝑗)𝑘 ∈ ℝ𝑘×𝑘, and 𝑉 (𝑗)

𝑘 ∈ ℝ𝑛𝑗×𝑘.

𝑈 (𝑗)
𝑘 Σ(𝑗)𝑘 𝑉 (𝑗)T

𝑘 is the best rank 𝑘 approximation of 𝑋 (𝑗) in the sense of
least squares.
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Classification Using SVD Bases

The reasons why we use the first 𝑘 left singular vectors are:
If 𝑘 is appropriately chosen, then range (𝑋 (𝑗)) ≈ range (𝑈 (𝑗)

𝑘 ). In fact, if
𝑘 =min(𝑑,𝑛𝑗), then range (𝑋 (𝑗)) = range (𝑈 (𝑗)

𝑘 ).
The columns of 𝑈 (𝑗)

𝑘 are a part of ONB for 𝑋 (𝑗), which allows us to
compute the 𝑘 expansion coefficients of each training image 𝑥𝑖 by
simply multiplying (from left) 𝑈 (𝑗)T

𝑘 , i.e., 𝑈 (𝑗)T
𝑘 𝑥𝑖 gives you such

expansion coefficients.
𝑈 (𝑗)
𝑘 (𝑈 (𝑗)T

𝑘 𝑥𝑖) is the best 𝑘-term approximation in the least squares
sense if 𝑥𝑖 belongs to digit 𝑗 class.

Also, the SVD-based classification algorithm in the next page assume
the following (if not, it won’t work well):

Each 𝑋 (𝑗) is well characterized and approximated by 𝑈 (𝑗)
𝑘 Σ(𝑗)𝑘 𝑉 (𝑗)T

𝑘 for
the same value of 𝑘 for all 10 digits.
If you approximate 𝑋 (𝑚) using 𝑈 (𝑗)

𝑘 with 𝑚≠ 𝑗, the error will be large.
If an unlabeled test digit 𝑦𝑙 has the least 𝑘-term approximation error
when using 𝑈 (𝑗∗)

𝑘 , then it is likely that 𝑦𝑙 belongs to digit 𝑗∗.
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Classification Using SVD Bases

An SVD Basis Classification Algorithm

Training: Compute the best rank 𝑘 approximation of 𝑋 (𝑗), i.e.,
𝑈 (𝑗)
𝑘 Σ(𝑗)𝑘 𝑉 (𝑗)T

𝑘 .
Classification: For a given test digit 𝑦𝑙, compute the 2-norm of
residual errors, 𝐸𝑗(𝑦𝑙) ∶= ‖𝑦𝑙−𝑈

(𝑗)
𝑘 (𝑈 (𝑗)T

𝑘 𝑦𝑙)‖2, 𝑗 = 0,1,…,9; If one of
them, say, 𝐸𝑗∗(𝑦𝑙) is significantly smaller than all the others, then
classify 𝑦𝑙 as digit 𝑗∗; otherwise give up.

Note: Mathematically, 𝑦𝑙−𝑈
(𝑗)
𝑘 (𝑈 (𝑗)T

𝑘 𝑦𝑙) = (𝐼𝑑−𝑈
(𝑗)
𝑘 𝑈 (𝑗)T

𝑘 )𝑦𝑙, i.e., this is an
orthogonal complement to the projection of 𝑦𝑙 onto range (𝑈 (𝑗)

𝑘 ). However,
computationally, you should compute 𝑈 (𝑗)T

𝑘 𝑦𝑙 first, then multiply 𝑈 (𝑗)
𝑘 . As

I mentioned previously, if you first try to compute 𝑈 (𝑗)
𝑘 𝑈 (𝑗)T

𝑘 , it would take
a long time or even would be impossible to computing it if 𝑑 is large. This
digit recognition problem has 𝑑 = 256; so you can do either way.
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Classification Using SVD Bases

𝑈10 of Digits ’0’ and ’1’
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Classification Using SVD Bases

𝑈10 of Digits ’2’ and ’3’
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Classification Using SVD Bases

𝑈10 of Digits ’4’ and ’5’
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𝑈10 of Digits ’6’ and ’7’
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𝑈10 of Digits ’8’ and ’9’
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Classification Using SVD Bases

SVD Classification Results with 𝑘 = 1 ∶ 20

𝑘 = 17 gave the best result: 96.62%
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Classification Using SVD Bases

Confusion Matrix for 𝑘 = 17

GT \ Pred 0 1 2 3 4 5 6 7 8 9
0 772 2 1 3 1 1 2 1 3 0
1 0 646 0 0 0 0 0 0 0 1
2 3 6 431 6 0 3 1 2 2 0
3 1 1 4 401 0 7 0 0 4 0
4 2 8 1 0 424 1 1 5 0 1
5 2 0 0 5 2 335 7 1 1 2
6 6 4 0 0 2 3 399 0 0 0
7 0 2 0 0 2 0 0 387 0 11
8 2 9 1 5 1 1 0 0 309 3
9 0 5 0 1 0 0 0 4 1 388
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