
MAT 167: Applied Linear Algebra
Lecture 25: Searching by Link Structure II

Naoki Saito

Department of Mathematics
University of California, Davis

November 26 & December 1, 2025

nsaito@ucdavis.edu (UC Davis) PageRank 11/26/25 – 12/01/25 1 / 22



Outline

1 PageRank: The Basics

2 Random Walk Interpretation of PageRank

3 PageRank Implementation

nsaito@ucdavis.edu (UC Davis) PageRank 11/26/25 – 12/01/25 2 / 22



PageRank: The Basics

Outline

1 PageRank: The Basics

2 Random Walk Interpretation of PageRank

3 PageRank Implementation

nsaito@ucdavis.edu (UC Davis) PageRank 11/26/25 – 12/01/25 3 / 22



PageRank: The Basics

The Basics of the PageRank algorithm

The PageRank algorithm of Google was invented by Sergey Brin &
Larry Page, 1998.
After webpages retrieved by web crawlers indexed and cataloged,
PageRank values are assigned prior to query time according to
perceived importance so that at query time a ranked list of pages
related to the query terms can be presented to the user almost
instantaneously.
PageRank importance is determined by “votes” in the form of links
from other pages on the Web. The main ideas:

1 votes from important sites > votes from less important sites;
2 the significance of a vote from any source should be tempered (or

scaled) by the number of sites the source is voting for (linking to).
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PageRank: The Basics

These ideas can be recursively formulated as follows: let r(P) be a
rank of a given page P. Then,

r(P)= ∑
Q∈BP

r(Q)

|Q| ,

where BP is a set of inlink pages to P and |Q| is # of outlinks from
Q.
This needs to be computed iteratively. Suppose there are n pages,
P1, . . . ,Pn. First, assign each page an initial ranking, say, r0(Pi)= 1/n
for i = 1 : n. Then, successively refine the ranking by computing

rj(Pi)=
∑

Q∈BPi

rj−1(Q)

|Q| , for j = 1,2, . . .
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PageRank: The Basics

This is accomplished by defining πj := [rj(P1), · · · ,rj(Pn)]T ∈Rn
≥0, and

iteratively computing:

πT
j =πT

j−1G , πj =πj/‖πj‖1 (normalization) (1)

where G = (gij) ∈Rn×n
≥0 with

gij =
{

1/|Pi | if Pi links to Pj ;
0 otherwise.

Again, this is Power Iteration! If the limit exists, the PageRank vector
is defined to be πT := lim

j→∞
πT

j , and the ith entry πi of π is the
PageRank of Pi . πT is the dominant left eigenvector of G (= the
transpose of the dominant eigenvector of GT).
For ranking all possible webpages via the PageRank algorithm is
certainly a formidable challenge. As Cleve Moler (the founder of
MATLAB) pointed out in 2002, this may well be the largest matrix
computation ever posed.
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PageRank: The Basics

The Familiar Example: Small Web Graph

Let’s consider the same familiar Example 4 of Lecture 2.

1 2 3

4 5 6

The raw “Google” matrix G constructed by the above algorithm is:

G =



0 1/3 0 1/3 1/3 0
1/3 0 1/3 0 1/3 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 1/3 1/3 0 1/3
0 0 1/2 0 1/2 0


The dominant left eigenpair (λmax,πT) of G is:

λmax = 0.9207; πT = [0.0,0.0,0.298335,0.0793001,0.219035,0.403330].
λmax 6= 1 is problematic since πTG = 0.9207πT, not πTG =πT. So, πT is not the
limit of Eq. (1) as j →∞.

nsaito@ucdavis.edu (UC Davis) PageRank 11/26/25 – 12/01/25 7 / 22



PageRank: The Basics

The Familiar Example: Small Web Graph

Let’s consider the same familiar Example 4 of Lecture 2.

1 2 3

4 5 6

The raw “Google” matrix G constructed by the above algorithm is:

G =



0 1/3 0 1/3 1/3 0
1/3 0 1/3 0 1/3 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 1/3 1/3 0 1/3
0 0 1/2 0 1/2 0


The dominant left eigenpair (λmax,πT) of G is:

λmax = 0.9207; πT = [0.0,0.0,0.298335,0.0793001,0.219035,0.403330].
λmax 6= 1 is problematic since πTG = 0.9207πT, not πTG =πT. So, πT is not the
limit of Eq. (1) as j →∞.

nsaito@ucdavis.edu (UC Davis) PageRank 11/26/25 – 12/01/25 7 / 22



PageRank: The Basics

The Familiar Example: Small Web Graph

Let’s consider the same familiar Example 4 of Lecture 2.

1 2 3

4 5 6

The raw “Google” matrix G constructed by the above algorithm is:

G =



0 1/3 0 1/3 1/3 0
1/3 0 1/3 0 1/3 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 1/3 1/3 0 1/3
0 0 1/2 0 1/2 0


The dominant left eigenpair (λmax,πT) of G is:

λmax = 0.9207; πT = [0.0,0.0,0.298335,0.0793001,0.219035,0.403330].
λmax 6= 1 is problematic since πTG = 0.9207πT, not πTG =πT. So, πT is not the
limit of Eq. (1) as j →∞.

nsaito@ucdavis.edu (UC Davis) PageRank 11/26/25 – 12/01/25 7 / 22



PageRank: The Basics

The Familiar Example: Small Web Graph

Let’s consider the same familiar Example 4 of Lecture 2.

1 2 3

4 5 6

The raw “Google” matrix G constructed by the above algorithm is:

G =



0 1/3 0 1/3 1/3 0
1/3 0 1/3 0 1/3 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 1/3 1/3 0 1/3
0 0 1/2 0 1/2 0


The dominant left eigenpair (λmax,πT) of G is:

λmax = 0.9207; πT = [0.0,0.0,0.298335,0.0793001,0.219035,0.403330].
λmax 6= 1 is problematic since πTG = 0.9207πT, not πTG =πT. So, πT is not the
limit of Eq. (1) as j →∞.

nsaito@ucdavis.edu (UC Davis) PageRank 11/26/25 – 12/01/25 7 / 22



Random Walk Interpretation of PageRank

Outline

1 PageRank: The Basics

2 Random Walk Interpretation of PageRank

3 PageRank Implementation

nsaito@ucdavis.edu (UC Davis) PageRank 11/26/25 – 12/01/25 8 / 22



Random Walk Interpretation of PageRank

Markov Model of the Web
The “raw” Google matrix G = (gij) ∈Rn×n

≥0 has gij ≥ 0 for all i , j , and
its row sums, i.e., ∑n

j=1 gij is either 1 or 0.
Zero row sums correspond to nodes (i.e., pages) that have no
outlinks. Such nodes/pages are referred to as dangling nodes. In our
familiar example of the 6 node web graph, Node 4 is a dangling node.
Let’s assume for a moment that there are no dangling nodes in a
given web graph, or if there are such nodes, they are accounted for by
artificially adding appropriate links to make all the row sums equal 1.
E.g., adding artificial outlinks from Node 4 to all the nodes including
Node 4 itself amounts to replacing the 4th row of G by
[1/6,1/6,1/6,1/6,1/6,1/6].
If each row sum of a nonnegative matrix G equals 1, such a matrix is
called a row stochastic matrix.
Then, the recursion Eq. (1): πT

j =πT
j−1G represents the evolution of a

Markov chain, or more precisely, a random walk on the graph defined
by the link structure of the webpages in Google’s database.
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Random Walk Interpretation of PageRank

The Familiar Example: Small Web Graph
Let’s add artificial outlinks from Node 4:

1 2 3

4 5 6

The adjusted “Google” matrix G , which is now row stochastic, is:

G =



0 1/3 0 1/3 1/3 0
1/3 0 1/3 0 1/3 0
0 0 0 0 0 1

1/6 1/6 1/6 1/6 1/6 1/6
0 0 1/3 1/3 0 1/3
0 0 1/2 0 1/2 0


The dominant left eigenpair (λmax,πT) of G is:
λmax = 1; πT = [0.0238095,0.0238095,0.277778,0.0952381,0.214286,0.365079]
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Random Walk Interpretation of PageRank

The Familiar Example: Small Web Graph . . .
These PageRank values are query-independent.
Now suppose a query is entered containing term 1 and term 2, and
suppose the inverted term-document file looks like:

term 1: doc 1, doc 4, doc 6
term 2: doc 1, doc 3

Hence, the relevancy set for a query on terms 1 and 2 is {1,3,4,6}
Then, check their PageRank values π1,π3,π4,π6 and sort them in the
nonincreasing order to get:

π6 = 0.365079
π3 = 0.277778
π4 = 0.0952381
π1 = 0.0238095

Consequently, document 6 is the most important among the relevant
documents followed by documents 3, 4, and 1.
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term 2: doc 1, doc 3

Hence, the relevancy set for a query on terms 1 and 2 is {1,3,4,6}
Then, check their PageRank values π1,π3,π4,π6 and sort them in the
nonincreasing order to get:

π6 = 0.365079
π3 = 0.277778
π4 = 0.0952381
π1 = 0.0238095

Consequently, document 6 is the most important among the relevant
documents followed by documents 3, 4, and 1.
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Random Walk Interpretation of PageRank

Further Probabilistic Interpretations
Instead of using the original probability distribution assignment:

gij =
{

1/|Pi | if Pi links to Pj ;
0 otherwise,

other suitable probability distribution may be used across the rows.
For example, in the Familiar Example, if the Web usage logs show
that users accessing Page/Node 6 are twice as likely to jump to
Page/Node 5 as they are to jump to Page/Node 3, then the 6th row
of G should be replaced by [0,0,1/3,0,2/3,0].
The resulting modified G is still row stochastic of course, and the
dominant left eigenvector now becomes:
πT = [0.0291262,0.0291262,0.228155,0.116505,0.262136,0.334951].

Compare this with the homogeneous probability distribution case:
πT = [0.0238095,0.0238095,0.277778,0.0952381,0.214286,0.365079]

Clearly, PageRank value of Node 5 ↑ while that of Node 3 ↓.
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Random Walk Interpretation of PageRank

Further Probabilistic Interpretations . . .

In general, the dominant eigenvalue for every stochastic matrix is 1.
Hence, if the PageRank iteration Eq. (1) converges, it converges to
the normalized left eigenvector πT satisfying:

πT =πTG , πT1n = 1,

where 1n = [1,1, · · · ,1]T ∈Rn.
πT represents the stationary (or steady-state) distribution of the
Markov chain/random walk.
Hence, Google intuitively characterizes the PageRank value of each
site as the long-run proportion of time spent at that site by a Web
surfer eternally clicking on links at random (clicking back or entering
a URL is excluded in this model).
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Random Walk Interpretation of PageRank

PageRank Adjustments

Other than artificially adding outlinks to make G row stochastic,
another greater difficulty can arise.
An irreducible Markov chain is one where every node can be
ultimately reached from all other nodes. In other words, there is a
path from Node i to Node j for all i , j .
In addition, one can show that the stationary distribution πT for such
a Markov chain is unique and positive (thanks to the so-called
Perron-Frobenius Theorem), which are desirable properties for a
PageRank vector.
However, in reality, the raw Google matrix G even after making it row
stochastic, the underlying Markov chain may be most likely reducible,
i.e., there exists a subset of nodes in the graph in which a random
walk eventually becomes trapped, and cannot escape to the outside of
that group of nodes.
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Random Walk Interpretation of PageRank

PageRank Adjustments . . .

Brin and Page force irreducibility into the picture by making every
node directly reachable from every other node by perturbing G as

G̃ =αG + (1−α)E where 0<α< 1 and E := 1
n1n1T

n,

which is a convex combination of two stochastic matrices; hence G̃ is
stochastic and irreducible, i.e., has a unique stationary distribution
πT.
The Google reasoning: this stochastic matrix G̃ models a Web
surfer’s “teleportation” tendency to randomly jump to a new page by
entering a URL on the address line, and it assumes that each URL
has an equal likelihood of being selected.
There are many more ways to force irreducibility of the Markov
chain/random walk. For the details, see Reference 1: Langville and
Meyer (2005).
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Random Walk Interpretation of PageRank

PageRank Adjustments . . .

Later, Google adopted a more realistic and less democratic stance by
using a better and more flexible perturbation matrix,

E := 1nvT,

where the “personalization” vector vT > 0T
n is a probability vector that

allows non-uniform probabilities for teleporting to particular pages.
More importantly, at least from a business point of view, taking the
perturbation to be of the form E = 1nvT permits “intervention” by
fiddling with vT to adjust PageRank values up or down according to
commercial considerations!
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PageRank Implementation

PageRank Implementation
PageRank does not give a relevancy score for given query terms; it
just gives an importance score for each webpage.
Google combines PageRank and other scores to give an overall
ranking for given query terms.
A basic Web information retrieval model using PageRank is the
following:

1 A full web document scan determines the subset of nodes containing
the query terms, which is called the relevancy set for the query.

2 The relevancy set is sorted according to the PageRank scores of each
document in the set.

It is reported that Google updates PageRank once every few weeks for
all documents in Web collection at some point in the past. However,
it is not entirely clear how often they update the PageRank scores of
the Web collection documents.
Since computing πT is expensive and the Web’s structure is changing
all the time, how to update the PageRank vector is an active area of
research!
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PageRank Implementation . . .

The power iteration is applied to πT
j+1 =απT

j G̃ + (1−α)vT with
πT

0 = 1T
n/n.

Although n is huge, this iterative computation has some advantages:
1 it does not destroy the inherent extreme sparsity of G̃ ;
2 πT

j G̃ requires only sparse inner products, which are in turn easily
implemented in parallel.

Brin and Page claimed that useful results are obtained after 50
iterations for the case n = 322,000,000.
Several other iterative methods other than the simple power iteration
have been proposed.
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PageRank Implementation

Weaknesses of PageRank

- Topic drift: similarly to the HITS case, it is possible that a very
authoritative yet off-topic document be linked to a document
containing the query terms. This very authoritative document can
carry so much weight that it and its neighboring documents dominate
the relevant ranked list returned to the user, skewing the results
towards off-topic documents.

- Much work, thought, and heuristics must be applied by Google
engineers to determine the relevancy score; otherwise, no matter how
good PageRank is, the ranked list returned to the user is of little
value if the pages are off-topic.

- Does importance of a webpage really serve as a good proxy to
relevance? PageRank itself cannot distinguish between pages that are
generally authoritative and pages that are authoritative on the query
topic.
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PageRank Implementation

Strengths of PageRank

+ On the other hand, the use of importance, rather than relevance, is
the key to Google’s success. PageRank is query independent, which is
a major advantage over HITS’s query dependence.

+ Much more spam-resistant than HITS; it’s very hard for a webpage
owner to add inlinks into his page from other important pages. Even
if he/she succeeds in doing this, the increase of its PageRank value
will likely be inconsequential since PageRank is a global measure
compared to the local nature of HITS.

+ Flexibility of the “personalization” vector vT that Google is free to
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