
MAT 167: Advanced Linear Algebra
Solutions to SVD Exercises in HW8

Exercise 4.1 I already described the strategy for computing SVD of these small matrices via eigen-
value/eigenvector computation of

�����
.

(a)
��� �� ��	�
 . First compute

�����
, which is

�� �� ��
 . The characteristic equation is:������� � � � ��������� �����! � "�#� �� �$��� 
&% � � "�#�'� � �"�#���(�)�+*
Thus, the eigenvalues are:

�,�-+./�
. Therefore, we immediately get the singular values of

�
as 021 �-� , and 0�3 �4	 . Now, we need to compute the eigenvectors. To do so, need to solve:� � ��5&6 �7� 685&6 .

or
� � � � �#� 6 ��� 5&6 �-9:. ;<�>=?.8	�*

Let
5 1 �A@CB DFE �

. �G"�� �� �"���
 � B D 
 � ����!H D 
 � �G���
 *
Therefore

D �I�
is a must.

B
can be chosen arbitrary if this is just for eigenvector computa-

tion, but we have additional constraint. We are computing the column vectors of the unitary
(or orthogonal) matrix J of the SVD. Therefore we must choose

B �K=
to make L 5 1ML �N= .

Thus
5 1 �O@ = � E �

. Now for
5 3 , we solve:��"�P� �� �$�Q� 
 � B D 
 � �RH B� 
 � ���� 
 *

Thus, by the similar consideration, we get
5 3 � @ � = E �

. Therefore we computed so farS � � � �� 	 
 , and J � � = �� = 
 . To compute T , we use the relationship between U 6 and
5'6

,

i.e.,
��5'6 � 0 6 U 6 . Thus, � � �� �!	 
 � =� 
 �)� UV1 �XW UY1 � � =� 
 .��� �� �!	Z
 ��� =�
 �4	 U[3 �XW U\3 � �V��]=�
 *

Therefore, T � � = �� �]= 
 . Finally, we get:� � T S J � � � = �� �]= 
 � � �� 	 
 � = �� = 
 *



(b)
��	 �� � 
 . First compute

�V���
, which is

�^� ��  
 . The characteristic equation is:������� � � � ��������� �����! � �$�#� �� "��� 
&% � � �$�#�'� � !�#���(�)�+*
Thus, the eigenvalues are:

�,�4��.8
. Therefore, we immediately get the singular values of

�
as 021 �-� , and 0�3 �7	 . (We must have 0X1`_a0�3 .) Now, for each eigenvalue, we compute the
corresponding eigenvector. � �$�� �� "�� 
 � B D 
 � � ��H B� 
 � � �� 
 *
By the same reasoning as in (a), we have

5 1 �O@ � = E �
. Now for

5 3 , we solve:� �$�P� �� $�Q� 
 � B D 
 � � �H D 
 � � �� 
 *
Thus we get

5 3 �b@ = � E �
. Therefore we computed so far

S � � � �� 	 
 , and J � � � == � 
 .

To compute T , we again use the relationship between U 6 and
5&6

, i.e.,
��5�6 � 0 6 U 6 . Thus,�R	 �� � 
 ��� = 
 �)� UV1 �XW UY1 � ��� = 
 .� 	 �� � 
 � =� 
 �4	 U[3 �XW U\3 � � =� 
 *

Therefore, T �c@ � =d= � E
. Finally, we get:� � T S J � � �e� == ��
 ��� �� 	Z
 �G� == ��
 *

(c) fg � 	� �� ��hi . First compute
� � �

, which is
� � �� � 
 . The characteristic equation is:�����Z� � � � �#�����j� �����! � �"��� �� �$�#� 
�% �k��� � �$�#�'�j�4�+*

Thus, the eigenvalues are:
�,�4��.8�

. Therefore, we immediately get the singular values of
�

as 021 �l	
, and 0�3 �K�

(We must choose 0X1m_N0�3 ). Now, we compute the eigenvectors as
before. ���"�Q� �� �$�Q� 
 � B D 
 � �n�V� B� 
 � �G�� 
 *
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Thus
5 1 � @ � = E �

. Now for
5 3 , we solve:� �"�Q� �� �]��� 
 � B D 
 � � �� D 
 � � �� 
 *

Thus, we get
5 3 �o@ = � E �

. Therefore we computed so far pS � � 	 �� � 
 , and J � � � == � 
 .

To compute pT , we use the relationship between U 6 and
5&6

, i.e.,
��5�6 � 0 6 U 6 . Thus,

fg � 	� �� �Zhi � � = 
 �4	 UV1 �XW UY1 � fg =���hi *
Now, to determine U[3 , the singular value 0&3 �4� , andfg � 	� �� ��hi � =� 
 �-� U[3 *
This equation is satisfied by any Uq3srut(v . Now, however, we must choose U`3 that is
perpendicular to UV1 and the unit length. Thus, we choose U`3 � @ � = � E �

. Therefore,pT � fg = �� =� ��hi . Finally, we get the following reduced SVD:

� � pT pS J � � fg = �� =� ��hi ��	 �� � 
 �e� == � 
 *
If we want to compute the full SVD, we need to compute U v , which must be of unit norm
and perpendicular to U�1 and U[3 . Thus, we can easily obtain U v �w@ � � = E �

. The singular
value 0 v must be

�
since all the singular values must be nonnegative and ordered in a non-

increasing manner. Thus, we have:� � T S J � � fg = � �� = �� � = hi fg 	 �� �� � hi � � == � 
 *
(d)

� = =� � 
 . First compute
� � �

, which is
� = == = 
 . The characteristic equation is:�+����� � � � �#���+�j� �����" �n=Y�#� == =Y��� 
&% � � =`�#��� 3 �s= 3 �-� � 	!�#���j�-�+*
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Thus, the eigenvalues are:
�,�7	�.8�

. Therefore, we immediately get the singular values of
�

as 021 �Nx 	 , and 0�3 �y� . (We must have 0X1!_I0�3 .) Now, for each eigenvalue, we compute
the corresponding eigenvector.�z=Y��	 == =Y�#	 
 � B D 
 � �z� B|{�DB � D 
 � ���� 
 *
Thus we have the solution

5 1 �b@}B B&E �
for arbitrary

B r�t in general, but we must haveL 5 1�L �>= . Thus we have
5 1 �c@ =Z~ x 	 =�~ x 	 E �

. Now for
5 3 , we solve:�n= == = 
 � B D 
 � � B|{�DB|{�D 
 � �e�� 
 *

Thus we get
5 3 � @}B � B&E �

. Again to have the unit norm, we get:
5 3 � @ =Z~�x 	 ��=Z~�x 	 E �

.

Therefore we computed so far
S � � x 	 �� � 
 , and J � ��=Z~Fx 	 =Z~Fx 	=Z~ x 	 �]=Z~ x 	 
 . To compute T ,

we again use the relationship between U 6 and
5&6

, i.e.,
��5&6 � 0 6 U 6 . Thus,�n= =� � 
 �n=�~Fx 	=�~ x 	 
 � x 	 UY1 �2W U`1 � �n=� 
 *

For U[3 , because 0�3 �l�
, we can choose the unit vector perpendicular to U!1 . Thus, we getU\3 �A@ � = E �

. Therefore, T � � = �� = 
 . Finally, we get:� � T S J � � �z= �� = 
 � x 	 �� � 
 ��=Z~ x 	 =Z~ x 	=Z~ x 	 �]=Z~ x 	 
 *
(e)

� = == = 
 . First compute
���'�

, which is
� 	 		 	 
 . The characteristic equation is:�+����� � � � �#���+�j� �����" � 	!�#� 		 	!��� 
&% � � 	��#��� 3 �#	 3 �-� � �$�#���j�-�+*

Thus, the eigenvalues are:
�,�4��.8�

. Therefore, we immediately get the singular values of
�

as 021 �7	 , and 0�3 �-� . (We must have 0X1`_a0�3 .) Now, for each eigenvalue, we compute the
corresponding eigenvector.� 	!�Q� 		 	!�Q� 
 � B D 
 � � ��	 B|{ 	 D	 B ��	 D 
 � � �� 
 *
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Thus we have the solution
5 1 � @ B B E �

for arbitrary
B r�t in general, but we must haveL��8��1ZL �k= . Thus we have

5 1 � @ =Z~ x 	 =Z~ x 	 E �
. Now for

5 3 , we solve:� 	 		 	 
 � B D 
 � � 	 B|{ 	 D	 B|{ 	 D 
 � � �� 
 *
Thus we get

5 3 � @ B � B E �
. Again to have the unit norm, we get:

5 3 � @ =Z~�x 	 ��=Z~�x 	 E �
.

Therefore we computed so far
S � �e	 �� � 
 , and J � �z=Z~Fx 	 =Z~Fx 	=Z~ x 	 ��=Z~ x 	 
 . To compute T , we

again use the relationship between U 6 and
5&6

, i.e.,
��5�6 � 0 6 U 6 . Thus,� = == = 
 � =Z~ x 	=Z~ x 	 
 �7	 U`1 �2W UY1 � @ =Z~ x 	�=Z~ x 	 E *

For U[3 , because 0&3 ��� , we can choose the unit vector perpendicular to U�1 . Thus, we can

get, for example, Uq3 � @ =Z~ x 	 ��=Z~ x 	 E �
. Therefore, T � �n=�~Fx 	 =Z~�x 	=�~ x 	 ��=�~ x 	 
 . Finally, we

get: � � T S J � � � =Z~ x 	 =�~ x 	=Z~Fx 	 �]=Z~Fx 	 
 � 	 �� � 
 � =Z~ x 	 =Z~ x 	=Z~Fx 	 �]=Z~Fx 	 
 *
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Exercise 4.4 This is false. The best explanation is to consider the following counterexample. Let� � � = �� � 
 , and � � � � =� � 
 . It is easy to see that the singular values of
�

and � are the

same, i.e., 0X1 ��=
, 0�3 ��� . (Do the similar computation as in Exercise 4.1.) The question

is, therefore, where there is any unitary matrix � that satisfies
� � �]���<� , in other words,� � � �]� . OK, so let’s � � �e� �� � 
 . Then,� � � � � �� � 
 � �]� � � � �� � 
 *

Thus we must have
��� � � � ���

. Now, � � � � �� � 
 , which cannot be unitary, i.e.,� � � �)� , regardless of the values of � . Thus the statement of this exercise is false.
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Exercise 4.5 The easiest way to prove this statement is to use the following fact:

Theorem: Let �ArPt(�F��� . Then, � is a real symmetric matrix if and only if � has an real
eigenvalue-eigenvector decomposition, i.e., � ���]�[� �

, where
�

is an ���P� orthogonal
matrix and

�
is an ����� real-valued diagonal matrix.

If we decide to use the above theorem, it is easy to prove this exercise. For any
� r�t`�q��� ,

it has a SVD,
� � T S Jm� . At this point, we do not know whether T and J are real-

valued matrix. The only thing we know is that they are unitary. Now,
�!���

is an ����� real
symmetric matrix. Thus,

� � �
must have real-valued eigenvalues and eigenvectors. Because

the eigenvalues of
� � �

is the square of the singular values of
�

, we have
� � � � J S � S J �

where J plays the role of
�

, and
S � S

plays the role of
�

in the above theorem. Therefore,J must be a real-valued orthogonal matrix. Now, consider
��� �

and again this is a real
symmetric matrix. With the same reasoning, T must be a real-valued orthogonal matrix.

Another possible approach to prove this problem is to follow the proof of Theorem 4.1 in the
Lecture 4 note by replace every occurrence of � and “unitary” to t and “orthogonal”.
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Exercise 5.1 In this problem, as I announced in my email, the matrix
�

is
��= 	� 	 
 . We just follow

the same strategy as Exercise 4.1. Since
� � � � � = 		 � 
 , the characteristic equation is:�����Z� � � � ���&����� �+���! � =Y�#� 		 �$�Q� 
�% � � =Y�#��� � �"�������#	 3 �-� 3 �P�� { �m�4��*

Thus
�l� �n���  �¡3 . Now, the singular values are: 0:1 � ¢ �n£��  �¡3 ¤ 	�*¥�	d�?�

, and 0&3 �¢ �§¦��  �¡3 ¤ �+*¥¨?�d�F© .
Just in case, the eigenvectors of

� � �
are:ª =Y� �n£��  �¡3 		 �"� �n£��  �¡3 « � B D 
 � ª �¬ £��  �¡3 B<{ 	 D	 B�{ ¬ ¦��  �¡3 D « �49:*

From here we get
¬ £��  �¡3 B �I	 D

. Then, setting, say
B �7�

,
D �I© { x ¨�H

. But
5 1 must be of

the unit norm.Thus, by normalizing it to get:5 1 �¯® ¢ ° �¡n£ ¬ �  �¡ ¢ ¡ ¬ £ ¬ �  �¡ �¡n£ ¬ �  �¡M± � *
Similarly, for

5 3 , we have:ª =Y� �§¦��  �¡3 		 �"� �§¦��  �¡3 « �GB D²
 � ª � ¬ ¦��  �¡3 B<{ 	 D	 B�{ ¬ £��  �¡3 D « �49:*
From here we get

¬ ¦��  �¡3 B �4	 D
. setting, say

B �k�V�
,
D �k��© { x ¨�H

. But
5 1 must be of the

unit norm.Thus, by normalizing it to get:5 3 � ® � ¢ ° �¡§¦ ¬ �  �¡ ¢ ¡ ¬ ¦ ¬ �  �¡ �¡§¦ ¬ �  �¡ ± � *
Now, we can compute T via:

U`1 � =021 ��5 1 � 	 { x ¨?H f³g � ° £ 3 x ¡ ¬ £ ¬ �  �¡x  �¡n£ ¬ �  �¡3 x ¡ ¬ £ ¬ �  �¡x  �¡n£ ¬ �  �¡ hC´i � x 		&µ ¨�H { �²x ¨�H ª x 	 { µ H?© { © x ¨�Hµ H?© { ©Fx ¨�H « *
U\3 � =0�3 ��5 3 � 	"� x ¨�H f³g ¦�� ° £ 3 x ¡ ¬ ¦ ¬ �  �¡x  �¡n£ ¬ �  �¡3 x ¡ ¬ ¦ ¬ �  �¡x  �¡§¦ ¬ �  �¡ h ´i � x 		&µ ¨?H"�P� x ¨�H ª � x 	 { µ H?©!�#© x ¨�Hµ H?©��#© x ¨�H « *
The following figure shows how the unit sphere (circle) in t 3 is mapped to the ellipse by
this matrix

�
.
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(b) ¶�·
Exercise 5.3 � � �:�!	 =?=��=M� Hq

(a) As before, we first compute the eigenvalues and eigenvectors of

� � �
.� � � � � �!	 �]=��=?= H 
 � �!	 =?=��=�� H 
 � � =M�d� �!©?	��©?	 =M��¨ 
 *

Thus, the characteristic equation is:�+����� � � � �#���+�j� ����� � =��d�$��� ��©?	�!©d	 =M�?¨$�Q� 
 �-� 3 ��	?Hd��� { =��?�d�?�$�-�+.�XW � �¸�#	d�?��� � �¸�#H����j�4���XW �,�7	d�?�+.8Hd�$�XW 021 �>=M� x 	�. 0�3 �7H x 	�*
Now let’s compute the eigenvectors. For the first eigenvector

5 1 � @¹B DFE �
, we need to

solve
�V����5 1 �7	d�?� 5 1 : � =��d� B ��©?	 D��©?	 B�{ =M�?¨ D 
 � � 	��?� B	d�?� D 


Thus, ?¨ B � ��©?	 D��©?	 B � H�� D .
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which are the same equation:
� B �º��� D

. Therefore, we can take, say,
B �º���+» D �O��*

Note that in this case, it is impossible for
B

and
D

to have the same sign. Since L 5 1ML ��=
,

we normalize it to have
5 1 � @ ����~?H �F~?H E

. (Of course, it is also possible to have
5 1 �@ ��~?H �V�F~?H E

. This choice is up to you. Both are correct.) As for the second eigenvector
5 3 ,

we have to solve: � =��d� B �#©?	 D��©?	 B<{ =M�?¨ D 
 � � H�� BHd� D 

Thus, H�� B � ©?	 D� B � � D .
which are the same equation:

� B �y� D
. In this case, we can take say,

B �y��» D �¼�
, of the

same sign. After the normalization, we have
5 3 �c@ ��~?H �?~?H E

.

So far, we computed: S � � =�� x 	 �� H x 	 
 .
J � �z� v¡ ½ ¡½ ¡ v¡ 
 *

As for T , we use the formula U 6 � 1¾n¿ ��5&6 , ;��>=?.À	 :UV1 � ==��²x 	 � ��	 =?=�]=�� H 
 � ���?~?H�F~?H 
 � � =Z~ x 	=Z~Fx 	 
 *
U[3 � =HFx 	 � ��	 =?=�]=�� H 
 � �F~?H��~?H 
 � � =�~ x 	�]=Z~ x 	 
 *

Therefore we have: T � ª 1� 3 1� 31� 3 � 1� 3 « *
Finally, we have the following SVD of

�
:� � ª 1� 3 1� 31� 3 � 1� 3 « ��=��²x 	 �� H x 	 
 �z� v¡ ½ ¡½ ¡ v¡ 
 *
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(b.2) ¶Á·
(b) See the above figures.

(c) The 1-norm of an matrix
�

is the largest 1-norm of the column vectors of
�

. Thus,L � LM1 �)ÂÄÃ�Å6§Æ 1�Ç 3 L � �zÈ .�;²� LM1 �>=M¨+*
The 2-norm of

�
is of course the largest singular value 0É1 . Thus,L � LÀ3 � 021 �>=M� x 	�*

The Ê -norm of
�

is the largest 1-norm of the row vectors of
�

. Thus,L � L�Ë �)ÂÄÃ�ÅÌ Æ 1�Ç 3 L � �GÍ . È � LM1 �k=ZH�*
(d) In this case, the diagonal elements of

S
are not zeros, so we can compute the exact inverse of�

: � ¦ 1 � J S ¦ 1 T � � � � v¡ ½ ¡½ ¡ v¡ 
 ª 11eÎ � 3 �� 1¡n� 3 « ª 1� 3 1� 31� 3 � 1� 3 «� ��� v¡ ½ ¡½ ¡ v¡ 
 � 11eÎ �� 1¡ 
 � 13 1313 � 13 
 � ==��?� ��H ��=d==�� �!	q
 *
(e) ������� � �����+��� ����� �n�!	!�#� =?=��=�� H!��� 
 � � ��	$�Q�'� � H!����� { =��?�]�-�
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�XW � �Ä��H?� � � { 	?� { =��d���)�m�2W � 3 ���?� { =M�?�]�-�+*
This leads to �Ï� �VÐax �d+=ÒÑ	 .
i.e., � 1 � � { x �d+=ÒÑ	 . � 3 � �$�#x �?+=ÒÑ	 *

(f) This is just a simple computation.�����Z� � ���k��	�Ó`H { =?=M���Ô=��?�+*� 1 � 3 �  { �d+=� �>=��?��*Õ �����Z� � � Õ � 021z0�3 �k=M� x 	�Ö�H x 	��Ô=��?�+*
(g) The area of the ellipsoid is × times the length of the major axis times the length of the minor

axis. Thus, it is ×:0X1z0�3 �k=��?� × .
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