MAT 167: Applied Linear Algebra Lecture 23: Text Mining II

Naoki Saito

Department of Mathematics University of California, Davis

May 30/June 1, 2012

э

2 Nonnegative Matrix Factorization

saito@math.ucdavis.edu (UC Davis)

э

- Instead of using the left singular vectors as a basis to approximate a term-document matrix, let's examine the cluster centers (centroids) obtained by *k*-means algorithm as a basis.
- Let C_k = [c₁ ... c_k] ∈ ℝ^{m×k} be the k cluster centroids obtained by the k-means algorithm.
- c_j's are non-orthogonal; hence it is more convenient to obtain a set of orthonormal vectors that spans range(C_k).
- To do so, we can use the reduced QR factorization: $C_k = Q_k R_k$ where $Q_k \in \mathbb{R}^{m \times k}$, and $R_k \in \mathbb{R}^{k \times k}$.
- Now, let's approximate A using Q_k in the sense of the least squares as:

$$\min_{G_k \in \mathbb{R}^{k \times k}} \|A - Q_k G_k\|_F.$$

• Let $G_k = [\mathbf{g}_1 \dots \mathbf{g}_k]$. Then the above is equivalent to the following set of the LS problems:

$$\min_{\mathbf{g}_i \in \mathbb{R}^k} \|\mathbf{a}_j - Q_k \mathbf{g}_j\|_2, \ j = 1:k.$$

saito@math.ucdavis.edu (UC Davis)

- Instead of using the left singular vectors as a basis to approximate a term-document matrix, let's examine the cluster centers (centroids) obtained by *k*-means algorithm as a basis.
- Let C_k = [c₁ ... c_k] ∈ ℝ^{m×k} be the k cluster centroids obtained by the k-means algorithm.
- c_j's are non-orthogonal; hence it is more convenient to obtain a set of orthonormal vectors that spans range(C_k).
- To do so, we can use the reduced QR factorization: $C_k = Q_k R_k$ where $Q_k \in \mathbb{R}^{m \times k}$, and $R_k \in \mathbb{R}^{k \times k}$.
- Now, let's approximate A using Q_k in the sense of the least squares as:

$$\min_{G_k \in \mathbb{R}^{k \times k}} \|A - Q_k G_k\|_F.$$

 Let G_k = [g₁ ... g_k]. Then the above is equivalent to the following set of the LS problems:

$$\min_{\mathbf{g}_i \in \mathbb{R}^k} \|\mathbf{a}_j - Q_k \mathbf{g}_j\|_2, \ j = 1:k.$$

saito@math.ucdavis.edu (UC Davis)

- Instead of using the left singular vectors as a basis to approximate a term-document matrix, let's examine the cluster centers (centroids) obtained by *k*-means algorithm as a basis.
- Let C_k = [c₁ ... c_k] ∈ ℝ^{m×k} be the k cluster centroids obtained by the k-means algorithm.
- c_j's are non-orthogonal; hence it is more convenient to obtain a set of orthonormal vectors that spans range(C_k).
- To do so, we can use the reduced QR factorization: $C_k = Q_k R_k$ where $Q_k \in \mathbb{R}^{m \times k}$, and $R_k \in \mathbb{R}^{k \times k}$.
- Now, let's approximate A using Q_k in the sense of the least squares as:

$$\min_{G_k \in \mathbb{R}^{k \times k}} \|A - Q_k G_k\|_F.$$

• Let $G_k = [\mathbf{g}_1 \dots \mathbf{g}_k]$. Then the above is equivalent to the following set of the LS problems:

$$\min_{\mathbf{g}_i \in \mathbb{R}^k} \|\mathbf{a}_j - Q_k \mathbf{g}_j\|_2, \ j = 1:k.$$

saito@math.ucdavis.edu (UC Davis)

- Instead of using the left singular vectors as a basis to approximate a term-document matrix, let's examine the cluster centers (centroids) obtained by *k*-means algorithm as a basis.
- Let C_k = [c₁ ... c_k] ∈ ℝ^{m×k} be the k cluster centroids obtained by the k-means algorithm.
- c_j's are non-orthogonal; hence it is more convenient to obtain a set of orthonormal vectors that spans range(C_k).
- To do so, we can use the reduced QR factorization: $C_k = Q_k R_k$ where $Q_k \in \mathbb{R}^{m \times k}$, and $R_k \in \mathbb{R}^{k \times k}$.
- Now, let's approximate A using Q_k in the sense of the least squares as:

$$\min_{G_k \in \mathbb{R}^{k \times k}} \|A - Q_k G_k\|_F.$$

• Let $G_k = [\mathbf{g}_1 \dots \mathbf{g}_k]$. Then the above is equivalent to the following set of the LS problems:

$$\min_{\mathbf{g}_i \in \mathbb{R}^k} \|\mathbf{a}_j - Q_k \mathbf{g}_j\|_2, \ j = 1:k.$$

- Instead of using the left singular vectors as a basis to approximate a term-document matrix, let's examine the cluster centers (centroids) obtained by *k*-means algorithm as a basis.
- Let C_k = [c₁ ... c_k] ∈ ℝ^{m×k} be the k cluster centroids obtained by the k-means algorithm.
- c_j's are non-orthogonal; hence it is more convenient to obtain a set of orthonormal vectors that spans range(C_k).
- To do so, we can use the reduced QR factorization: $C_k = Q_k R_k$ where $Q_k \in \mathbb{R}^{m \times k}$, and $R_k \in \mathbb{R}^{k \times k}$.
- Now, let's approximate A using Q_k in the sense of the least squares as:

$$\min_{G_k\in\mathbb{R}^{k\times k}}\|A-Q_kG_k\|_F.$$

Let G_k = [g₁ ... g_k]. Then the above is equivalent to the following set of the LS problems:

$$\min_{\mathbf{g}_i \in \mathbb{R}^k} \|\mathbf{a}_j - Q_k \mathbf{g}_j\|_2, \ j = 1:k.$$

- Instead of using the left singular vectors as a basis to approximate a term-document matrix, let's examine the cluster centers (centroids) obtained by k-means algorithm as a basis.
- Let C_k = [c₁ ... c_k] ∈ ℝ^{m×k} be the k cluster centroids obtained by the k-means algorithm.
- c_j's are non-orthogonal; hence it is more convenient to obtain a set of orthonormal vectors that spans range(C_k).
- To do so, we can use the reduced QR factorization: $C_k = Q_k R_k$ where $Q_k \in \mathbb{R}^{m \times k}$, and $R_k \in \mathbb{R}^{k \times k}$.
- Now, let's approximate A using Q_k in the sense of the least squares as:

$$\min_{G_k\in\mathbb{R}^{k\times k}}\|A-Q_kG_k\|_F.$$

• Let $G_k = [\mathbf{g}_1 \dots \mathbf{g}_k]$. Then the above is equivalent to the following set of the LS problems:

$$\min_{\mathbf{g}_j \in \mathbb{R}^k} \|\mathbf{a}_j - Q_k \mathbf{g}_j\|_2, \, j = 1:k.$$

saito@math.ucdavis.edu (UC Davis)

4 / 13

- Since the columns of Q_k are orthonormal, we can get the following LS solution: g_j = Q_k^Ta_j, j = 1 : k. Hence G_k = Q_k^TA.
- The inner product between the query vector **q** and the document vector **a**_j can be approximated as:

$$\mathbf{q}^{\mathsf{T}}\mathbf{a}_{j} \approx \mathbf{q}^{\mathsf{T}}Q_{k}\mathbf{g}_{j} = (Q_{k}^{\mathsf{T}}\mathbf{q})^{\mathsf{T}}\mathbf{g}_{j} = \mathbf{q}_{k}^{\mathsf{T}}\mathbf{g}_{j}, \ \mathbf{q}_{k} := Q_{k}^{\mathsf{T}}\mathbf{q}.$$

• Hence, the cosine similarity can be approximated as:

$$\frac{\mathbf{q}^{\mathsf{T}}\mathbf{a}_j}{\|\mathbf{q}\|_2\|\mathbf{a}_j\|_2} \approx \frac{\mathbf{q}_k^{\mathsf{T}}\mathbf{g}_j}{\|\mathbf{q}\|_2\|\mathbf{g}_j\|_2}.$$

- Since the columns of Q_k are orthonormal, we can get the following LS solution: g_j = Q_k^Ta_j, j = 1 : k. Hence G_k = Q_k^TA.
- The inner product between the query vector **q** and the document vector **a**_j can be approximated as:

$$\mathbf{q}^{\mathsf{T}}\mathbf{a}_{j}\approx\mathbf{q}^{\mathsf{T}}Q_{k}\mathbf{g}_{j}=(Q_{k}^{\mathsf{T}}\mathbf{q})^{\mathsf{T}}\mathbf{g}_{j}=\mathbf{q}_{k}^{\mathsf{T}}\mathbf{g}_{j},\ \mathbf{q}_{k}:=Q_{k}^{\mathsf{T}}\mathbf{q}.$$

Hence, the cosine similarity can be approximated as:

$$\frac{\mathbf{q}^{\mathsf{T}}\mathbf{a}_{j}}{\|\mathbf{q}\|_{2}\|\mathbf{a}_{j}\|_{2}} \approx \frac{\mathbf{q}_{k}^{\mathsf{T}}\mathbf{g}_{j}}{\|\mathbf{q}\|_{2}\|\mathbf{g}_{j}\|_{2}}.$$

- Since the columns of Q_k are orthonormal, we can get the following LS solution: g_j = Q_k^Ta_j, j = 1 : k. Hence G_k = Q_k^TA.
- The inner product between the query vector **q** and the document vector **a**_j can be approximated as:

$$\mathbf{q}^{\mathsf{T}}\mathbf{a}_{j}\approx\mathbf{q}^{\mathsf{T}}Q_{k}\mathbf{g}_{j}=(Q_{k}^{\mathsf{T}}\mathbf{q})^{\mathsf{T}}\mathbf{g}_{j}=\mathbf{q}_{k}^{\mathsf{T}}\mathbf{g}_{j},\ \mathbf{q}_{k}:=Q_{k}^{\mathsf{T}}\mathbf{q}.$$

• Hence, the cosine similarity can be approximated as:

$$\frac{\mathbf{q}^{\mathsf{T}}\mathbf{a}_{j}}{\|\mathbf{q}\|_{2}\|\mathbf{a}_{j}\|_{2}}\approx\frac{\mathbf{q}_{k}^{\mathsf{T}}\mathbf{g}_{j}}{\|\mathbf{q}\|_{2}\|\mathbf{g}_{j}\|_{2}}.$$

- k = 50; the same query vector ('entropy', 'minimum', 'maximum').
- The approximation error between $Q_k G_k$ and A was $||A Q_k G_k||_F / ||A||_F \approx 0.7227$, which was worse than that using the top 100 SVD basis.

- k = 50; the same query vector ('entropy', 'minimum', 'maximum').
- The approximation error between $Q_k G_k$ and A was $||A Q_k G_k||_F / ||A||_F \approx 0.7227$, which was worse than that using the top 100 SVD basis.

- k = 50; the same query vector ('entropy', 'minimum', 'maximum').
- The approximation error between $Q_k G_k$ and A was $||A Q_k G_k||_F / ||A||_F \approx 0.7227$, which was worse than that using the top 100 SVD basis.

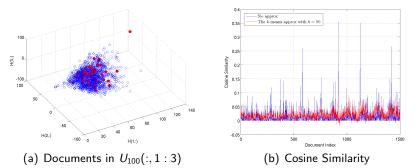


Figure: With the 50-means based approximation, tol=0.2, 0.1, 0.05 correspond to 0, 0, 81 returned documents; Compare these with the no approximation case: 4, 15, 89; and with the best 100 approximation using SVD: 0, 4, 72.

• Running the k-means algorithm with large m and n is slow in general.

- If your document set really consists of k different topics (or categories), then this k-means-based approach should work well.
 Example: The Science News Dataset consisting of articles in the area of Anthropology, Astronomy, Behavioral Sciences, Earth Sciences, Life Sciences, Math & CS, Medicine, Physics. Which value of k should be used is still a question though.
- However, in the case of the NIPS data where there is not much clustering structure, it may not worth trying this approach considering the computational cost.

- Running the k-means algorithm with large m and n is slow in general.
- If your document set really consists of k different topics (or categories), then this k-means-based approach should work well.
 Example: The Science News Dataset consisting of articles in the area of Anthropology, Astronomy, Behavioral Sciences, Earth Sciences, Life Sciences, Math & CS, Medicine, Physics. Which value of k should be used is still a question though.
- However, in the case of the NIPS data where there is not much clustering structure, it may not worth trying this approach considering the computational cost.

- Running the k-means algorithm with large m and n is slow in general.
- If your document set really consists of k different topics (or categories), then this k-means-based approach should work well.
 Example: The Science News Dataset consisting of articles in the area of Anthropology, Astronomy, Behavioral Sciences, Earth Sciences, Life Sciences, Math & CS, Medicine, Physics. Which value of k should be used is still a question though.
- However, in the case of the NIPS data where there is not much clustering structure, it may not worth trying this approach considering the computational cost.

3

- Consider the NNMF of a term-document matrix $A \approx WH$ where $W \in \mathbb{R}^{m \times k}$, $H \in \mathbb{R}^{k \times n}$, $1 < k \leq \min(m, n)$.
- We want to represent (or approximate) both query vectors and the term-document matrix using the basis vectors {w₁,..., w_k} and do query task in that basis (or coordinates).
- a_j is already approximated using {w₁,..., w_k} with the coordinate vector h_j, j = 1 : n, i.e., a_j ≈ Wh_j.
- We need to approximate q in the basis of W. To do so, we seek the LS approximation of q in range(W), i.e., min ||q W q̂||₂.
- Hence we need to solve the normal equation: $W^{\mathsf{T}}W\hat{\mathbf{q}} = W^{\mathsf{T}}\mathbf{q}$.
- To do so, we use the reduced QR factorization of W = QR.
- Then, using the argument of Lecture 10, the normal equation above is equivalent to $\widehat{R}\hat{\mathbf{q}} = \widehat{Q}^{\mathsf{T}}\mathbf{q}$, i.e., $\hat{\mathbf{q}} = \widehat{R}^{-1}\widehat{Q}^{\mathsf{T}}\mathbf{q}$.
- The cosine similarity in the basis of $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ can be written as:

$$\frac{\hat{\mathbf{q}}^{\mathsf{T}}\mathbf{h}_{j}}{\|\hat{\mathbf{q}}\|_{2}\|\mathbf{h}_{j}\|_{2}}, \quad j = 1:n.$$

- Consider the NNMF of a term-document matrix $A \approx WH$ where $W \in \mathbb{R}^{m \times k}$, $H \in \mathbb{R}^{k \times n}$, $1 < k \leq \min(m, n)$.
- We want to represent (or approximate) both query vectors and the term-document matrix using the basis vectors $\{w_1, \ldots, w_k\}$ and do query task in that basis (or coordinates).
- a_j is already approximated using {w₁,..., w_k} with the coordinate vector h_j, j = 1 : n, i.e., a_j ≈ Wh_j.
- We need to approximate q in the basis of W. To do so, we seek the LS approximation of q in range(W), i.e., min ||q W q̂||₂.
- Hence we need to solve the normal equation: $W^{\mathsf{T}}W\hat{\mathbf{q}} = W^{\mathsf{T}}\mathbf{q}$.
- To do so, we use the reduced QR factorization of W = QR.
- Then, using the argument of Lecture 10, the normal equation above is equivalent to $\widehat{R}\hat{\mathbf{q}} = \widehat{Q}^{\mathsf{T}}\mathbf{q}$, i.e., $\hat{\mathbf{q}} = \widehat{R}^{-1}\widehat{Q}^{\mathsf{T}}\mathbf{q}$.
- The cosine similarity in the basis of $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ can be written as:

$$\frac{\hat{\mathbf{q}}^{\mathsf{T}}\mathbf{h}_{j}}{\|\hat{\mathbf{q}}\|_{2}\|\mathbf{h}_{j}\|_{2}}, \quad j = 1:n.$$

- Consider the NNMF of a term-document matrix $A \approx WH$ where $W \in \mathbb{R}^{m \times k}$, $H \in \mathbb{R}^{k \times n}$, $1 < k \leq \min(m, n)$.
- We want to represent (or approximate) both query vectors and the term-document matrix using the basis vectors {**w**₁,...,**w**_k} and do query task in that basis (or coordinates).
- a_j is already approximated using {w₁,..., w_k} with the coordinate vector h_j, j = 1 : n, i.e., a_j ≈ Wh_j.
- We need to approximate **q** in the basis of W. To do so, we seek the LS approximation of **q** in range(W), i.e., min_{A⊂™k} ||**q** − W**q**̂||₂.
- Hence we need to solve the normal equation: $W^{\mathsf{T}}W\hat{\mathbf{q}} = W^{\mathsf{T}}\mathbf{q}$.
- To do so, we use the reduced QR factorization of W = QR.
- Then, using the argument of Lecture 10, the normal equation above is equivalent to $\widehat{R}\hat{\mathbf{q}} = \widehat{Q}^{\mathsf{T}}\mathbf{q}$, i.e., $\hat{\mathbf{q}} = \widehat{R}^{-1}\widehat{Q}^{\mathsf{T}}\mathbf{q}$.
- The cosine similarity in the basis of $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ can be written as:

$$\frac{\hat{\mathbf{q}}^{\mathsf{T}}\mathbf{h}_{j}}{\|\hat{\mathbf{q}}\|_{2}\|\mathbf{h}_{j}\|_{2}}, \quad j = 1:n.$$

- Consider the NNMF of a term-document matrix $A \approx WH$ where $W \in \mathbb{R}^{m \times k}$, $H \in \mathbb{R}^{k \times n}$, $1 < k \leq \min(m, n)$.
- We want to represent (or approximate) both query vectors and the term-document matrix using the basis vectors $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ and do query task in that basis (or coordinates).
- a_j is already approximated using {w₁,..., w_k} with the coordinate vector h_j, j = 1 : n, i.e., a_j ≈ Wh_j.
- We need to approximate q in the basis of W. To do so, we seek the LS approximation of q in range(W), i.e., min_{q∈ℝ^k} ||q Wq̂||₂.
- Hence we need to solve the normal equation: $W^{\mathsf{T}}W\hat{\mathbf{q}} = W^{\mathsf{T}}\mathbf{q}$.
- To do so, we use the reduced QR factorization of W = QR.
- Then, using the argument of Lecture 10, the normal equation above is equivalent to $\hat{R}\hat{\mathbf{q}} = \hat{Q}^{\mathsf{T}}\mathbf{q}$, i.e., $\hat{\mathbf{q}} = \hat{R}^{-1}\hat{Q}^{\mathsf{T}}\mathbf{q}$.
- The cosine similarity in the basis of $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ can be written as:

$$\frac{\hat{\mathbf{q}}^{\mathsf{T}}\mathbf{h}_{j}}{\|\hat{\mathbf{q}}\|_{2}\|\mathbf{h}_{j}\|_{2}}, \quad j = 1:n.$$

- Consider the NNMF of a term-document matrix $A \approx WH$ where $W \in \mathbb{R}^{m \times k}$, $H \in \mathbb{R}^{k \times n}$, $1 < k \leq \min(m, n)$.
- We want to represent (or approximate) both query vectors and the term-document matrix using the basis vectors $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ and do query task in that basis (or coordinates).
- a_j is already approximated using {w₁,..., w_k} with the coordinate vector h_j, j = 1 : n, i.e., a_j ≈ Wh_j.
- We need to approximate q in the basis of W. To do so, we seek the LS approximation of q in range(W), i.e., min_{**A**∈ℝ^k} ||**q** − W**Â**||₂.
- Hence we need to solve the normal equation: $W^{\mathsf{T}}W\hat{\mathbf{q}} = W^{\mathsf{T}}\mathbf{q}$.
- To do so, we use the reduced QR factorization of W = QR
- Then, using the argument of Lecture 10, the normal equation above is equivalent to $\widehat{R}\hat{\mathbf{q}} = \widehat{Q}^{\mathsf{T}}\mathbf{q}$, i.e., $\hat{\mathbf{q}} = \widehat{R}^{-1}\widehat{Q}^{\mathsf{T}}\mathbf{q}$.
- The cosine similarity in the basis of $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ can be written as:

$$\frac{\hat{\mathbf{q}}^{\mathsf{T}}\mathbf{h}_{j}}{\|\hat{\mathbf{q}}\|_{2}\|\mathbf{h}_{j}\|_{2}}, \quad j = 1:n.$$

- Consider the NNMF of a term-document matrix $A \approx WH$ where $W \in \mathbb{R}^{m \times k}$, $H \in \mathbb{R}^{k \times n}$, $1 < k \leq \min(m, n)$.
- We want to represent (or approximate) both query vectors and the term-document matrix using the basis vectors $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ and do query task in that basis (or coordinates).
- a_j is already approximated using {w₁,..., w_k} with the coordinate vector h_j, j = 1 : n, i.e., a_j ≈ Wh_j.
- We need to approximate **q** in the basis of W. To do so, we seek the LS approximation of **q** in range(W), i.e., $\min_{\hat{\mathbf{q}} \in \mathbb{R}^k} \|\mathbf{q} W\hat{\mathbf{q}}\|_2$.
- Hence we need to solve the normal equation: $W^{\mathsf{T}}W\hat{\mathbf{q}} = W^{\mathsf{T}}\mathbf{q}$.
- To do so, we use the reduced QR factorization of $W = \widehat{Q}\widehat{R}$.
- Then, using the argument of Lecture 10, the normal equation above is equivalent to $\hat{R}\hat{\mathbf{q}} = \hat{Q}^{\mathsf{T}}\mathbf{q}$, i.e., $\hat{\mathbf{q}} = \hat{R}^{-1}\hat{Q}^{\mathsf{T}}\mathbf{q}$.
- The cosine similarity in the basis of $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ can be written as:

$$\frac{\hat{\mathbf{q}}^{\mathsf{T}}\mathbf{h}_{j}}{|\hat{\mathbf{q}}||_{2}\|\mathbf{h}_{j}\|_{2}}, \quad j=1:n.$$

- Consider the NNMF of a term-document matrix $A \approx WH$ where $W \in \mathbb{R}^{m \times k}$, $H \in \mathbb{R}^{k \times n}$, $1 < k \leq \min(m, n)$.
- We want to represent (or approximate) both query vectors and the term-document matrix using the basis vectors $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ and do query task in that basis (or coordinates).
- a_j is already approximated using {w₁,..., w_k} with the coordinate vector h_j, j = 1 : n, i.e., a_j ≈ Wh_j.
- We need to approximate q in the basis of W. To do so, we seek the LS approximation of q in range(W), i.e., min_{A⊂™k} ||q Wq̂||₂.
- Hence we need to solve the normal equation: $W^{\mathsf{T}}W\hat{\mathbf{q}} = W^{\mathsf{T}}\mathbf{q}$.
- To do so, we use the reduced QR factorization of $W = \widehat{Q}\widehat{R}$.
- Then, using the argument of Lecture 10, the normal equation above is equivalent to $\widehat{R}\hat{\mathbf{q}} = \widehat{Q}^{\mathsf{T}}\mathbf{q}$, i.e., $\hat{\mathbf{q}} = \widehat{R}^{-1}\widehat{Q}^{\mathsf{T}}\mathbf{q}$.

• The cosine similarity in the basis of $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ can be written as:

- Consider the NNMF of a term-document matrix $A \approx WH$ where $W \in \mathbb{R}^{m \times k}$, $H \in \mathbb{R}^{k \times n}$, $1 < k \leq \min(m, n)$.
- We want to represent (or approximate) both query vectors and the term-document matrix using the basis vectors $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ and do query task in that basis (or coordinates).
- a_j is already approximated using {w₁,..., w_k} with the coordinate vector h_j, j = 1 : n, i.e., a_j ≈ Wh_j.
- We need to approximate q in the basis of W. To do so, we seek the LS approximation of q in range(W), i.e., min_{A⊂™k} ||q Wq̂||₂.
- Hence we need to solve the normal equation: $W^{\mathsf{T}}W\hat{\mathbf{q}} = W^{\mathsf{T}}\mathbf{q}$.
- To do so, we use the reduced QR factorization of $W = \widehat{Q}\widehat{R}$.
- Then, using the argument of Lecture 10, the normal equation above is equivalent to $\widehat{R}\hat{\mathbf{q}} = \widehat{Q}^{\mathsf{T}}\mathbf{q}$, i.e., $\hat{\mathbf{q}} = \widehat{R}^{-1}\widehat{Q}^{\mathsf{T}}\mathbf{q}$.
- The cosine similarity in the basis of $\{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ can be written as:

$$\frac{\hat{\mathbf{q}}^{\mathsf{T}}\mathbf{h}_{j}}{\|\hat{\mathbf{q}}\|_{2}\|\mathbf{h}_{j}\|_{2}}, \quad j = 1:n.$$

• *k* = 100 was used.

- $||A WH||_F / ||A||_F \approx 0.6302$, which was *slightly* worse than that using the top 100 SVD basis (0.6074).
- Each \mathbf{w}_i concentrates on one term, and is close to the canonical vector $\mathbf{e}_i \in \mathbb{R}^m$ for some *i*.
- The peaks of w_j, j = 1 : 10, correspond to: 'network', 'model', 'learning', 'function', 'unit', 'algorithm', 'input', 'data', 'neuron', 'cell', which are quite similar to the u₁ vector or the 10 most frequently used terms.
- On the other hand, because **w**_j's are localized, the interpretation of the row vectors of *H* matrix becomes easy.

- *k* = 100 was used.
- $||A WH||_F / ||A||_F \approx 0.6302$, which was *slightly* worse than that using the top 100 SVD basis (0.6074).
- Each w_j concentrates on one term, and is close to the canonical vector e_i ∈ ℝ^m for some i.
- The peaks of w_j, j = 1 : 10, correspond to: 'network', 'model', 'learning', 'function', 'unit', 'algorithm', 'input', 'data', 'neuron', 'cell', which are quite similar to the u₁ vector or the 10 most frequently used terms.
- On the other hand, because **w**_j's are localized, the interpretation of the row vectors of *H* matrix becomes easy.

- *k* = 100 was used.
- $||A WH||_F / ||A||_F \approx 0.6302$, which was *slightly* worse than that using the top 100 SVD basis (0.6074).
- Each w_j concentrates on one term, and is close to the canonical vector e_i ∈ ℝ^m for some i.
- The peaks of w_j, j = 1 : 10, correspond to: 'network', 'model', 'learning', 'function', 'unit', 'algorithm', 'input', 'data', 'neuron', 'cell', which are quite similar to the u₁ vector or the 10 most frequently used terms.
- On the other hand, because **w**_j's are localized, the interpretation of the row vectors of *H* matrix becomes easy.

- *k* = 100 was used.
- $||A WH||_F / ||A||_F \approx 0.6302$, which was *slightly* worse than that using the top 100 SVD basis (0.6074).
- Each w_j concentrates on one term, and is close to the canonical vector e_i ∈ ℝ^m for some i.
- The peaks of \mathbf{w}_j , j = 1 : 10, correspond to: 'network', 'model', 'learning', 'function', 'unit', 'algorithm', 'input', 'data', 'neuron', 'cell', which are quite similar to the \mathbf{u}_1 vector or the 10 most frequently used terms.
- On the other hand, because **w**_j's are localized, the interpretation of the row vectors of *H* matrix becomes easy.

- *k* = 100 was used.
- $||A WH||_F / ||A||_F \approx 0.6302$, which was *slightly* worse than that using the top 100 SVD basis (0.6074).
- Each w_j concentrates on one term, and is close to the canonical vector e_i ∈ ℝ^m for some i.
- The peaks of \mathbf{w}_j , j = 1 : 10, correspond to: 'network', 'model', 'learning', 'function', 'unit', 'algorithm', 'input', 'data', 'neuron', 'cell', which are quite similar to the \mathbf{u}_1 vector or the 10 most frequently used terms.
- On the other hand, because **w**_j's are localized, the interpretation of the row vectors of *H* matrix becomes easy.

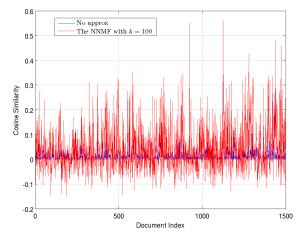


Figure: With the NNMF-based approach using k = 100, tol=0.2, 0.1, 0.05 correspond to 101, 312, 535 returned documents; Compare with the no approximation case: 4, 15, 89. Changing the tol=0.4, 0.3, 0.2 with NNMF returns 5, 26, 101 documents.

saito@math.ucdavis.edu (UC Davis)

11 / 13

- Using the LS solution for the query saves computational cost given the NNMF is already obtained because one can avoid the explicit computation and storage of *WH*.
- If we can compute and store *WH*, then we could use the following approximation of the original cosine similarity:

$$\frac{\mathbf{q}^{\mathsf{T}}\mathbf{a}_{j}}{\|\mathbf{q}\|_{2}\|\mathbf{a}_{j}\|_{2}} \approx \frac{\mathbf{q}^{\mathsf{T}}W\mathbf{h}_{j}}{\|\mathbf{q}\|_{2}\|W\mathbf{h}_{j}\|_{2}}$$

- Using the LS solution for the query saves computational cost given the NNMF is already obtained because one can avoid the explicit computation and storage of *WH*.
- If we can compute and store *WH*, then we could use the following approximation of the original cosine similarity:

$$\frac{\mathbf{q}^{\mathsf{T}}\mathbf{a}_{j}}{\|\mathbf{q}\|_{2}\|\mathbf{a}_{j}\|_{2}} \approx \frac{\mathbf{q}^{\mathsf{T}}W\mathbf{h}_{j}}{\|\mathbf{q}\|_{2}\|W\mathbf{h}_{j}\|_{2}}$$

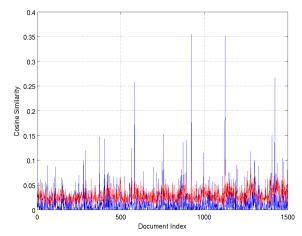


Figure: With the NNMF-based approach using k = 100 using the above cosine similarity approximation, tol=0.2, 0.1, 0.05 correspond to 0, 1, 97 returned documents; Compare with the no approximation case: 4, 15, 89. Without using the LS query, some of the relevant documents do not stick out clearly.