229A: Numerical Methods in Linear Algebra Homework 2: due 2/7/02

Problem 1: Solve Exercise 5.1

Problem 2: Solve Exercise 5.3
Problem 3: Image compression experiments with SVD.
(a) Using matlab, read (or load) the image called "mandrill.mat", display it on the screen (using the gray scale colormap), and print it.
(b) Compute the SVD of this mandrill image and plot the distribution of its singular values. Print that plot.
(c) Let $\sigma_{j}, \boldsymbol{u}_{j}, \boldsymbol{v}_{j}$ be a singular value, the left and right singular vectors of the mandrill image, respectively. Let us define the rank k approximation of an image $X \in \mathbb{R}^{m \times n}$ as

$$
X_{k} \triangleq \sum_{j=1}^{k} \sigma_{j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{*} \quad k=1, \ldots, \min (m, n) .
$$

Then, for $k=1,6,11,31$, compute X_{k} of the mandrill, and display the results. Fit these four images in one page by using subplot function and print them out.
(d) For $k=1,6,11,31$, display the residuals, i.e., $X-X_{k}$. Again print them out as one page.

Problem 4: Solve Exercise 6.1
Problem 5: Solve Exercise 6.4
Problem 6: Solve Exercise 7.1
Problem 7: Solve Exercise 7.4
Problem 8: Solve Exercise 8.2
Problem 9: Write a MatLab function $[Q, R]=\operatorname{clgs}(A)$ that computes a reduced $Q R$ factorization $A=\hat{Q} \hat{R}$ of an $m \times n$ matrix A with $m \geq n$ using the Classical Gram-Schmidt (unstable) algorithm (Algorithm 7.1 in the textbook). The output variables are a matrix $\hat{Q} \in \mathbb{R}^{m \times n}$ with orthonormal columns and an upper triangular matrix $\hat{R} \in \mathbb{R}^{n \times n}$.

Problem 10: [The Pseudo Inverse Matrices] For any $A \in \mathbb{C}^{m \times n}$, there exists a unique matrix X (often written as A^{\dagger}) satisfying the following Moore-Penrose conditions:

1. $A X A=A$,
2. $X A X=X$,
3. $(A X)^{*}=A X$,
4. $(X A)^{*}=X A$.
A^{\dagger} is referred to the pseudo inverse of A.
(a) Show that $A A^{\dagger}$ is an orthogonal projection onto range (A).
(b) Show that $A^{\dagger} A$ is an orthogonal projection onto range $\left(A^{*}\right)$.
