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Drums That Sound the Same

S. J. Chapman

1. INTRODUCTION. In 1966 Kac [7] asked the question “Can you hear the shape
of a drum?”, that is, if you know the frequencies at which a drum vibrates, can you
determine it’s shape? Mathematically this corresponds to the following problem. If
u is the displacement of a membrane D from its mean position, then u satisfies

V2y = ru in D (1)
at?’ ’
u=0,ondD. (2)
Seeking a solution by separation of variables u(x, y, t) = ¢(t)¢(x, y) yields
M = ﬁi = constant = A, say.
¢ ¥

Hence
u= sin(\/Xt)qS(x, ¥), (3)

where
V3 + Ap =0,in D, 4
¢ =0,0ndD. %5

This is an eigenvalue problem: there exists a nonzero solution ¢ only for certain
values of A known as eigenvalues. The set of eigenvalues is known as the

Figure 1
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eigenvalue spectrum, and is discrete in this case. We see by equation (3) that the
eigenvalues A are the squares of the frequencies of vibration, and that each
eigensolution can be viewed as a standing wave on the domain D. The general
solution of (1), (2) is a superposition of these special solutions.

Kac’s question is now the following: are two domains with the same eigenvalue
spectrum (where the eigenvalues are counted with multiplicities) necessarily con-
gruent?

It has been shown that the eigenvalues do determine certain properties of D,
for example the area, the circumference, and the number of connected compo-
nents [7]. However, the answer to the question is in fact no. Figure 1 shows an
example of two domains with exactly the same eigenvalue spectrum which was
given by Gordon et al. [5] (see also [6)).
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Figure 2

A simple proof that the eigenvalues are identical has been given by Berard [3]
(see also [1, 2]), who constructs the map shown in Figure 2, which takes an
eigenfunction for the first domain and maps it onto an eigenfunction for the
second domain, with the same eigenvalue A. Here A + B means that to obtain the
value of the function in that triangle we add the values of the function at the
corresponding points in triangles 4 and B. We have used different types of lines
for the edges of the triangles to help make it clear how each should be orientated
when making this identification. In some cases it is necessary to reflect the triangle
about its line of symmetry, and this we have indicated by 4. Only the zero function
maps to the zero function, which implies that for any eigenfunction of the first
eigenvalue problem there is a corresponding eigenfunction of the second eigen-
value problem, with the same eigenvalue A. Thus any eigenvalue of the first
problem is also an eigenvalue of the second problem (including multiplicities). A
similar map of an eigenfunction of the second problem to one of the first shows
that any eigenvalue of the second problem is also an eigenvalue of the first, and
therefore the two domains are isospectral.
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Here we give an interpretation of the transposition of a solution of the first
problem to one of the second problem in terms of paper folding. This will allow us
to generate many new isospectral domains, including a simple example in which
the eigenvalues can be calculated explicitly. We note that the method of transposi-
tion has also recently been used by Buser et al. [4] to generate new examples of
isospectral plane domains.

2. PAPER FOLDING. Consider a paper cutout of a domain, and a function which
is zero on the boundary of the domain. We now fold the paper to create a new
domain. We define a function, the transposition, on the new domain, by adding the
values of the original function at points that lie on top of one another, with the
convention that if the paper is reversed then the function is subtracted rather than
added. This function will automatically be zero on the boundary of the new
domain, since it will be zero along any fold of the paper, as well as on any edge.
The reader may find it helpful in what follows to actually construct the shapes by
folding paper.
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For example consider the domain shown in Figure 2a, and a function on this
domain which is zero on the boundary. We label the triangles A to G on the front
and A to G on the back and fold the domain as shown in Figure 3 (where a dotted
line indicates a fold of the paper). We then obtain a function on the domain shown
in Figure 4 which is zero on the boundary.

We now take several copies of the original domain D and fold them to create
domains D,, D,, etc. We glue these together to create a new domain D*, and
define the transposition on this domain to be the sum of the transpositions on D,
D,, etc. Now, if we can glue the domains D,, D,, etc. together in such a way that
the first derivative of the transposition is continuous, then we will have actually
created an eigenfunction on the new domain D*.!

In order for the first derivative of the transposition to be continuous it is
sufficient that

(1) Every fold lies along an outside edge of the new shape.

(2) Each edge of each copy of the original shape that lies in the interior of the
final shape must be adjacent to its reflection on an associated copy of the
original shape.
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Figure 5§

For example, the first derivative of the transposition is discontinuous across the
lines (1) and (2) in Figure 4. However, if we add the same initial drum shape
folded as shown in Figure 5 then we ensure continuity of the first derivative across
the lines (1) and (2) (Figure 6), though the first derivative is now discontinuous

The resulting function is once differentiable and satisfies the eigenequation except possibly on the
seams. Such a function is a weak solution of the equation and therefore by elliptic regularity a strong
solution; see G. Folland, Introduction to PDE, PUP, 1976: specifically apply Corollary 6.28 repeatedly
and then Corollary 6.10 to find that the transposed function is indeed an eigenfunction.
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Figure 6

across other lines. Note that the continuity of the transposed function itself is
automatic since the original function is zero on the boundary of each component.

Figure 7 shows how the pieces fit together for the example given in the
introduction. Three copies of the original shape (Fig. 2a) are folded along the
dotted lines shown in Fig. 7a, to give the shapes shown in Fig. 7c (Figure 7b shows
a three dimensional view of how each piece will look before it is squashed flat).
These shapes are then superimposed to create the shape shown in Fig. 2b (the
dotted lines in Fig. 7c indicate the position of each component in the new shape).

Another example of isospectral domains, and the transposition of a solution on
one domain onto a solution on the other domain, is given in Figures 8 and 9. The
cuts in these figures are to be interpreted as having zero width, and are shown for
clarity.

Since the method of construction of the transposition depends only on folding
along the edges of the triangles, there is no need for the triangles to be right-
angled. All that is important is that the two triangles adjacent to a fold lie on top
of one another when the paper is folded. If we think of the shapes in Figure 2 as
being constructed from a single triangle A by a series of reflections about its
edges, then it is not the shape of A, but the series of reflections which is
important. Choose any other triangle in place of A in Figure 10a, and perform the
same series of reflections to obtain a new shape. Now place the same triangle in
position d of Figure 10b, with the same orientation, and perform the series of
reflections that created 10b from the basic right-angled triangle d. The two shapes
obtained will then be isospectral, since the same map transposing eigenfunctions of
one domain onto the other domain will work as before. For example, if we use the
triangle shown in Figure 11a as our basic building block, we find that the domains
shown in Figure 11b are isospectral.

It is not necessary for the triangle to be isoceles. If we take the triangle shown
in Figure 12a as our basic building block, we find that the domains shown in Figure
12b are isospectral.
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By the same considerations, it is not even necessary for the basic shape to be a
triangle. Any shape with at least three edges will do. We simply choose three edges
to represent the three sides of the triangle, about which we will reflect the shape.
If we then follow the same pattern of reflection that created the original shapes of
Fig. 2 from the basic right-angled triangle, then we have again isospectral drums.
The example shown in Figure 13 uses squares.

In fact, the basic starting shape can be as complicated as you like. To construct
different shapes, take any of the previous shapes constructed of triangles, squares
etc. and fold both shapes until a single triangle (for example) remains. Place the
two resulting triangles on top of one another (with the correct orientation, i.e. so
that the solid, dotted and dashed lines match up). Now cut out shapes as when
making paper dolls. The shapes obtained when the paper is unfolded will again
have exactly the same eigenvalues as each other, since the same one-to-one
correspondence between solutions will hold as before. We note that the cutout will
be in one piece if and only if there is a segment left uncut on each edge.

Figure 14 shows a simple example. These isospectral domains were also discov-
ered by Gordon et al. More exotic shapes can also be made, as shown in Figure 15.
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Figure 12

In this way a simpler example of drums with the same eigenvalues can be
constructed—one in which the eigenvalues can actually be calculated explicitly.
Consider the original example, folded and cut along one edge as shown in Figure
16a. Then the drums obtained are as shown in Figure 16b. Discarding the single
small triangle, which appears once in each drum, we have the domains shown in
Figure 17. The spectrum of each of the disconnected domains in Figure 17 is equal
to the union of the spectra of each of the components (with the multiplicity of an
eigenvalue being equal to the sum of its multiplicities in the components), since
each of the components vibrates independently. The eigenfunctions for a rectangle
of length a and width b are

nTx _ mmwy .
sin P n, m integers,

sin

with corresponding eigenvalues A = w2((n/a)* + (m/b)*). For a right-angled
isoceles triangle with short sides of length ¢ the eigenfunctions are
Cimx _jwy  jwx _imwy Co
sin—— sin — sin sin , i,Jintegers, >},
c c c c

with corresponding eigenvalues A = 7w2((i/c)*> + (j/c)?). Thus we find that the
eigenvalues for each domain are as shown in Fig. 17. We shall now show that the
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Figure 14

combined eigenvalues of the two domains of Figure 17a are identical to the
combined eigenvalues of the two domains of Figure 17b.

With N even we set N = 2n and M = m. Then we have (N/2)? + M? =n? +
m?. When N is odd we set i = max(N,2M), j = min(N, 2M). Then (N/2)* + M?
= (i/2)? + (j/2)? and i > j. This takes care of the eigenvalues in which one of
i,j is even and the other is odd. If we set i=I+J and j=1—J then (I? +
J¥ /2 =(i/2)* + (j/2)?, and i > j. This takes care of the eigenvalues in which
either i and j are both even or both odd.

Finally, we note that the same procedure works if the boundary condition

u=0 ondD,
is modified to

du

— =0o0ndD,

an

if we modify our convention and add reflected triangles instead of subtracting
them. Thus all the isospectral domains found previously are also isospectral with
this new boundary condition.
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PICTURE PUZZLE
(from the collection of Paul Halmos)

Half of a man and wife team
(see page 154.)
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