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CAN ONE HEAR THE SHAPE OF A DRUM? REVISITED*
M. H. PROTTER'

Abstract. In a landmark paper, Mark Kac in 1966 [Amer. Math. Monthly, 73, pp. 1-23] showed that
geometric properties of regions in R? can be obtained by studying the asymptotic properties of the spectrum
of the Laplacian. He also conjectured that the shape of a region might be completely determined by the
spectrum. We describe recent developments in this field and discuss the status of the Kac conjecture as well
as similar conjectures for operators other than the Laplacian.
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1. Introduction. The question “Can one hear the shape of a drum?” is silly.
Everyone knows that we hear sounds not shapes. Nevertheless this very question is the
title of a famous article by Mark Kac which appeared in 1966 [9]. Not only that, the
provocative question has spawned articles on the same subject with similar titles. “On
hearing the shape of a drum: further results,” by Stewartson and Waechter [27] and
“Hearing the shape of an annular drum” by Gottlieb [4] are two examples. Moreover,
other senses are becoming involved. There is the article by Pinsky [18] titled “Can you
feel the shape of a manifold with Brownian motion?”

Actually, the question we are revisiting has two meanings: a mathematical one and
a nonmathematical one. We describe both. As we are all aware, the sounds a drum
makes when it is struck are determined by its physical characteristics, i.e., the material
used, its tautness, and the size and shape. Drums vibrate at certain distinct frequencies
called normal modes. The lowest or base frequency is the fundamental tone and the
higher frequencies are called overtones.

The nonmathematical interpretation of the question is the following: suppose a
drum is being played in one room and a person with perfect pitch, i.e., one who can
identify exactly all the normal modes of vibration, hears but cannot see the drum. Is it
possible for her to deduce the precise shape of the drum just from hearing the
fundamental tone and all the overtones?

In his 1966 paper, Kac posed this problem and, although he was unable to provide
an answer, he showed that it is possible to get information about the geometry of the
drum from a study of its normal modes of vibration. Actually, quite a bit about the
geometry had already been found, based principally on the early work of Weyl [31],
[32] and extensions due to Pleijel [19], [20], [21]. To glean this information about the
shape of a drum on the basis of its normal modes of vibration, we require the
equivalent mathematical meaning of the question in the title of Kac’s article.

The vibration of a two-dimensional drum which spans a domain @ in R? is
governed by the wave equation

0% v 3w
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186 M. H. PROTTER

where v=uv(x,y,t) denotes the transverse displacement of a point (x,y) of the drum at
time ¢. For convenience we assume the material, its tautness, and the units of measure-
ment are such that the constant ¢2=1. It is customary to separate variables in (1) by
setting v = F(¢)u(x,y), in which case u is a solution of the stationary equation

(2) Au+Au=0 inQ.

Since the boundary of the drum is firmly attached, solutions of (2) satisfy the boundary
condition

(3) u=0 on 0.
It is classical that there is a countable sequence of eigenvalues
(4) O0<A <A, A8 g2+

tending to +oo and a sequence of corresponding eigenfunctions u;,u,, -, 4y, -+
such that each u, satisfies (3) and the equation

Au,+Au,=0 inQ.

The eigenfunctions are orthogonal in L,(£2) and they are customarily normalized so
that ||u,|,,@)=1 for all k. Two domains, £, and £, in R?, which have the same set of
eigenvalues (4) are called isospectral and two domains which are congruent in the sense
of Euclidean geometry are termed isometric. The precise problem raised by Kac is the
following: If two domains in R? are isospectral, is it necessarily true that they are
isometric? This question is the mathematical version of hearing the shape of a drum.
Kac tells us that he learned of the mathematical formulation of the problem from S.
Bochner who had originally proposed it in the mid 1950’s. Then in a casual conversa-
tion Kac described the Bochner problem to L. Bers who immediately responded with
the intriguing question which identifies the nonmathematical interpretation of the
vibrating drum question.

We designate as Problem I the Bochner-Kac question and, in order to describe
fully the developments since 1966, we pose three additional related problems. In
Problem II we consider again a vibrating drum but with a boundary condition different
from (2). The equation

Au+Au=0 inQ

is the same as in Problem I, but here we require that the normal derivative of u vanish
on the boundary, i.e.,
(4a) g%= 0 ondQ,
where 9/0n is the directional derivative normal to the boundary of Q at each point.
Problem II corresponds to the motion of a drum in which the drum material rests on
the rim of the drum rather than being fastened. Here also there is a sequence of
eigenvalues O0=p, <p,<p;< --- Sp < --- corresponding to the normal modes of
vibration as in Problem I. To each eigenvalue there is an eigenfunction and these form
a complete orthogonal system in 2. Problem II asks whether or not two nonisometric
domains £, and {2, can be isospectral with respect to solutions (2), (4a).

Problems I and II can be treated as special cases of the problem

Au+1u=0 inQ
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with the boundary condition

au+,B%$=0 on 0.

Pleijel’s methods were applied to this problem for convex domains in R? by Sleeman
and Zayed [25].

Problems similar to I and II can be posed for general second order elliptic
operators, for higher order elliptic operators, and for elliptic systems. For simplicity we
confine ourselves to two additional typical problems: one for a higher order operator
and one for a specific physical system.

The vibration of a stiff plate differs from that of a membrane not only in the
equation which governs its motion but also in the way the plate is fastened to its
boundary. A plate spanning a domain © in R? has its transverse vibrations governed
by the (stationary) equation

(5) Au—pyu=0 inQ
with the boundary conditions
du
(6) u=0 and -%—0 on 0.

That is, not only is the rim of the plate firmly fastened to the boundary, but the plate is
clamped so that no lateral motion can occur at the edge. The problem (5), (6),
designated III, also has a set of normal modes of vibration 0<v; <v,< -+ v, < ---
and a corresponding set of eigenfunctions. We again ask the question whether or not
two clamped plates of different shapes can be isospectral. .

Let © be a domain in R? and consider the eigenvalue problem for the equations of
classical elasticity. With u=(u;,u,, u,) the elastic displacement vector, a function from
Q into R?, the stationary system governing the modes of elastic vibration is

d .
(7) pAup+(>\+p)§x—p(V-u)+oup=O inQ, p=1,2,3,

and typically u satisfies the boundary conditions
(8) u,=0 ondQ, p=1,2,3.

Here A and p are the Lamé constants. The system (7), (8) has a sequence of eigenfunc-
tion solutions corresponding to the eigenvalues 0 <o, <0,< -+ <0,< ---. Problem
IV raises the same question for (7), (8) with respect to two domains 2, and Q, in R3
that Problems I-III raise for domains in R?,

Even before the appearance of Kac’s paper, Milnor considered problems analo-
gous to Problem I for compact manifolds. That is, suppose M; and M, are compact
manifolds in R”, nx 2. It is known that for each such manifold M there is a sequence
of eigenvalues 0=A, <A, < --- <A, < --- and eigenfunctions u;,u,," - -, u,, - - - which
solve

Aug+Au,=0 in M.
We note that since M has no boundary, the eigenfunctions u need not satisfy any

boundary condition. In 1964 Milnor showed [15] that there exist two 16-dimensional
tori which have the same spectrum but which are not isometric. Thus for compact
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manifolds the question raised by Kac had already been answered in the negative—at
least for manifolds in 16-dimensional space. Later Kneser [10] exhibited two 12-dimen-
sional tori which are isospectral but which are not isometric. In 1980 Vignéras [30]
solved the compact manifold problem in all dimensions n= 2 by exhibiting for each n
two isospectral manifolds which are not isometric. On the other hand, she remarks that
in two dimensions, tori which are isospectral must be isometric.! Thus for dimensions n
between 3 and 11, it is still not known if there exist two isospectral tori which are not
isometric.

In each of Problems I through IV, the eigenvalues form a discrete sequence which
tends to infinity. In §2 we study the asymptotic behavior of these sequences, and the
relationships of such behavior to the geometry of the domain Q. In §3 we discuss
inequalities among the eigenvalues themselves. It turns out that in all dimensions
certain inequalities hold among the eigenvalues regardless of the size or shape of the
domain. We call these universal inequalities, and we shall see that among all sequences
of positive numbers tending to infinity those which correspond to sequences of eigen-
values are highly restricted. In §4 we describe bounds for the first eigenvalue, i.e., the
fundamental tone in Problem I. Here too we find rather sharp restrictions on the first
eigenvalue, ones which yield information on the geometry of the domain. Finally, in §5
we show how recent results give a partial response to the original question raised by
Kac. It turns out that for Problems I and II there are domains in R”, n >4, which are
isospectral but not isometric. The problem remains unsolved for n=2,3 and in all
dimensions for Problems III and IV.

2. The asymptotic behavior of eigenvalues. It is known that the sequence of eigen-
values A;,A,, -+, A, -+ for Problem I now considered for a domain § contained in
R", n=2, has the property that A, — 0o as k— oo. In the early part of this century,
Hilbert conjectured that a study of the asymptotic behavior of this sequence, while
extremely difficult, would yield results of the utmost importance. In 1911 Weyl [31], in
a brilliant solution to the problem, showed that

2/n
1) )\k~47r2(BkV) . koo

where V is the volume of £ and B, is the volume of the unit ball in R”. The same
formula holds for Problem II, i.e.,

2/n
(2) pk~47r2(BkV) ,  k—oo.

We see that formulas (1) and (2) immediately shed light on the problem of Bochner—Kac.
Two domains with different volumes can never have the same spectrum. With the Weyl
formula as a startng point, Pleijel [21] in 1954 obtained an additional term in the
asymptotic expansion. For any domain € in R? with area V and length of boundary L,
he showed that

1
Mt =
(3) Le 2nt 4 ot

IM. Berger, P. Gauduchon and E. Mazet, Le spectre d’une variété Riemanniénne, Springer-Verlag, New
York-Heidelberg-Berlin, 1971, p. 149.
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By a Tauberian theorem the asymptotic formula for the first term on the right side of
(3) is equivalent to the Weyl formula (1). However, the second term of (3) when
combined with the isoperimetric inequality between the area ¥ and the length of the
boundary L for regions in R? ie., V<7L?/4, with equality only for the disk, shows
that there can be no region in the plane which is isospectral with the disk. Actually,
Pleijel showed more. For simply connected domains he established the formula

o Vv L 1 1
4 e M=t ——+— ast—0,
@) El 2mt" 4 opr 6

and in fact he showed that an additional term may be added to the right side of (4), one
involving the curvature of the boundary of Q2. Kac uses a combination of probability
techniques and heat equation methods to establish (3) for convex domains, and he
obtains (4) as a limiting case of convex polygonal domains. He also conjectures that for
multiply connected domains in R? with r holes, the number 1 in (4) should be
replaced by £(1—r). McKean and Singer [13] in an extension of the results of Pleijel
answered affirmatively the conjecture of Kac with respect to the third term for multiply
connected domains. For regions in R”, McKean and Singer also obtain information
about the curvature of the boundary of . They obtain the asymptotic formula for
Problem I in the case of general second order elliptic operators. Formula (4) is the first
three terms of a general asymptotic expansion (in R?) of the form

(o]
Yo e Mea it a_y ytT P vagtay p 4 o Hatt oo, )0
k=1

in which the powers of ¢ increase in increments of 3. Stewartson and Waechter [27]
found the values of a, for the first five terms and L. Smith [26] found the sixth term in
the expansion. The higher coefficients all involve integrals of the curvature of the
boundary and its derivatives. Recently Melrose [14] made a careful analysis of these
coefficients and showed that in a certain topology bounded C* domains which are
isospectral to a given domain form a compact set.

Polya established an important set of inequalities for Problems I and II, ones
which show that in many cases the Weyl asymptotic limit is always approached from
one side. A domain in R" is called a tiling domain if copies of it fill all of R" without
overlapping or leaving any gaps. Parallelograms and regular hexagons are simple
examples of tiling domains in R2 However, triangles, domains in the shape of a cross
and many others easily come to mind as examples of tiling domains. In 1961 Polya [22]
showed that if € is any tiling domain in R", then for all integers k,

k 2/n
BnV) '

(5) Akg47r2(

In other words, not only is the Weyl asymptotic limit approached from above, but the
inequality holds even for small values of k. Furthermore, with only a small additional
technical restriction on the type of tiling domain, Polya showed that the eigenvalues for
Problem II satisfy the inequality

k—1 2/n
p’k§4‘”2( BnV) ’

and this bound holds for k=1,2, - - -. That is, the Weyl asymptotic limit in this case is
approached from below.
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It is well known that the eigenvalues »,,»,,---,»,,--- for the clamped plate
(Problem III) are related to the eigenvalues A;,A,,---,A,,--- for the membrane
(Problem I) by the inequalities
(6) v =A%, k=1,2,---.

Polya’s result (as he points out) yields for tiling domains the inequalities

4/n
vkglsw'*(B"V) k=14,

Now Pleijel [20] in an extension of Weyl’s formula to higher order equations established
the formula

k 4/n
vk~167r4( ) as k— 0.

BV
We see that Polya’s result states that the eigenvalues for the clamped plate tend to their
limit from above, at least for tiling domains.

Polya conjectured that the results he obtained for tiling domains are valid for
arbitrary bounded domains in R". As for Problem II there has been no progress thus
far on this conjecture. However, Li and Yau [12] attacked the Polya conjecture for
Problem I and obtained a somewhat weaker set of inequalities, but for arbitrary
bounded domains. They showed that for all k, and for any bounded domain € in R",

k 2/n
47 ( B,,V) .

(7) A""n+2

In fact, they established a result somewhat stronger than (7) by showing that

® é gn+2 Z(B]:V)Z/n'

Then (7) is a direct consequence of (8) which we get by replacing all the A, in the left
side of (8) by A,. With the aid of (7) it is possible to obtain a one-sided set of
inequalities for Problem III. Using (6) we see at once that for arbitrary bounded
domains in R",

©) Y= ( +2)l6” (B]:V)w

The results of Li and Yau have been extended by Levine and Protter [11] to certain
higher order equations and to classes of elliptic systems. The inequalities we obtain for
Problem III are

nk
n+

k )4/n

k
(10) Z vV, =
Jj=1 n

4
416'rr (

In particular, if all the », are replaced by », in (10), we get the weaker inequality

4/n
) n o Kk
(11) ng—n+4167r (B,,V)
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which is stronger than (9), the one implied by Li and Yau. However, it is still weaker
than the analogue of the Polya conjecture. In that case we would replace n/(n+4) by 1
in (11).

For the elliptic system describing the elastic vibration of a domain in R?, ie.,
Problem IV, Pleijel [19] obtained an asymptotic formula for the eigenvalues which takes
the form

62 2/3
T

[2+@+A/m) "

2/3
(12) o)~ It (I_/) as k— oo.

It is natural to extend the Polya conjecture to this system and expect that for all %,

2/3 23
%)

67

[2+(2+>\/p)‘3/2]

(13) O =M

Levine and Protter [11] show that

k 2,.\2/3
¥ o= %525

vV

for all k, from which the inequality

27.\2/3
(19) OkgSp.(Zvr k)

EAUZ

follows. While (14) is much weaker than (13), it is the first such one-sided lower bound
known which is valid for all the eigenvalues of the elasticity system.

3. Universal inequalities. It is clear that the problem of Kac is not going to be
solved merely by a consideration of the asymptotic behavior of the eigenvalues, as
discussed in §2. Two sets of eigenvalues may be identical except for the first few, and
thus an examination of the asymptotics would in no way distinguish between the sets.
Of course, it may turn out that if two sets of eigenvalues X),X,,---,N,,--- and
N, N3, -, N;, - -+ are identical for all sufficiently large k, then the sets themselves
must be the same. If that turns out to be correct, then it may be possible to identify
domains solely by the asymptotic behavior of the eigenvalues of the Laplacian.

Let & be the set of all increasing sequences of nonnegative numbers which tend to
infinity and let 4 be a given elliptic operator. An inverse problem, one which is
probably more important than the problem considered by Kac, was raised by Stewart-
son and Waechter [27] although they only mention the problem in passing. The
question we raise is that of identifying those sequences in % which correspond to
spectra of A for some domain. That the subset of % is severely restricted is clear from
the formulas of Weyl, Pleijel, and others. In this section we establish a class of universal
inequalities which sharply restrict further those sequences which are spectral.

The initial result in this direction is due to Payne, Polya, and Weinberger [17].
They show that for any region in R?, the eigenvalues for Problem I satisfy the
inequality

1 k
T LA\, =23k fork=1,2,---.
>‘k+1_}‘k ,El ’

(1)
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In fact, the simple (and weaker) inequality
() Aer1S30;

is obtained by replacing all the A; by A, in the left side of (1). One of the most
interesting features of (1) and (2) is that the inequalities are independent of the size or
shape of the domain. Also, the result is valid for all k. Thus no sequence in & with the
property, say, that one number in the sequence is more than three times its immediate
predecessor, can be in the spectrum of a domain in R2,

The result (1) has an immediate extension to domains in R". The appropriate
inequality is

(3) Ak+1 Ak ZA1—4 ’ k=1’27".,
which yields the result

n+4
(4) )\k+1§TAk'

We note that as the dimension increases, the eigenvalues get closer together. In terms of
vibrating drums we may interpret this statement by saying that the overtones for high
dimensional drums are more difficult to distinguish than those for low dimensional
drums.

Inequality (3) has been sharpened and improved by Hile and Protter [7]. For any
domain in R", the eigenvalues of Problem I satisfy the inequality

nk
5 =—, k=1,2,---
( ) g }‘k+ 1 )\ 4
We note that (5) reduces to (3) if all the A; in the denominator of the left side of (5) are
replaced by A,. Hence (3) is weaker than (5) for all k=2. Corresponding to (4), the

inequality (5) yields the sequence of inequalities
}‘k+1 éc(n’k)}‘k’

where the c(n,k) are obtained from (5) by solving a polynomial equation of degree k.
For all k=2, the number c(n,k) is strictly less than (n+4)/n.

Payne, Polya, and Weinberger established a set of universal inequalities for Prob-
lem III [17]. The result in this case is

© 1

Vi+1 Vi ;=

k
8

IIV

for domains in R2 Using the technique developed in [7], Hile and Yeh [8] extended
and improved (6) to obtain

k b, 21,32 [ k —172
‘/_T nk ( Z Vi)

7 =
@) 21 Ve~ 8(n+2)
for domains in R”. Inequality (7) is stronger than (6) for all k=2.

It is interesting that no universal inequalities such as (3), (5) or (6), (7) have been
obtained for Problem II. The technique used in [7], [8], and [17] just does not seem to
work, although it is most likely that some type of universal inequalities exist for the
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Neumann problem (perhaps involving both A; and p,) for the Laplacian, ie., for
Problem II. The situation for systems as exemplified by Problem IV is even murkier,
and it may well be the case that universal inequalities for the eigenvalues of elliptic
systems are not to be found.

The results of Hile and Yeh have recently been extended by Zu-chi Chen [3] to
yield universal inequalities for the eigenvalues of a subclass of equations of the form

A"y—Tu=0
with the boundary conditions
du 0m 1y
U= == anm_l—O.
The result is
Fi1/2m 2 @m=1)/2m

k
(8) Zl Fk+1—Fi'>‘=8m(4m+n—2)

i=

k 1-2m)/2m

Ei
i=1

valid for certain values of m. It has recently been shown by S. Hook (unpublished) that

(8) holds for all values of m, and that a similar inequality holds for the operator A?

where p is any integer greater than 1. In fact, these turn out to be special cases of a

somewhat stronger inequality valid for a class of higher order operators of which the

powers of the Laplacian are special cases.

4. Bounds for the lowest eigenvalue. The quality of the sound of a drum is
influenced most by the fundamental tone. Similarly, the vibration as well as the
buckling properties of a clamped plate are determined largely by the first eigenvalue
and its corresponding eigenfunction. We can obtain approximate values of the eigenval-
ues of Problem I most easily by means of the variational definition of the spectrum. Let
Z be the class of functions which are continuous in a domain €, vanish on 99, and
have piecewise continuous first derivatives. Then A; of Problem I is defined by the
solution of the minimization problem

2
d
1) A= inf f"lv#.
VEF fﬂ 1) dx
If uy,uy,- - -, u,_, are the eigenfunctions corresponding to A;,A,,- - -, A,_,, then Ay is
defined by

2
(2) >\k =inf M
v fouldx

where the infimum is taken over all functions v in % which are orthogonal (in L,(2))
to uy, Uy, - -, u,_,. We find upper bounds for A, simply by inserting any function of #
in the right side of (1), which is known as the Rayleigh quotient. The well-known
Rayleigh—Ritz method for approximating eigenvalues is based on this fact. As is
evident from the variational definition of A; as a minimum problem, lower bounds for
A; are difficult to find. Let P=(P,,P,, - -, P,) be any vector field defined in £ such
that P,(x,,---, x,) is continuous in x and C! in the variable x;. Hersch [6] and Protter
[23] at about the same time showed that A, may be estimated from below by the
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inequality

. . 2
(3) >\1__>__xlgf;2(d1VP—|P| )

where |P| denotes the Euclidean norm of P. It is important to note that no boundary
conditions are imposed on the function P.

From (1) it is not difficult to see that the first eigenvalue for Problem I satisfies an
inclusion principle, i.e., if @, CQ, then A, for &, must be larger than (or equal to) A,
for 2,. In fact, this principle can be used to compare all the eigenvalues of the
spectrum of @, with the corresponding ones for 2,. Our experience tells us that larger
drums have lower fundamental tones than smaller ones. It is natural to ask whether or
not the fundamental tone tends to zero as the area of the drum (or the volume if n>2)
tends to infinity. The simple case of a rectangular drum shows that the magnitude of A,
is not directly related to the area of a drum. If the length of a rectangular drum is 7a
and its width is #b, then A,=1/a%+1/b% For sufficiently small values of a and
sufficiently large values of b, the area of the drum can be made arbitrarily large while
the value of A; also is arbitrarily large. On the other hand, for circular drums, A,—0Oas
the radius of the drum tends to infinity. Polya conjectured that in order for a drum of
any shape to have a low fundamental tone the shape must be such that it contains in its
interior a large circular drum. The first step in establishing this conjecture was made by
Hersch [6] who used (3) to show that for convex drums @ in R2, the inequality

(4) Az—

holds, where p is the radius of the largest inscribed disk in ©. Inequality (4) is of great
interest since it shows that no matter how large the area of a domain may be, the
fundamental tone will be very high if the shape is such that only a very small disk can
be fitted into the region.

It is not difficult to show that (4) also holds for domains in R”, n>3, with p the
radius of the largest inscribed n-dimensional ball. The inequality (4) is sharp in R2
since equality holds for an infinite strip. For compact convex domains in R", a stronger
inequality can be established. Let d be the supremum of the distance between any two
points of Q. Then the inequality

72(1 n-1
A@T(F a2 )

holds [24], a clear improvement of (4) for any bounded convex domain.
It turns out that the Polya conjecture is valid for general domains. By an ingenious
method, Hayman [5] showed that for any domain in R? with a reasonable boundary,

A= 1 .
900 p?

He also obtained an inequality of the form
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for domains in R", n>2, but in the higher dimensional case, he required certain
restrictions on the boundary of the domain. Moreover, the constant ¢; has not been
evaluated. Since Hayman’s breakthrough, improvements in the constant in R? have
been made. Osserman [16] showed that for n=2,
1
7\1 = —2“ .
4p
Also, estimates have been obtained for multiply-connected domains of finite connectiv-
ity. Both Osserman and Taylor [28] have lower bounds for A, in terms of p and the
connectivity of the domain.

5. Isospectral domains. It is natural to ask whether the Polya inequality

2/n
(1) Ak§4772(BkI/) s k=172""

is valid for any domains other than tiling domains. Since there are very few shapes for
which the eigenvalues of any of the Problems I-IV are known explicitly, the verification
or contradiction of (1) is a formidable problem. However, in 1980, Bérard [1] found a
large class of nontiling domains for which he was able to calculate explicitly all the
eigenvalues for Problems I and II. He discovered, indeed, that in all cases (1) holds.
Then Bérard and Besson [2] found additional classes of domains for which they were
able to verify (1). Using the work of Bérard and Besson, Urakawa [29] exhibited
bounded domains in R”, n=4, which are isospectral with respect to both Problems I
and II and which are not isometric. We see that the question originally posed by
Bochner has a negative answer in all dimensions greater than three.

To describe the domains found by Bérard, Besson, and Urakawa we first introduce
a root system in R" and define the Weyl reflection group. Let a;,a,," - -, a, beaset S
of vectors which spans R" and does not contain the zero vector. Let Hy, H,,- - -, H, be
a set H of hyperplanes, each passing through the origin and such that H; is orthogonal
to a;, i=1,2,---, p. We introduce transformations T3, T;,- -+, T, in R" such that T;
reflects each point in R” in the hyperplane H,. Thus T; leaves H, fixed. We assume that
the set { @;} has the following two properties:

D) 2Aepa)/(e,e)€EZ, i,j=1,2,---, p, where (a,p) is the Euclidean inner
product of the vectors a, 8, and

(ii)) each transformation 7; leaves the set H invariant.

Any set S satisfying (i) and (ii) is called a root system.

The simplest example of a root system is the set of coordinate unit vectors in R”
and their negatives. Conditions (i) and (ii) are severe restrictions on root systems and
for each n there are only finitely many. For example, in R? there are only four possible
root systems. One such consists of the eight vectors +i, +j, +(i+j), £(i—j) where i
and j are unit coordinate vectors; another consists of the vectors +i, +(i+v3). The
only other root system in R? (except for the coordinate vectors) contains 12 vectors.

The hyperplanes H,,- - -, H, divide R" into disjoint polyhedral cones, each with a
vertex at the origin. These are called Weyl chambers. The hyperplanes { H;} may be
written in coordinates as solutions of the equation «;-x=0 for x€R". Thus the
hyperplanes a,-x=k with k€Z form a system of hyperplanes parallel to those in H.
The totality of such planes divides R” into a set of bounded polyhedral regions. Among
this set we distinguish those which have the origin for one of its vertices. Such
polyhedrons are called alcoves.
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Bérard and Besson [2] found explicit expressions for the eigenvalues of Problems I
and II for alcoves, and they verified that the Polya inequality for tiling domains is also
valid for alcoves. They also found explicit expressions for all the eigenvalues of those
domains in S$"~! (the unit sphere in R") cut off by Weyl chambers. Here again the
Polya inequality was verified.

Urakawa [29] considered the following type of region. Let B(0,¢) and B(0,1) be
balls in R” with center at the origin and radius e <1 and 1, respectively. Denote by U
the portion of a Weyl chamber contained in the annulus B(0,1)/B(0, ¢). Then using the
results of Bérard and Besson, Urakawa found for n>4 two such regions, U and U’,
which are isospectral with respect to Problems I and II but which are not isometric.
Urakawa accomplished this task by finding explicit expressions for the eigenvalues of
U and U’ and then using properties of Lie algebras to show that the two domains are
not isometric. As Urakawa points out, not only is the problem for n=2 and 3 still
open, but the fact that domains such as U and U’ have sharp edges leaves unsolved the
question of whether or not smooth isospectral domains are always isometric. This is not
merely a technical point, as in dimension 2 Kac shows that domains with corners have
asymptotic eigenvalue expansions which differ sharply from those without corners. The
appearance of cusps introduces other changes as Stewartson and Waechter [27] show.
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