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Apodization theory is concerned with the determination of the distribution of light over the exit pupil
of an optical system required in order to achieve a suppression of the side lobes of the diffraction pattern.
Here analytic solutions are given to the problem of determining the distribution of light in the exit pupil
to concentrate maximally the illuminance in a geometrically similar region of the image plane. Both slit

and circular apertures are treated.

1. INTRODUCTION

PODIZATION theory is concerned with the de-
termination of the distribution of light over the
exit pupil of an optical syvstem required in order to
achieve a desired distribution of illuminance over a
given plane in the image field. Most often the goal is
suppression of the side lobes of the diffraction pattern.
A comprehensive review of the uses of apodization and
of research in this area has recently been given by
Jacquinot and Roizen-Dozzier.!

Two apodization problems that have received con-
siderable attention are: (a) the determination of that
amplitude distribution across a long rectangular (slit)
aperture which maximizes the fraction of the total
illuminance that lies within a parallel rectangle of given
width in the image plane; (b) the determination of that
amplitude distribution over a circular pupil which
maximizes the fraction of the total illuminance that lies
in a prescribed circle in the image plane. This latter
problem was considered as early as 1935 by Straubel 2
Anintegral-equationformulation was given by Luneberg?
in 1944. More recently, Lansraux and Boivin* discussed
problem (b) in considerable detail and, by making use
of polynomial expansions of the pupil amplitude dis-
tribution, were able to present extensive approximate
numerical results. Barakat,® using different approxi-
mation techniques, gave numerical data for both (a)
and (b). Additional references to earlier work on these
apodization problems can be found in the papers and
the review article! already cited.

In the present paper, we present complete analytic
solutions to both problems and provide some numerical
detail. Our task is largely one of transcribing results
from other disciplines into optical terms, for the mathe-
matical problems behind (a) and (b) have received ex-
tensive treatment elsewhere. We quote freely from this
nonoptical literature as needed.

P, ]az%uinot and B. Roizen-Dossier in Progress in Optics,
E. Wolf, ed. (North-Holland Publishing Co., Amsterdam, 1964),
Vol. I, p. 31.

*R. Straubel, Picter Zeeman. Verhandelingen op 25 Mei 1935
Aangeboden aan Prof. Dr. P. Zeeman (Martinus Nijhoff, The
Hague, Netherlands, 1935), p. 302.

*R. K. Luneberg, Mathematical Theory of Optics (University
of California Press, Berkeley, California, 196:1), p. 353.

4 G. Lansraux and G. Boivin, Can. J. Phys. 39, 158 (1961).

¢ R. Barakat, J. Opt. Soc, Am. 52, 264 (1962).

2. MATHEMATICAL PROBLEM

Let x'= (a1,x2") be the radius vector in the plane of
the exit pupil from the optical axis to an arbitrary point
in that plane; let £ be the radius vector in the image
plane from the optical axis to a point in the image. Then.
under the usual physical assumptions,® the light ampli-
tude 4’(¥'; in the image plane is proportional to

/ etk - (X')d.\‘]'d.\‘g',
< ox! Sa

where T is the light amplitude in the circular exit pupi
of radius a. Here F is the wavenumber (27 ‘wavelength
of the light and p is the distance from the pupil to the
image plane. Following Jacquinot and Roizen-Dossier.
we introduce normalized coordinates and amplitude
functions

= (ak/mp)¥’,
A =:1"(¥),

and write

A(8) = / [ it 2T (x)dxd s, (2
. !x‘S?‘

x=(1.2a)x’, 0
Tx)=T'(x"),

Apodization problem (b) then requires finding the
function 7'(x) for which the ratio

([ oo/
1<,
f / |A(0) |2dEdts ()

p= (ak/mp)b (4

is a normalized measure of the radius b of the circle in
which the iltuminance is to be maximally concentrated.
The circle is centered on the optical axis.

This problem differs only in notation from a speciul
case of a more general problem treated in a recent
publication® by the author. To facilitate adaptation to
the apodization problems of results obtained there, wt
establish the notation of that paper. Let points in

is a maximum. Here

¢ . Slepian, Bell System Tech. J. 43, 3009 (1964).
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Euclidean space of D dimensions Ep be denoted by
vectors x= (x3,x2,---,2p). Let two square-integrable
functions f and F be related by

J)= (2r)-? f e* 1 (y)dy,

R

-~ ®

where R is the unit sphere 3_y2<1, x-y=3 x;y; is the
usual scalar product and we write dy for TIdy;. What is
the maximum value of

A= f sl [ e ©)

for all f of the form (5)? Here C is the sphere |x| <¢
of radius ¢>0.

It is easy to show® that this maximum is Ao, the
largest eigenvalue of the integral équation

A(x) = / Ko(x=y)(y)dy %

with kernel

c\D
Kp(x—y)= (7—> / i (x93, ®)
2 R

This largest eigenvalue is nondegenerate. Denote the
corresponding eigenfunction by ¢ ¢(x). Then the function
/ (unique up to a constant factor) of form (3) for which
i6) achieves the maximum value X, is given by (5) with
F(yY=yu(y). ¥o can be chosen to be real.

Equation (8) suggests consideration of the simpler
“square root” equation

b (x)= / eiex 7y (y)dy. @
R

The complete sets of eigenfunctions of (7) and (9) are
indeed identical® and

A= (¢/27)P | (10)

Note that K p, and hence A, ¢, and « all depend on c.
We have suppressed this dependence in our notation.
All quantities, of course, depend also on D.

The solutions of (9), initially defined only for xeR,
can be extended by the right-hand side of (9) to all of
Lp. These extended functions can be normalized to
possess the interesting double-orthogonality property

f \b,,.(x)n/x,.(x)dx=6,,.,,=)\,. / Yu (Y. (x)dx.  (11)
R Ep

Other properties of the solutions are given in later
sections. Here we note that with D=2, the apodization
problem (b) is solved by choosing the normalized pupil
amplitude density

T(x)=y(2x) (12)
with
c=kab p=mp. (13)
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Comparison of (9) and (2) shows that the corresponding
optimal, normalized, light amplitude distribution in the
image plane is

AQ=/PWL@/DE]. 1)

Precisely the same formalism with D=1 gives solu-
tion of the slit apodization problem (a). Here the vector
¥’ of (1) measures distance across the slit of total width
2a, and x’ measures distance along a parallel direction
in the image plane. The illuminance is maximized in the
plane within a rectangle of width 2b centered on the
optical axis and parallel to the slit pupil.

Following Jacquinot and Roizen-Dossier,! we normal-
ize the solution so that 7'(0) =y (0) = 1. Their measures
of apodization’ can now be written

e(p) =X, (15)
and for D=1

I(O) (!r;": 7l')\o T

——=—, —=L, (16)
I()(O) 4 2: To :

while for D=2

I0) ai Iy = 1
=—=—, —=-, (17

]0(0)— ™ 2 n,oT

with
N= f ¢()2 (x)d.‘:. (18)
2 <1

Here ¢, the “encircled energy factor,” is the fraction of
the energy in the diffraction pattern lying within the
region |¢'| <b. The quantity I(0)/1,(0) is the ratio of
the intensity at the center of the apodized diffraction
pattern to the intensity at the center of the pattern that
would result with uniform illumination without apodi-
zation (I'=1). The quantity 7/7, is the ratio of the
energy in the apodized diffraction pattern to that ob-
tained without apodization.

3. SLIT APERTURE. D=1
When D=1, Eqgs. (7) and (8) become
Psine(x—y)

—v()dy. (19)
—1 1I'(~U—“y) (y Y

M (x) =

This equation has applications in many fields and has
been studied intensively in recent years by workers in
communication theory.®? In this connection it was
noted at least as early as 1954' that its solutions are
the prolate spheroidal wavefunctions''=3 of zero order.

7 P. Jacquinot and B. Roizen-Dossier in Progress in Opiics 111
edited by E. Wolf (North Holland Publishing Co., Amsterdam,
1964), pp. 47, 78.

¢ D. Slepian and H. O. Pollak, Bell System Tech. ]. 40, 43

1961).
( 9 H. J. Landau and H. O. Pollak, Bell System Tech. J. 40, 65
(1961); 41, 1295 (1962).
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Applications to lasers were given by Boyd and Gordon
in 1961.% Details concerning the behavior of the \ and
¥ for large ¢ have been given recently by the author.!®
We quote freely from this literature, translating by
means of (12), (13), (14) where necessary. Superscripts
just before equations indicate footnotes with references
giving more detail about the equations.

The eigenfunctions of (19) are also the continuous
solutions of 82

d ay
— (1= a%)—+ (x— =0 (20)
dx dx
that remain bounded at x==1. The solution ¢, of this
equation belonging to the smallest eigenvalue x is the
eigenfunction of (19) belonging to the largest value of
2B

From (20), various series expansions for y,(x) can be
constructed. If ¢ is not too large (say ¢<10), g can be
conveniently computed from expansions in either
Legendre polynomials P, (x),1

wo(x>=i; d,(0)P, (x) 1)

for |x| <1, or in terms of spherical Bessel functions2

\00(:\0:]\' Z (17((/)_].,(6):.) (22)
=}

valid for all x. The d’s satisly a three-term recurrence

and can be calculated with great accuracy using the

method of Bouwkamp, as explained for example in

Flammer.”2 In terms of these coefficients,!?

2 o (—=1)i727\ T

Nom —d? / [z , < )dz,], (23)
s =0 2%\ §
o dyf?

N=2% . (24)
=0 4741

Tables of the d’s for small values of ¢ are available,12:13
For very small values of ¢,'6

No= 2/m)[1—(¢/9)+0(c)], (25)
while for ve‘ry large ¢,
1—-xo=4(mc)le 21— (3/320)+0(c?)].  (26)

D). Slepian, IRE Trans. PGIT-3, 68 (1954).
! J. Menxner and F. W. Schiifke, Mathieusche Funkiionen und
Sphdroidfunktionen (Springer-Verlag, Berlin, 1954).
1 C. Flammer, Spheroidal Wave Functions (Stanford University
Press, Stanford, California, 1957).
P “J J.Ct:r S::gttgr;,, Posidal };'{,orse,FL. J. Chu, J. D. C, Little, and
. ] , Spher ave Functi i
Inc., New York, 1956), ons (John Wiley & Sons,

(];‘6(1;). D. Boyd and J. P. Gordon, Bell System Tech, . 40, 489

D, Slepian, J. Math, Phys. (MIT) 44, 99 (1965).
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The lead term of this expansion was first found by
Fuchs.!®

The eigenfunction ¢ ¢(x) is even in x. When normalized
so that ¢o(0)=1, it approaches unity for each x as ¢
approaches zero. For |x| <1, we have for small ¢'®

Vo) =1+ (c2/18) (1—3x2)+0(c*). 27

For large ¢, the behavior is more complicated!®:
- —c.rz/2’ Osxsc—i

VZemeeeti—it

, ci<eLt— ¢!

(=Lt (=) '

) 2(em)tecl [c(1—a)t], 1—-c'<a<1
) ey T L (=104, 1<x<14(1/0)

e~ cos[c(x2—1)t—} arctan (22— 1)} —x /1]
a(a®—1)t

L 1+ (1/0)<x (28

’

where Jo is the usual Bessel function and o(u) = Jo (1)
is the modified Bessel function. Higher-order terms in
this asymptotic expansion are available.!?

For the normalization constant N of (18), we have'”
N=240(c*) for small ¢ and N~ (/) [1+0(c?)] for
large ¢. For the measures (15)-(16) of apodization,
then, we have for small p

e(p)=2p[1— (#*/9)p*+0(s") ],

1(0)/To(0)=1— (*/9)p*+0(p*), (29)
7'/"'0= 1+0(P4)1
and for large p
e(p)~1—dmple [ 14+0(7")],
1(0)/1o(0)~ (1/2p)— (2me=>7#/p)[14+0(")], (30,

7/70~ (1/209[140(7) 1.

4. THE CIRCULAR APERTURE. D=2

Equation (9) with D=2 has applications in the
theory of confocal lasers.)™ Its solutions may be useful
in optical applications other than apodization problem
(b), for, as ¢— 0, the radial component of the eigen-
functions reduces to the Zernike polynomials® of use in
the diffraction theory of aberrations.

18 W. Fuchs, J. Math. Anal. Appl. 9, 317 (1964).

17 A, G. Fox and Tingye Li, Bell System Tech. J. 40, 453 (1961).

18 ], C. Heurtley in Proc. Symposium on Quasi-Optics (Poly-
technic Press, Brooklyn, New York, 1964), p. 367.

¥ H. Kogelnik, in Advances in Lasers, A. K. Levine, ed. (Dekker
Publishers, New York, 1965).

2 M., Born and E. Woll, Principles of Optics (Pergamon Press,
London, 1959).
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With D=2, the eigenfunctions of (7) and (9) can be
written in the form?®

Yo.n(X1,22) = Ry (1), a0,»= 2By »,

cos V@
‘pN,n(xth):RN.ﬂ(f) A aN.n=27|'ﬂN,n, (31)
sinVé, -
N=12--- n=0172

IR R R

where 7= (x®+2)} and 6=arctanx,/x, are polar co-
ordinates and®

1
By wRyu(r)= / In(err )Ry o (r')r'dr’,
Jo (32)
nN=012...

This integral equation which determines the radial
fuctor of ¥ (x) can be written in the more symmetric

forms$
1
'yN,,,<p‘v,,,(r)=/ Inlerr’)(err'Von o (r)dr', (33)
[
where$
"YN.n:C}BAV,n,

(FN,n(r) =riR.V.n(r)'

(34)

The functions ¢y .(r) just introduced are calleds
generalized prolate spheroidal functions. They are the
continuous solutions of the differential equation®-8

1__ 2
1}

d de
—(1—r2>~+(
dr dr

—£2r2+x)<p=0 (33)

72
thut remain bounded at =0 and r=1. Such solutions
exist only for certain discrete values of x. The smallest
cigenvalue, say xo,0, occurs when N=0 in (35). The
corresponding eigenfunction, ¢o(r), gives rise through
(31) and (34) to the eigenfunction g o (xty,xs) = wo,0(r)/r
of (7), for D=2 having the largest value of \.

If ¢ is not too large (say ¢<10), y..(r) can be con-

veniently computed for 0<7<1 by an expansion of the
form®
on (=2 d;¥ " () Ty ;(r), (36)
=0

where®

n+.V\ ! ’
TN.n()’):( ) PYHP YO (12 (37)
n

and P, @8 (x) is a Jacobi polynomial® An alternative
expansion valid for all r>0 is®

1 « T ny2;
oxa(r)= de~-~<s>—1ff2—_“—(ci (38)
‘YN,nj"O L\‘+]
(" e
¥)

The d;¥-» satisfy a three-term recurrence and can be

2 G. Szegs, Orthogonal Polynomials (Am. Math. Soc. Collo-
quium Publications, Vol. XXTII, New York, 1939), Chap. V.
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calculated with great accuracy using the method of
Bouwkamp.”” In terms of these d’s,®

ap,0= Wdooo/z djm (39)
j

and from (10)
Noo= {¢/ 21 Yap, .
The normalization constant ¥ of (18) is given by
N=rY Wﬁ)z/ [E 4]
=0 2541 =
For small values of ¢,
@o,0=7[1— (¢*/16)+0(ch)],
Ao.o= (/41— (¢*/8)+0(ch)],
N=n[1—-(c/8)+0(c"],
while for large values of this parameter®
0,0~ (2r/c){1—dmee [ 14-0(c1) ]},
1—=No,0~8mce 2 [14-0(c1)],
N~ (x/cH[140()].

For the eigenfunction of interest to us here, we have
for small ¢ and 0<r< 18

Yo.0=1—(c*r*/8)+0(c¥.

For large ¢, the behavior is more complicated's:

(40)

(41)

(#2)

(13)

(H)
(et 0<r< o
De—cgeti—rt)i
(1=r1+1=r)]
2T [c(1—m)F], 1—-c1<r<1
B(ro)te Ty c(t—1)F], 1<r<14ct
de7° cos[ ¢c(r*—1)i—arctan(rr— 1) —~7x/4]

(r—1%

<Lt~

‘l/o,o(’)“’

2

14-c1<r.

(3)

This formula shows that the asymptotic approximation
proposed by Lansraux and Boivin,' namely, o 0(r)
~ec”2 0<r<1, is accurate near the optical axis.
For large values of ¢, however, it becomes inaccurate at
the edge of the pupil. For their approximation, we have
¥o.0(1)/¥0,0(0)~e~2, while from (31) the true asymp-
totic behavior is ¥g,0(1)/¥0,0(0)~ 2} (wc)te—2. Likewise,
the illuminance of the diffraction pattern at the edge of
the circle of maximum illuminance is much smaller than
that given by their approximation.

Equations (42) and (43) give for the measures (15)

and (17) of apodization
e(o)= (n*0/H)[1+0(e" ],
1(0)/To=1— (x*p*/8)+0(p"),
7/70=1—(n0*/8)+0(p",

(46)
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Fie. 1. Relative illuminance of difraction pattern for
apodized slit aperture.

valid for small p, while for large p we find
e(p)=1=8re27s[1+0(p™)) 7,

T0) To= (4 =pD— (32 pYe [ 14-0(p .
7 To=(1 (wp 1007,

—~
i
~1

—r

5. NUMERICAL RESULTS

The illuminance (¢ in the diffraction pattern is pro-
portional to  4(£) % On Fig. 1 the relative intensity
I(%).1(0) is shown for the slit aperture for four dif-

109 -
1010 §.
10-4 -
I
i
f
to~-12 o 5
~ |
~ EXS :
10713 ] ) ! e
0 [ 2 3 a 5 3 = &

I'16. 2. Upper bound on relative Hluminance of diffraction
pattern for apodized slit aperture.
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TasLr L Measures of apodization for the slit aperture.

» e(p) 10/ T(0) /10
0.5 0.783369 0.783369 0.793310
1.0 0.981046 0.490523 0.548608
1.5 0.998892 0.332964 0.430275
2.0 0.999943 0.249986 0.366433
2.5 0.999997 0.199999 0.324983
3.0 1.00000 0.166667 0.295143
5.0 1.00000 0.100000 0.226460

ferent degrees of apodization corresponding to p=1, 2
3, and 3. The curve labelled I, is a plot of (sinw&)? (r&).
the relative illuminance in the diffraction pattern for :
uniformly illuminated slit (p=0). The plot shows the
relative illuminance of the central peak of the diffraction,
pattern plotted on a linear scale given at the left margin,
while the side lobes, or lines, are plotted on a logarithmic
scale given at the right margin.

The linear scale does not exhibit clearly the long. very
low tails of the center lobe of the difiraction pattern for
the larger values of p. Figure 2 shows the relative il
minance of this central lobe on « logarithmic scale. The
more nearly horizontal section of each curve is an en.
velope passed through the maxima of the side lobes and
extended horizontally from the first side lobe until it
intersects the main lobe. Dots indicate the positions of
these maxima. The curve labelled p=2. for example.
gives an upper bound to the relative illuminance to be
found in the diffraction pattern when the slit is Apo-
dized to concentrate the pattern within a rectangle of
half-width p=2. The bound is achieved ul] along th:
rapidly falling portions of the curve and by the side
lobes at the dots on the slowly falling curve.

Table T gives values of the measures of apodization
(13}-(18) for a number of p values.

There are relatively few results in the literature to com-
pare with the numbers found here. Those given bv
Barakat® for 7'(x) agree rather well with ours for p=1
near x=0, but at the edge of the aperture (x=7
they are 397 larger. The three-term Fourier-series ap-
proximations reported by Jacquinot and Roizen-
Dossier' for the diffraction pattern do not agree well

116, 3. Relative illuminance of difiractior. patterr: for
apodized circular aperture,
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ANALYTIC SOLUTION OF

ik I1. Measures of apodization for the circular aperture,

c=wp elp) 0/ 1,00) /7o
1.0 0.221115 0.884460 0.885609
2.0 0.629630 0.629630 0.642386
3.0 0.887030 0.394245 0.430809
4.0 0.974951 0.243738 0.301964
5.0 0.993342 0.139253 0.229356
7.5 0.999949 0.0711073 0.144308

10.0 1.000000 0.0400000 0.103787

~ith our results. The first side lobes frequently dis-
.2ree by factors of 10 or more.

Figures 3 and 4 and Table II are similar to Figures 1
and 2 and Table I but treat the case of a circular aper-
ture (D=2). Curves are shown for p=1'r, 3’7, 3 =,
7.5 m, and 10 . The illuminance for uniform illumina-
tion of the aperture 472(x&) (w£)? lies too close to that
for p=1"m to be shown on the figures.

For the cases p=2 'r, 3 ‘7, and 5 =, numerical agree-
mient for Ng and T'(x) was obtained with the results of
~unsraux and Boivin® to all significant figures reported
by these authors.

6. DISCUSSION

Perhaps the most interesting results of the present
investigation are the asymptotic forms (28), (30), (43),
nd (47). Even for relatively small p, say p>2, they
~rovide a reasonably accurate numerical portraval of
‘ne diffraction pattern. Their analvtic form permits a
better qualitative understanding of the results of apo-
dization as well.

For the slit aperture, it is seen from (13}, (14), and
128) that for large p the half-width of the central lobe
of the apodized diffraction pattern is proportional to
i de., 1(8) 1(0) has the value e~ for £= (pay )k
The first zero of the diffraction pattern does not occur
ntil E=p[144 (e ‘wp)?], where a=2.4048 is the Arst
<ero of Jo(x). The central lobe has long small tails whose
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Fic. 4. Upper bound on relative illuminance of diffraction
pattern for apodized circular aperture.

length becomes a larger fraction of the lobe as p is in-
creased. At £=p, the relative intensity has been reduced
to 7 (p) I(0)=4r%pe***, and bevond the first few fringes
the pattern remains small and falls off slowly with ¢ as
I(&) T{0v~2p[1(p). I10)](sinw)* (w£)% Roughly, then,
apodization by an amount p increases the width of the
central lobe in proportion to the square root of p: The
illuminance outside the central lobe is suppressed by a
factor exponentially small in p.

The general behavior of the diffraction pattern for the
apodized circular aperture is similar. Details can be had
from (435, (13), and (14). The half-width of the central
lobe and the first zero of the diffraction pattern are as
before. We now find 7(p) 7(0)=8n%e 2" and for the
outer rings [ (&) I (0)~4xp?[ 1 {p) T(0)](sinz§)? (x&)5.

The asvmptotic forms (30) and (47) allow assessment
of the many compromises that must be made to achieve
this extreme suppression of side lobes.

John Sanderson, NRL, and Archie Ma-
han, OSA Treasurer, at Dallas meeting.




