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polynomial in x and ¢, say q(x, t), that satisfies the heat equation for all x
and all ¢ and for which g(x, 0) = p(x).

(3.20) Prove that for p(x)=x" (n=0,1,2,3,...) the polynomial

[n72] N» R:IN»

Skl (n - 2k)!
is the unique polynomial discussed in (3.19). [The expression [1/2] stands

for the largest integer =n/2.] In particular, vo(x,?)=1, v(x, () =x,
Ua{x, ) = x2+ 21, us(x, ) = x* + 6xr.

U,(x, 1) =n!

(3.21) Define w, as n! times the nth coefficient in the power series
expansion in z of e***" that is, e™***" = n=0Wa(x, }(z"/n"). Prove that
(a) w, is a polynomial in x and ¢, (b) w,(x, 0) = x", (c) w, solves the heat
equation, and (d) w,(x, 1) = u,(x, ) from (3.20).

Remark. The heat polynomial w, described in (3.21) is closely related to
the Hermite polynomial H, discussed in the Miscellaneous Exercises for
QEE@.ﬂ 6. Putting  equal to —1 and replacing x by 2x in the power series
expansion given in (3.21), we obtain

©

(3.22) e F =N w (2, t:mm
n.

n=0

and from (3.21d) we have

[r72] r _ 17 \k n-—
(3.23) wo(2x, 1) =n! > g™

iZo k! (n—2k)!
,3.6 left m_am of O.NNV %m the generating function for the Hermite polyno-
S_m_m,. while the qm:ﬂ side of (3.23) is the explicit expression for the nth
IQAMM:S %o_v\zogm_ H,(x). [See Davis (1975), p. 368.] Thus H,(x)=
w,(2x, ~1).

Part B. Fourier Optics

§4. Fraunhofer Diffraction

qucn:omoq diffraction of light is fundamental in optics. It plays a key role in
imaging with lenses, two important cases being telescopes and microscopes
mn.m::.:oman diffraction also occurs when a crystal diffracts an X-ray vomau
this diffraction opens the way to identifying the underlying crystal m:cn::o..
In terms of Fourier analysis, Fraunhofer diffraction is a physical Fourier
transform operation.

. Since this is not an optics text, we do not have sufficient space for a
rigorous discussion of diffraction. Instead, we will only give an outline
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[similar to the one given in Lipson and Lipson (1981), pp. 163-165] of how
the Fourier transform comes into play. In §85-9, we shall see that this
relationship is amply verified by the quantitative and qualitative description it
gives of actual diffraction patterns. The reader who desires a complete
discussion of the underlying theory of diffraction should consult Goodman
(1968), lTizuka (1985), or Lipson and Lipson (1981).

Suppose that a plane paralle] wave of light, of wavelength 4, is cast upon
an opaque screen in which there is a tiny aperture. Let a lens collect all the
light emerging from the aperture and project it to its focal plane. As shown
in Figure 7.1, the lens takes each bundle of parallel light rays and brings it
to a focus.

Let the optic axis of the lens lie along the z axis and the aperture plane be
the x~y plane located at z =(. Suppose that @ is a point in the aperture
with coordinates (x, y, 0). We will now argue that, because the wave front
emerging from the point % has an amplitude A(x, y), the physical effect of
the shuffling of light rays, shown in Figure 1(b), is to Fourier transform this
amplitude function A(x, y). In Figure 7.2 we show light rays from 0 and &,
each parallel to the unit vector u= (¢, »,»), coming to a focus 2 after
passing through points @), and @, in the lens. By Hamilton's version of
Fermat's principle, light rays always lic normal to wave fronts of equal
phase. Therefore, we shall imagine that the light ray from 2 has instead
emanated from %,, the projection of & onto the plane normal to w and
passing through O (as shown in Figure 7.2). Then the wave fronts along the
rays %,%2 and 00,2 will arrive at 2 in phase. Thus (because the

wavelength is A) N
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Figure 7.1 Focusing of bundles of parallel light rays by a lens. () An enlarged view of (a).
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Figure 7.2 Focusing of two rays parallel to w= (¢, m,»).

where |%,? 2| and |00,2| are the (optical) lengths of the two rays. Since
|PyP,| = €x + my we have the following phase relations
NRNN;:Q&@_B_ = RNN;V_@?«%_NRNNH;E@@_Mw_
4.2) ,
= @I 2EN X tmy) i (LRINPT)
Comparing (4.2) with (4.1) we obtain
AB.MV leh;zgmﬁ@; - NRN}C&SQT@@IZN\A;X«.\«.«.SRV

Thus the wave fronts from 0 and 2 arrive at 2 with amplitudes
A(0, 0) - /@002 and 4(x, y)e MO0 21 ~IETAEx ) respectively. There-
fore, the total amplitude W at 2 is given by the superposition integral

+o

A&.&v Y= m_ﬁitaa_w_\:, \»Ak. v\vmiau;xﬁf‘.i dx &v\

-

Since the screen is opaque outside the aperture, we may assume that
A(x, y)=0 for (x,y) outside the aperture. Hence the integral in (4.4) is
actually taken only over a finite region of the x-y plane.

Introducing the variables

A&.MV RHN\\H Cnuqx\\\,(
we can write (4.4) in the form
(4.6) WY = g GHINONQIUA (y, y)

Experimentally, it is found that when the wave amplitude W is recorded,

+ 00
.\%u:‘im,lmq\yv (e myd ay

e L T et

either photographically or by striking an observation screen, we record only
the intensity / = |¥|*. Hence, from (4.6) we have

4.7 I=|W?=]A(u, v)P

Because of (4.6) and (4.7) we say that the focal plane of the lens is
coincident with the Fourier transform (u-v) plane. The variables u and v
are called the spatial frequencies of the light amplitude emanent from the
aperture.

If we introduce Cartesian coordinates X, Y into the focal plane (with
origin on the optic axis), then we wish to know the relationship between
those coordinates and the spatial frequencies. In the paraxial approximation
[(€, m, n)= (€, m, 1)] the relationship is approximately linear

4.8) X=fe=(fu  Y=fw=(fA

where f is the distance from the lens to the focal plane.” Thus, the greater the
wavelength A the greater the X =Y dimensions of the diffraction pattern
formed by W in the focal plane.

In (4.6) there is a phase factor ¢'®'?%?' that depends upon the point g
in the focal plane. This dependency can be removed by placing the aperturt
plane exactly f units from the lens. In this case, a plane wave emanating ir
paralle! from the focal plane (rays parallel to the optic axis) is focused by
the lens onto the point 0. Conversely, all waves emanating from O arrive a
the focal plane in phase (Fermat's principle). Thus ! RTMNO02 < 12T
where ¢/@*¥ is the phase change along the ray from O to the focal plan
that lies along the optic axis. Thus (4.6) becomes

4.9) W =" A(u, v)
Formula (4.9) shows that the light amplitude ¥ at the focal plane is, excef

for a constant factor, equal to the Fourier transform A of the amplitud
function A of the light emanating from the aperture.

The simplest form for the amplitude function A is

1 if (x, y) is in the aperture

4.10) AW, ) 0 if (x, y) is not in the aperture

This function A corresponds to perfect transmission of the incoming plan
wave (assumed to have constant amplitude 1 and phase e” when it strike
the aperture screen) through the aperture. We will call the function i
(4.10) an aperture function. Other types of amplitude functions w:
correspond to partial absorption and/or partial phase variations introduce
by apertures of varying material compositions.

3. Formula (4.8) is obtained by considering the straight ray AR, 9 parallel to (£, 1) th
passes through the point 9, on the lens that lies on the optic axis.
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(4.11) Remark. Fraunhofer diffraction also occurs without a lens. This
happens when X-rays are diffracted by crystals (or when a narrow laser
beam shines through a small aperture to a screen on the other side of an
optics lab). Roughly speaking, the analysis above will still apply if the light
rays arriving at each point in the observation screen can be considered as
approximately parallel. This is the case with both of the examples
mentioned above (if only a small portion of the observation screen is
viewed). For more details, see the references above, or Hecht and Zajec
(1974).

Exercises

(4.12) Explain why light in the red spectrum is diffracted more than light
in the blue spectrum. (How does this compare with refraction of light?)
Why is white light split into a spectrum of colors by diffraction?

(4.13) Suppose that (4.8) applies throughout the focal plane. Show that
the result of the lens system shown in Figure 7.3 is to produce an inverted
and magnified (reduced) image of the aperture screen. The magnification
(reduction) factor being M = f,/f,.

Object noS_r o_os_m of
screen Lens i mqm Lens 2
1
!
| Observation
ﬁ screen at
) focal plane
| of lens 2
1
7, 4 ! f.
lllumination ! > ‘ - 2

Figure 7.3 Double lens imaging system.

(4.14) In this section we assumed that the lens collects all the light from
the aperture. A more realistic situation is depicted in Figure 7.4, where
P(u, v) =0 for sufficiently large values of u or v. Show that the result of

Aperture Focaf
screen plane

Missing
AP =4 spotial
frequencies, A= 0

S

Wumination @ ' f

Figure 7.4 Diffraction limitation of lens. [Note that this figure requires that we observe only a
portion of the focal plane near the optic axis to see the transform |A|]

CmprprTevee LU s & USesene & aseRUTIeeans -

Object Focal Image
Lens plane plane

Inverted
image

4

2

Figure 7.5 Imaging in gcometrical optics. The lens equation 1/d + 1/D = 1/f holds.

(4.13) must be modified; the image of the aperture has the form P[U, * h,]
where h;, P, and U, are defined in an appropriate way.

(4.15) The classic imaging diagram of geometrical optics is shown in
Figure 7.5. Interpret this figure in terms of Fourier analysis. How does the
more realistic situation in Figure 7.4 affect what is depicted in Figure 7.57

§5. Rectangular Apertures

The simplest apertures for Fourier analysis are the rectangular ones.
Suppose we have a rectangular aperture of width a >0 in the x direction
and height >0 in the y direction, and the aperture is centered at the
origin. [See Figure 7.8(a)]. If we let

N

I iflxi<ia and  |y[\<3b

J

Ay =]

0 otherwise
then by Example Q.@.oY Chapter 6, we have

, m_,:aa:mm:iu:
Alu, v)=———
TTU JU

Therefore, the intensity / = [A|? is given by

() )

(5.1 I{(u, v) nﬁ%@%ﬂmwvwmm:% au sinc? b

The function [ has the graph shown in Figure 7.6. Based on Figure 7.6 we
can predict a diffraction pattern like the one shown in Figure 7.7. 4:08.3@
regions of brightness, marked off by fringes of zero intensity along the lines
u=%1l/a, £2/a, +3/a,..., and v=%x1/b, £2/h, £3/b, ..., that are the
zeroes of sinc®au and sinc® bu. The zone of highest brightness is a lozenge
shaped region centered at the origin with w width 2/a and v height 2/6.
Notice the reciprocal relationship between the dimensions of the rectangular
aperture and the dimensions of the central zone of brightness in the
diffraction pattern, as well as the distances Au = 1/a and Av = 1/b between
the fringes of zero intensity.
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Figure 7.6 Graph of the intensity distribution / for a rectangular aperture. The graph is
obtained by treating 1/(xu)*[1/(7v)?] as an envelope for sin® mau [sin® xbu] and noting that
lim, o sin® waw/(7u)? = a* [lim,_o sin® 7bu/(wv)? = b?],

An actual diffraction pattern is shown in Figure 7.8(b). The reciprocal
relationship between aperture detail and diffraction pattern detail, which we
noted above, will be manifested in all of our examples. Diffraction patterns
are often said to exist in reciprocal space (relative to apertures in real
space).

If b is considerably larger than a then we obtain a vertical slit. Because
the details of the pattern in Figure 7.7 in the v direction are proportional to
1/b, for large b the pattern in Figure 7.7 will be squashed in the v direction.
In Figure 7.9 we have a photograph of the diffraction pattern of a vertical
slit.
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Figure 7.7 Predicted diffraction pattern (negative image) of a rectangular aperture.
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D

(o) (&)

Figure 7.8 (b) An actual diffraction pattern produced by a rectangular aperture similar to tl
one shown in (a). (Photograph courtesy of S. G. Lipson.)

i

T

2 v
a

Figure 7.9 Diffraction pattern for a vertical slit. (Photograph courtesy of §. G. Lipson.)

Exercises

(5.2) Show that the maximum intensity of the diffraction pattern of
rectangular aperture is proportional to the square of the area of th

aperture.

(8.3) Suppose two identical rectangular apertures are separated by
distance d along the x axis, as shown in Figure 7.10. Describe the diffractio
pattern from such an aperture. What happens as d is increased? :

(5.4) Suppose two identical rectangular apertures have their cente
located at (3¢, —1d) and (—ic, id) as shown in Figure 7.11. Describe th
diffraction pattern from such an aperture.

(5.5) Suppose the amplitude function A has the form shown in Figur
7.12. Describe the diffraction pattern from such an aperture and compare
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Figure 7.10  Aperture for Exercise (5.3).
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Figure 7.11 Aperture for Exercise (5.4).
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Figure 7.12 Aperture and aperture function for Exercise (5.5).

\

N

with Figure 7.8(h). Remark, Such an aperture can be made by placing a
sheet of mica over half of a simple rectangular aperture; the mica induces a
90° phase shift of the incoming light wave.

§6. Circular Apertures

Consider a circular aperture of radius a. The aperture function in this case is
a radial function (§7, Chapter 6)

1 f0=sr<a
A L
D=1y itr>a
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where r = (x* + y%)™. Using Theorem (7.15), Chapter 6, we have

6.1) kﬁsnw&ﬁyﬁsxzﬁ
(8]
where p = (u? + v)"2 If we let s = 2mpr, then
. H 2npa
6.2) A) =3 \ sJols) ds
TP Jo

Let’s consider the function H(x) = [§sJy(s) ds for x =0. We have

(6.3) dH /dx = xJo(x) (x=0)

But, by a recurrence relation for Bessel functions {(2.1b), Chapter 10] we

have

(6.3) (d/dx)[xJ,(x)] = xJo(x)  (x=0)

where [see (2.2), Chapter 10]
1 (r . .

\Rk ""l“ m.xm_aeml.s&qv

r

Noting that J, is continuous at x = 0, and has the value 0 there, we conclude
from (6.3) and (6.3") that H(x) = xJ;(x) for x = 0. Therefore, we can rewrite
(6.2) as

=

N>©am$¢

A “m = 2
6.4) A(p) bb@ﬁbmv \..Sﬁ 2mpa

Therefore, the intensity [ is given by

2J,(2mpa)

2
—_ 2 23\1/2
o | o=

(6.5) I(p)= ?ENV%
The function J; has been extensively tabulated® and so the graph of [ is well
known. (See Figure 7.13.) The graph of I can also be sketched using
asymptotic formulas for J; that we shall discuss in Chapter 10.

Figure 7.13(b) gives a nice prediction for the diffraction pattern, as we
can see from Figure 7.14. The rings in the pattern are called Airy’s rings and
the whole pattern is called Airy’s pattern.

Notice that the radius of the central disk, bounded by the zero intensity
(dark) ring at p=3.83/2ma, grows larger with decreasing radius a.
Furthermore, as this radius decreases the location of Airy’s rings (bright and
dark) increases away from the origin. These results illustrate again the
reciprocal relationship between aperture detail and diffraction pattern
(transform) detail.

Airy’s rings are observed when a telescope with too small an aperture
attempts to resolve the image of a distant star. The resulting image is the

4. See Watson (1944), pp. 667-697.
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5.14/2n0
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(o) (6)

Figure 7.13 Diffraction from a circular aperture. (@) Graph of [2/,(x)/x]*. (b) Prediction for
the diffraction pattern.

Figure-7.14 Diffraction pattern from a circular aperturc. (Photograph courtesy of S. G.
Lipson.)
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Figure 7.15  Airy pattern observed in telescopes.

diffraction pattern of the aperture. (See Figure 7.15.) The astronomer Airy
first predicted this ring pattern. Because of the large wavelengths used, this
diffraction is a serious problem encountered with radio telescopes (where
the aperture is the collecting dish).

Exercises

(6.6) Show that the intensity of Airy’s pattern increases with the square of
the area of the circular aperture, and that the position of Airy’s rings
increases inversely to the circumference of the circular aperture.

(6.7) Explain why a circular aperture with a small enough radius will have
a Fraunhofer diffraction pattern consisting only of a disk. [Hint: See (4.11)
and Figure 7.4.] Such an aperture is called a pinhole.

(6.8) How would the Airy patterns differ between light of wavelength
Ay =750 % 10"°m (red light) versus light of A, = 500 x 10~° m (bluish green
light)? Describe the effect of shining white light through circular apertures
of various radii. (This phenomenon occurs in color movies occasionally.)

(6.9) Let the aperture consist of an annular ring with aperture function
ifa<(x*+y?)"<b

1
A ={ .
(x, y) 0 otherwise

Describe the resulting diffraction patterns for a << b and for a close to b.

(6.10) Babinet’s Principle. One aperture is called complementary to a
second aperture if their aperture functions A4;, A, satisfy A, +A,=4,
where Ay is a large circular (or rectangular) aperture function. Show that the
two complementary apertures have identical diffraction patterns, except for a
small region about the origin in the u—-v plane.

§7. Interference

The study of interference is an important area of application of Fourier
analysis in optics. In this section we will treat some simple examples of
interference. The more iniportant cases of diffraction gratings and the array
theorem will be discussed in the next two sections,

Suppose that two circular apertures of radius a are centered at x = +3d on
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the x axis. In this case our aperture function will be (assuming d > 24)
Al y) = A\(x +1d, y) + Ay(x ~ 3d, y)

where A, is the aperture function for a circular aperture that we considered
in the previous section, Using the shift property and linearity we obtain

A, v)=A,(u, v)[em ™ + e™" ) = 2 cos 1w dud (u, v)

hence for the intensity / we have

7.1 I(u, v) =4 cos® wdu |A,(u, v)|* =4 cos® = du L(u, v)

where /, is the intensity for a single circular aperture.

Since 4 cos® 7 du equals 0 when y = +1/(2d), £3/(2d), +5/(2d), ..., we
expect zero intensity along vertical lines in the u—v plane defined by those u
values. In view of (7.1) we expect dark vertical strips, interference fringes, to
overlap the Airy pattern shown in Figure 7.14. (Also, we expect amplifica-
tion along the lines u=0, +1/d, +2/d, ..., where 4cos?rdu has its
maximum value of 4.) In Figure 7.16 we show the diffraction pattern from

two such circular apertures,

For a second example, consider two identical rectangular apertures
positioned as indicated in Figure 7.11. The aperture function in this case is

Al y)=A(x —dc, y + id) + A (x + ic, y —4d)

which was considered in Example (7.6d), Chapter 6. Using the transform

found in that example, we obtain

H(u, v) =4 cos® w(cu ~ dv)I(u, v)

Figure 7.16 A diffraction pattern from
(Photograph courtesy of S. G. Lipson.)

two horizontally separated circular apertures.
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Figure 7.17 Diffraction pattern from two rectangular apertures (here ¢/d = 1), (Photograph
courtesy of S. G. Lipson.)

where [, is the intensity distribution for a single rectangular aperture. The
interference fringes lie along lines given by cu —dv =4k for k= +1, +3,
*5,.... Those dark fringes lic over the diffraction pattern for a single
rectangular aperture at parallel directions with slope c/d, hence perpen-
dicular to the line segment that connects the centers"Qf the two apertures.
Figure 7.17 shows the actual diffraction pattern that resuits in this case.

Exercises

(7.2) Show that interference fringes always occur when an aperture
consists of two identical apertures.

(7.3) Show that the number of interference fringes per unit length in both
the examples for this section is proportional to the distance between the
centers of the apertures.

(7.4) Describe the diffraction pattern of three equally spaced similar
vertical slits. [Hint: Add the transform of the center slit to that of the two
outer ones.] Now do four equally spaced vertical slits.

(7.5) Suppose we have four pinholes [see Exercise (6.7)] arranged in a
parallelogram, that is, the pinholes are placed at (d,, d,), (c;, —c,),
(=di, ~d;), and (-¢,, ¢,) where €, €2, dy, and d, are positive. Describe
the resulting diffraction pattern.

§8. Diffraction Gratings

Diffraction gratings were first constructed by Fraunhofer in the 1830s, They
are an essential tool of modern science.
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Suppose that an aperture consists of a large number, say N, of vertical
slits spaced equally far apart and very close together. Such an aperture is
called a diffraction grating. Diffraction gratings with 100,000 slits have been
constructed. If we assume that the first slit on the left side of the grating is
centered at the origin, then A(x, y) = TN) A4,(x — nd, y) where A, is the
aperture function for a single vertical slit (see the end of §5), and d is the
distance between the central axes of the slits. By the shifting and linearity
properties we have

=t N=1
.%Ata Cv = M \&_Cf CVQ‘LNN«:&: “\w—?ﬁ Cv M HNI.&R&J:
n=0Q n=0
) [ — g=i2nNdu
”\»_Q? .Cv 1- NINNN&:

where we summed a finite geometric series to obtain the last quantity
above. Factoring out e™""“/e~ % from the last fraction above we get

e N sin Nt du

e~ oin g du

A(u, v) =A(u, v)
Hence, the intensity distribution 7 is given by
sin Nwdu

sin® 7t du

8.1) I=1 LS
where 1, is the intensity for a single vertical slit. In Figure 7.18 we have
graphed the function S, called the structure factor for the grating, and its
intensity distribution in the wu-v plane. [Note: S(u)=N - Fy(2n du) where
Fy is Fejér’s kernel.] As an intensity distribution in the u-v plane, S is a
sequence of vertical strips centered along the vertical lines u = 0, t1/d,
+2/d, ..., each strip having a width no greater than 2/Nd and intensity N?
along their central lines. When this sequence of strips is multiplied by /; (see
Figure 7.9) it acts as a mask of amplifiers of power N? and we obtain a
sequence of bright dots centered at u =0, +1/d, +2/d,.... (See Figure
7.19.) In Figure 7.20 we have an actual diffraction pattern resulting from a
grating with a small number of lines (N = 55). As the reader can see, away
from the central vertical axis, the prediction of a sequence of bright dots is
confirmed in Figure 7.20. The slight discrepancy between Figures 7.19 and
7.20 along that central vertical axis is easily explained [see Exercise (8.4)].
Diffraction gratings are primarily used for the production of spectra. If we
shine white light through the diffraction grating considered above, then
because of formula (4.5) we will obtain a spectral decomposition of that
light. From Figure 7.19, we see that the spacing between dots is Au=1/d
hence from (4.5) we have®

®8.2) Al=AAu=21/d

5. We are assuming here that white light is a linear superposition of all its wavelengths and that
passing the light through the grating is a linear process, assumptions that are confirmed in
practice.
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1 Ve | o

v, w=t¥y, =Ty, w=0 0 wsly =¥y u=¥,

Figure 7.18 (a) The graph of S(u) = sin® Nx du/sin® x du is shown. (b) We have graphed the
intensity distribution in the u-v plane that is generated by S(u), ignoring secondary peaks.

le\_ll. |l§T||
)@r - - - - - - - n«%)
f I S I S ,
Qu.m\Q :uL\Q v=0 u=Y, U=,

Figure 7.19 The intensity distribution resulting from a diffraction grating (negative ::mmmv
The width w of each dot is no more than 2/Nd, their height % is no more than 2/b where b is
the height in the y direction of each vertical slit in the grating.
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m.mm_:.n Aq.Nc A grating of 55 narrow lines (the negative of the drawing on top), and its
diffraction pattern (the photograph on the bottom). [Reproduced with permission from Lipson
(1972), p. 358.]

is the angular spacing between the dots. Here we may take ¢ =sin 6 where
8 is the angle of diffracted rays to the optic axis (since » = ( because we
have vertical slits). Comparing (8.2) with the ratios of the wavelengths of
visible light in Table 7.1, we see that (8.2) describes a spreading out
(dispersion) of white light into its spectrum of colors. (See Figure 7.21.)
From Table 7.1 and Figure 7.21 we can see that the second-order spectrum
is longer (greater dispersion) than the first-order spectrum. The third-order
spectrum, which begins at 3A,.,/2d and ends at 3Aweald, actually overlaps
half of the second-order spectrum, which begins at A.4/d and ends at
2Area/d. The third-order spectrum is even more dispersed than the first two
spectra.

Table 7.1 Approximate Wavelengths 4 for the Visible Spectrum
and Their Ratios to A,y =780 X 10" m

Color A(1x107°m) MAeq

Red 780-622 1.-0.797
Orange 622~597 0.797-0.765
Yellow 597-577 0.765-0.739
Green 577-492 0.739-0.631
Blue 492-455 0.631-0.583
Violet 455-390 0.583-0.5
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Figure 7.21 Spectra of white light from a diffraction grating,

Since each dot in Figure 7.19 has a width w, no greater than 2/Nd, there
will be a smearing of the colors in the spectra obtained by diffraction
gratings. However, if Nd is very large, then 2/Nd will be very small and
there will be less smearing (better resolution). In any case, the resolution is
inversely proportional to Nd, the length of the grating. [See Exercise (8.7).]

We assumed above that white light was shined through the grating. The
grating can be used, of course, to disperse the spectra of other kinds of
light. By passing white light through a gas and then observing that light
through a diffraction grating, we obtain spectra characterized by dark
fringes (absorption lines) in the normal spectrum of white light. Depending
on the element(s) composing the gas, certain characteristic absorption lines
appear. Gas absorption spectroscopy is of some use in chemistry. Moreover,
by observing the spectra of starlight, the composition of stars can be
analyzed. The classic example is the discovery of helium in the sun. The
absorption lines in solar light are sometimes called Fraunhofer lines.
Another application is the analysis of the spectra of the. light emitted from
chemical reactions (emission spectra). For all of these applications, the
problem of resolution of spectra is a vital one. [See Bell (1972).]

Exercises

(8.3) Sketch the graph of y = I,S as a function of u when v = (.

(8.4) Explain why there is a vertical strip of dots in the center of the
diffraction pattern in Figure 7.20. Show that if Nd is large enough, then the
dots in Figure 7.19 will actually be thin lines.

(8.5) Show that if the distance d between the vertical slits in a diffraction
grating is equal to 2a (twice the width of each slit) then the second-order
spectrum will be eliminated. Show also that the first-order spectrum is. not
overlapped by any of the higher order spectra. What value should d have so
that the third (nth)-order spectra is eliminated?

(8.6) Let d=8a and let hy, h,, h,, h; stand for the first four highest
maxima of the intensity function / = /,S. Show that

ho=N?a**  h,=0.95N%a*h®>  h,=0.81N%a%*  hy=0.62N%%b>

(8.7) Suppose that light containing two wavelengths 4; < 4, is transmitted
through a diffraction grating. If A, and A, are close together, then their
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C=IN

Figure 7.22 A central peak for I, lying over a first zero for /;. This is known as Rayleigh’s
criterion for the resolution of two spectral lines.

spectral lines [see (8.4)] might smear together. How large does N have to be
in order for a central peak (highest maxima) of L, the intensity function for
42, to lie over a first zero for /,, the intensity function for 4,? [See Figure
7.22] Note: your answer should depend on which spectrum (first, second,
third, etc.) for 4, and 4, is being looked at.

Am.mv Show that resolution by Rayleigh’s criterion [see problem (8.7)] is
easier to obtain the higher the order of the spectrum,

(8.9) In spectroscopy, the second-order spectrum is usually preferred
among all the orders. Can you think of any reasons for this?

§9. The Array Theorem .
We now turn to a beautiful result in optics known as the Array Theorem.
Let ¢ and d be positive constants. Suppose that we have a collection of
M - N identical apertures positioned in a rectangular array at points
(mc, nd) for m=0,1,...,M~1 and n=0,1,...,N~1. (See Figure
7.23.) We assume that ¢ and d are large enough so that none of the
apertures overlaps.

mU
H N gpertures
QHOHUQU e CED

P

(4

—_—

M apertures

Figure 7.23 A rectangular array of identical apertures.
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Letting A; denote the aperture function for a single aperture, and
supposing that the origin in the x—y plane is located in the aperture at the
lower left hand corner of the array, we have

M-1,N-1

Alx,y)= M A(x —me, y —nd)

mn=0

is the aperture function for the whole array. By linearity and shifting, we get

M-I N=-1
\w T« Cvmlua?xn:..r: duv)
1 »

Alu, v)

il

m, n=0
. M-—1 ) N—-1 )
\»_At. CV—H M QI_N..«‘:\:H—% M NIQ.R: «:Q
m=0 n=0

From the result of the discussion of diffraction gratings in the previous
section, we obtain

sin® Mmcu sin® Nzt du
L) ()
sin“ weu  sin“ s du

©.1) I(u, v) = I,(u, v)

Thus the intensity distribution / for the whole array is the product of the
intensity distribution 7 for a single aperture with the function S defined by

sin® Mmcu sin® Nr dv

S, v) = sin® reu  sin® wdv
The function [, is called the form factor and the fupction § is called the
structure factor. "

We see that § is the product of the type of function treated in the
previous section. The factor sin® N dv/sin® w dv has an intensity distribu-
tion consisting of horizontal strips lying along the lines v=0, *1/d,
*2/d, ..., and having intensity N Hence, noting the results of the last
section (especially Figure 7.18), we conclude that the structure factor S has
an intensity distribution in the u-v plane consisting of a rectangular array of
dots of intensity M*N? centered at the intersections of vertical lines at u =0,
+1/c, £2/c, ... and horizontal lines at v =0, £1/d, £2/d, . ... These dots
have u — v dimensions no larger than (2/Mc) x (2/Nd). Between these dots
are spaces of essentially zero intensity (if we ignore secondary maxima in
S).

Thus the intensity distribution / in (9.1) is obtained by overlaying the
intensity distribution for a single aperture by an array of dot amplifiers of
internsity M?N? located at the points (m/c, n/d) for integers m and n. The
larger the values of ¢ and d the closer the dot amplifiers. The array of
amplifiers is called the reciprocal lattice to the array of apertures.

(9.2) Example. Suppose that a square array of 11 x 11 circular apertures
each having radius 0.5 mm is formed by setting ¢ = d = 3 mm. The amplifi-
cation of each dot amplifier will be 11*. These dots will be positioned on a
square array with Au=Av =0.333.... An Airy pattern for one circular
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Figure 7.24 Diffraction pattern of 11 x 11 circular apertures. We have a grainy Airy pattern.
The fine structure between the 9 dots nearest the center is due to secondary maxima in the
structure factor. (Photograph courtesy of S. G. Lipson.)

aperture is overlayed by this square array of dot amplifiers. (See Figure
7.24.)

One important application of the array theorem is in radio astronomy. A
large dish aerial will bring a radio wave to focus on its receiving device;
thus, such an aperture acts like a diffracting circular aperture. By setting up
an array of such dish aerials, the amplification of the array theorem can be
brought into play. According to S. Lipson [see p. 384 of Lipson (1972)},
“the sensitivity of such an array is almost as good as a filled aerial of the
same dimensions.” In other words, by building a large array of dish aerials
we can achieve the equivalent of a gigantic dish aerial covering the area of the
array (and the resolution improves when the dishes in the array are farther
apart). [See Lipson and Lipson (1981), §11.6.]

The array theorem has also been applied in the study of protein
molecules. The Fourier transform of an electron photomicrograph of a
protein might contain high intensity dots lying along a (reciprocal) lattice, a
sure sign that there is an underlying periodic structure in the original
micrograph (that might not be evident due to random interference, called
noise). For an excellent nontechnical discussion, see Unwin and Henderson
(1984). See also Lipson (1972), pp. 401-413.

Exercises

(9.3) Describe the diffraction pattern of an array of 15x 15 square
apertures of dimensions 0.1 mm X 0.1 mm formed by letting ¢ = d = 0.2 mm.
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Lines normai
to (¢, )

Lines normal
to (cz,d5)

(b)
Figure 7.25 A parallclogram array of apcrtures and the intensity pattern for the structure
factor. (a) Parallelogram array. (b) Reciprocal lattice.

(9.4) Show that the fine structure about the 9 central dots in Figure 7.24
consists of tiny diffraction patterns resembling those for a square aperture of
x —y dimensions 33 X 33 mm?. [Hint: Compare the intensity patterns for
S(u, v) and the function I(x, v) in Figure 7.6.] *Can you show the same
result by applying the convolution theorem? Note: Beautiful pictures
illustrating these ideas can be found in plate 13 of Harburn, Taylor, and
Welberry (1975). i

*(9.5) Parallelogram Array. Suppose that M - N idéntical apertures are
placed in a parallelogram array as shown in Figure 7.25(a). Show that S.m
intensity distribution / for the diffraction pattern is equal to /;S where [; is
the intensity distribution for a single aperture and S is a structure factor.
Show that S consists of an array of dot amplifiers, of intensity M>N?,
situated at points of intersection of lines in a parallelogram configuration,
where those lines are perpendicular to those of the array of apertures. [See
Figure 7.25(b).] Describe the total diffraction pattern resulting from I'=13S.
[Hint: Proceed as in the rectangular array case, but at an appropriate point
substitute 8 = cu +d v and ¢ = cyu + d,v.]

Remark. The array of dots in Figure 7.25(b) is called the reciprocal lattice
for the array of apertures.

(9.6) Same problem as (9.3), but the square apertures are situated on a
parallelogram array formed by v, = (0.4 mm, 0.4 mm) and v,= (0.1 mm,
0.2 mm).

§10. Imaging Theory

In this section we shall briefly describe the theory of lens imaging via
Fourier analysis. This theory is due to Abbe and Zernike.
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In §4 we showed that the amplitude W at each point 2 in the focal plane

of a lens is given by [see (4.6)]

10.1) W(y, v) = e @MNN2 4 (4, v)

provided the object (aperture) is illuminated by monochromatic coherent
light (i.e., a plane parallel wave with wavelength A). This type of
illumination is very common in science, due to the invention of the laser; it
is also approximately fulfilled in microscopy (the illumination of the slide of
a microscope is approximately coherent).

To see how an image is formed by a lens we must allow the rays, that
have converged at the focal plane in Figure 7.1, to diverge and proceed to a
further plane as shown in Figure 7.26. If we reason as in §4, then we can
calculate the amplitude @(x, y) at a point &, with coordinates (x, y, d + D)
in the image plane. We find that

(10.2) p(x, y)= %‘ Yy, v)e @27 gy dy

—oc

Hence we must determine the (optical) distance |2R,| of each ray 2%,. By
the law of cosines (see Figure 7.27)

12%,) = [|120,% + (x* + y?) — 2(x* + y))'? | 205} cos 7]

(10.3)
=120 ~ (x* +y*)" cos 7
, image
Object Focal plane
plane Lens plane (x-y coordingtes)
———
——
Coherent
Hlumingtion a 4

0

Figure 7.26 Each point in the focal plane emanates a wave, with amplitude W. These waves
converge at points in the image plane, a second Fourier transform operation.
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Focal
Lens plane
image plane

‘00.8 axis

Figure 7.27 Ray diagram for the image-object derivation.

To justify the approximation in (10.3) we must assume that (x? + y?)"?«
|20, which will be the case if the image is assumed to be a small one.

Letting & be the complementary angle (to 7) that 20, makes with the z
axis (optic axis) we can rewrite (10.3) as

(10.4) 129 = 126,] - (x* + y)) ?sinvd

We now invoke the Abbe sine condition which states the angles o« and &
should satisfy

(10.5) sina@ =M sin & (Abbe sine condition)
where M is a positive constant. Using (10.5), formula (10.4) becomes

A.«N +%NV:N sin a
M

(2% =120, —

(10.6)

(P + Y22+t + 2% % cos v
M

il

120,] -

Here v is the complementary angle (to «) that 00, makes with 02, and we
have replaced 1 by the length of the unit vector u = (¢, », »). Since 00, is
parallel to u we obtain from (10.6), using a well known formula from vector
calculus,

A\«u Y, Ov . AN, », xv

EQNN_ = |20, — M

=190, - A\\« + »\N%v\g
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This last result allows us to rewrite (10.2), using (10.1) and (4.5),

+m

@(x, y)= \\s Wy, cvmﬁic_meN_ml.SaE_\?s:E du dv

-+ oo
(10,7) _ %R ¢/ GEMITODI12Gl) (1, ) =23l =0 0) gy oy

The phase factor ¢'®™M09921*12%0 s 4 constane, provided the object plane

and the image plane are conjugate planes.® In that case, as depicted in the
classic imaging diagram shown in Figure 7.26, all the rays from O, passing
through various points 2 in the focal plane, converge on a single point 0.
Therefore, invoking Hamilton’s form of Fermat’s principle as we did in §4,
we conclude that the wave fronts along those rays converge on 0, in phase.
In particular, e'@MN9G21+12%0 is 3 constant for all points 2, equal to
/=M@= (taking 2 on the optic axis). Thus, denoting this constant by e
for convenience, Eq. (10.7) becomes by Fourier inversion

: + e
P, y) = e [ [ Al vy eromn gy gy

(10.8) | A B Q

Equation (10.8) expresses the well known. fact that the image is an inverted
copy of the object (represented by its amplitude function A) magnified by the
factor M > 0. (If 0<<M <1 then we might say reduced by the factor M.) If
we observe @ by photographic film or by a viewing screen, then we record
|@i* =1A(=x/M, —y/M)P.

The key element of the discussion above was the Abbe sine condition
(10.5), which is much less restrictive than the small angle condition o = M
of Gaussian optics (paraxial approximation).” Note also that our derivation
reveals that imaging results from two diffraction (Fourier transform)
processes. The second diffraction was treated by endowing the focal plane
with spatial frequency coordinates (1 and v) rather than spatial coordinates.

Not all optical systems obey the Abbe sine condition; high quality
microscopes do but ordinary lenses do not. It is shown in optics texts fe.g.,
Goodman (1968) or Lipson and Lipson (1981)] that the upper limit to the
angular field of view is provided by Abbe’s sine condition; the lower limit is
not really zero but rather the small angle condition mentioned above.

Until now we have pretended that the lens captures all the light from the
object plane. We will now consider what happens when the lens is of finite
size. As shown in Figure 7.4, we must now modify the transform A by
allowing for missing spatial frequencies. We replace A in (10.8) by AP
where P is a function for which P(u, v) =0 when « or v is large enough.

6. In geometrical optics, this occurs when the lens equation (1/d) + (1/D) = 1/f holds.
7. For this case, M is found to be D/d.

r
!
i
|
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Then, by the convolution theorem

e(x, y) = m_;% Au, VYP(u, v)e &M+ OIMIT gy oy
(10.9) -
N ~ X .v\
(-G
AP~ ~ %
Formula (10.9) says that the image is the magnified and inverted image of
the convolution A x P. The function P is called a pupil function. A typical
example is

1 if (1P +vH)"? <R

(10.10) P =1, it (4 v) 2> R

which corresponds to a spherical lens (well corrected for aberrations). In
Figure 7.28 we show how this pupil function and its transform are related to
the imaging of an object. In this example, the sharp cutoff (discontinuity) of
P in the higher spatial frequencies results in the image A4 * P exhibiting a
Gibb’s phenomenon called ringing.

In many situations, such as natural light illumination, the object screen is
not illuminated coherently. We do not have space to discuss the case of
incoherent illumination. We shall only briefly describe the principal results.
In this case the different phases in the illuminating wave combine, when

(o)

Bright ring
ot disk's edge —.

Figure 7.28 Ringing under coherent illumination. The bright ring on the image disk is a
type of Gibb’s phenomenon (for transforms). (a) A pupil function P and its transform P.
(b) Imaging of a disk. [See also Figures 6-12 and 6-13 in Goodman (1968).]
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(o) (6

Figure 7.29 Loss of ringing, but blurring of image, under incoherent illumination. (a) Graphs
of P P and |P|%. Same P as in Figure 7.28. (b) Image of a black disk. [See also Figures 6-12
and 6-13 in Goodman (1968)].

focused onto the image plane, to yield only an average (over time) intensity.
Formula (10.9) is replaced by

2o p2f X 2
(10.11) (e = AR+ 1PR( = 22, =)
Note that |P}? is the transform of P % P, the autocorrelation of the pupil
function P. The details of deriving (10.11) are given in lizuka (1985), §10.3.
In Figure 7.29 we show that the ringing observed in coherent illumination is
decreased to a blurring under incoherent illumination.

For further discussion of imaging, see Chapter 7 of Goodman (1968),
Chapter 11 of lizuka (198S), and Chapter 9 of Lipson and Lipson (1981).

Exercises

(10.12) Find P when P(u, v)=T1(u/a)[1(v/b). Is there ringing, as shown
in Figure 7.28, for this pupil function?

(10.13) Justify the graphs made of the pupil function P, its autocorrelation
P % P, and their transforms, shown in Figures 7.28 and 7.29.

(10.14) For what objects would rings (haloes, fringes) appear in the
images, even under incoherent illumination, using the lens system described
in Figure 7.29.

(10.15) Justify, using Fourier analysis, the following well known principle
of optics: The larger the lens opening (aperture) the better the image.

(10.16) Show that (10.9) can be expressed in the form (ignoring the
constant e’)

() @) =hr gy )= [[ =1y =5)p(r. ) drds
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where

r N r N
“w) el -5l

(¢, stands for the image predicted by geometrical optics).

hrys) = 2

(10.17) Suppose that a sequence of m lenses is arranged along a single
optic axis in such a way that the image plane of each lens coincides with the
object plane of the next lens in the sequence. Justify the following optical
principle: The image quality from a system of lenses is limited by the smallest
lens opening (aperture) in the system.

(10.18) Show that, using coherent illumination and a circular lens, the
smallest resolvable spatial detail in an object is approximately 1.22(Ad/a),
where A is the wavelength of the illumination, a is the radius of the circular
lens aperture, and d is the distance from the object to the lens. [Hint: Use
(4.8), (10.9), (10.10), and M = D/d.]

Part C. mwm:m_,vnoommmm:m

§11. A Brief Introduction to Sampling Theory

The basic idea of sampling theory is the reconstruction of a function from an
isolated collection, usually a periodic array, of data points. Sampling theory
has major applications in several areas such as communications (telephone
signal and optical processing), radio astronomy, and sound reproduction
(digital recording).

Let’s begin with a typical one-dimensional sampling theorem. A function
g defined over R is said to be limited if for some positive constant ¢ we have
g(x) =0 when [x|=c. The following theorem has been proved by several
people working in different areas. It is called the sampling theorem by
Nyquist, and by Shannon, and it is called the cardinal theorem of
interpolation theory by Whittaker.

(11.1) Theorem. Suppose that f is continuous and absolutely integrable
over R and f is limited. Then

\C&ﬂ M \ A%mv &:o@axli

for all x values, provided f(u) =0 for ju| = c.

Proof. Because f(u) =0 for |u| =c, Fourier inversion yields

(11.2) flx) = % Flu)e ™ du



