
MAT 280: Applied & Computational Harmonic Analysis
Supplementary Notes IV by Naoki Saito

The Discrete Fourier Transform (DFT)� The DFT can be viewed as either an approximation to the Fourier transform or an approximation to
the Fourier series coefficients.� Suppose
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. That is,
�

is a space-limited, square
integrable function, which is a reasonable assumption in practice. Then, we can invoke the dual
version of the Shannon-Whittaker sampling theorem in the frequency domain, which can also be
stated in terms of Fourier coefficients of the Fourier series (Recall that the Fourier transform of the the
periodic functions gives the line spectrum in the frequency domain). In fact, we have the following
relationship: %�&�(')�*�����,+.-�/ �0 -�/ � �������21 0 �436587:9 /;-=< �>�@?(�A�B1 �43�587�C /(-&D �,E ��F 7 � 'G�IH�J

(1)� In general,
�K�I���L��
M���������������

is not a band-limited function. Therefore, to have a finite length vec-
tor representing the frequency samples (or the Fourier coefficients), we need to truncate the frequency
information for " NO"O#QP ��� for some PR#  . This is the first source of error of DFT approximation to
FT/FS. This truncation allows us to consider only

'
with " ' "TS � P ��� .� We now need to approximate the Fourier integration in (1) numerically. We use the trapezoid rule.

Here is the second source of the error of DFT. Let’s divide the interval
��
M���������������

into U (even
number) subintervals of equal length of V �W�X��� U . Let

�AY=�[Z V � ,
Z\�]�4
 U ���	�_^`� U ���	� be the

points used in the trapezoid rule. Let a �������b�������21 0 �43�587*9 /(- . Then we have%�&�(')�*����c V �� degf a �4
M�����	�ihj� k / � 0mlnY2o 0 k / ��p l a ���qY*�mh a �r�����	�Lsgtu J
If we assume

���4
M�����	�v�R���r�����	�
(which we should do if possible by windowing or zero-padding),

then the above approximation is simplified:%���(')�*���$c V � k / �nYwo 0 k / ��p l a ���)Y:��� �U k / �nY2o 0 k / ��p l ���xZy��� U �z1 0 �436587 Y / k �� Now, let
��Y��b���xZy��� U � Then, the U -point DFT is defined as follows:{ 7_|� }E U k / �nY2o 0 k / ��p l �~YT1 0 �43�587 Y / k � '���
 U ����h } ��J�J�J~� U ����J

The factor } � E U is to make DFT a unitary transformation (i.e.,
Z6�

-norm (energy) preserving transfor-
mation, so that the Parseval & Plancherel equalities holds.) We now have the following relationship.%�&�(')�*���`� E ��F 7 c �E U { 7 J
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The U -point inverse DFT is defined, as you can imagine, as follows.�~Y |� }E U k / �n7 o 0 k / ��p l { 7 1 �43�587 Y / k � ZM��
 U ����h } ��J�J�J�� U ����J
The proof of this formula gets easier when we use the vector-matrix notation later in this note.� [The reciprocity relations] Let V_N be a sampling rate in the frequency domain, i.e., V\N � } �*� .
Since we know V ���[��� U , and

')�*�[� P ��� at
'�� U ��� (highest frequency in consideration), we

have the following fundamental relations:V � V_N � }U � � P � U J
Interpretation of these relations is very important. For example, fix U . Then increasing the length

�
implies increasing V � , decreasing P , and decreasing V_N (finer frequency sampling, but the frequency
bandwidth also decreases). If we fix

�
, then increasing U (finer space sampling) implies decreasingV � and increasing P while V_N is kept constant (increasing the frequency bandwidth).� [A vector-matrix notation of DFT] We can gain great insights by expressing DFT using vector-

matrix notation. To do this, we need to define a couple of things. Let � k |��1 �43�� / k , i.e., U th root of
unity. Note that � k � � 0mlk , �$�k � � kk � } , � k / �k ��
 } , and � 7yp kk � � 7k for any

'��jH
. Then,

define a column vector� 7 k |� }E U � � 7�C �k � � 7�C lk ��J�J�J~� � 7~C k / �k ��J�J�J�� � 7�Cg� k 0ml2�k �w�$� '��� T��J�J�J~� U 
 } J
We also define another column vector�� 7 k |� }E U � � 7~Cg� k / � 0ml2�k � � 7~Cg� k / � 0 � �k ��J�J�J~� � 7�C �k ��J�J�J�� � 7�Cg� 0 k / � �k � � � '���
 U ���h } ��J�J�J�� U ����J
Using the properties of � k listed above, one can easily show that

�� 7 k ��� k � 7 k � � k ���~� k / � � k / �� k / � � k / ��� �
����������
 ����� }  �����  
... . . .

...
... . . .

...} ������  �����   ������  ����� }
... . . .

...
... . . .

... ������ } ������ 
� ��������¡

where � k / � is a
� U ���	� -by-

� U ���	� matrix whose elements are all zeros, and � k / � is a
� U ���	� -by-

� U ���	�
matrix that maps a vector

�r¢ l ��J�J�J���¢ k / � � � to
�r¢ k / � ��J�J�J~��¢ l � � .

Let £ �[�(� 0 k / ��p l ��J�J�J��¤� k / � � � be a vector of sampled points of
�������

in
�

. Now DFT can be written
as follows: { 7 ��? £ � �� 7 k D � '���
 U ���h } ��J�J�J~� U ����J
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Finally, define an U -point DFT matrix¥ k |� �� � � k � lk ����� � k 0mlk �¡ � ¦ ¥ k |��� k ¥ k J
Let § �@� { 0 k / ��p l ��J�J�J~� { k / � � � �I¨ k . Then, the U -point DFT can be conveniently written as:§ � ¦ ¥ª©k ££ � ¦ ¥ k § �
where

¦¥ ©k is an hermitian conjugate (transposition followed by element-wise complex conjugation)
of
¦¥ k . In fact,

¦¥ ©k �@�r� k ¥ k � © � ¥ ©k � ©k � ¥ ©k � k . We also denote « k � £ �A� ¦¥ ©k £ .� [Theorem 1] Both
¥ k and

¦ ¥ k are U -by- U unitary matrix. In other words, both ¬ � 7 k� k 0ml7 o � and¬ �� 7 k  k / �7 o 0 k / ��p l are orthonormal bases of
¨ k .

(Proof) Exercise. A main thing is to prove
? � 7 k � � Y k D ��® 7�¯ Y .� [Theorem 2] All the eigenvalues of

¥ k and
¦ ¥ k are } ��
 } ��°(��
° .

(Proof) See [1] or [2]. Note that from this theorem we have
¥@±k �b¦¥,±k ��² k .� [Pictorial view of the matrix

¥ ©k ]. Using the properties of � k , in particular the periodicity with
period U , we have

¥ ©k �
������������
� � � k � ©� � lk � ©� � � k � ©...� � k / �k � ©

...� � k 0mlk � ©

� ����������¡
� l³ k

�������������
} } } J�J�J }} � lk � � k J�J�J � k 0mlk} � � k � ± k J�J�J � �*� k 0ml2�k...

...
...

J�J�J ...} � k / �k � � k / �k J�J�J � � k 0ml2� k / �k...
...

...
J�J�J ...} � k 0mlk � �*� k 0ml2�k J�J�J � � k 0ml2� � k 0ml2�k

� �����������¡

� l³ k

��������������������

} } } J�J�J }} � 0mlk � 0 �k J�J�J � 0 � k 0ml2�k} � 0 �k � 0 ±k J�J�J � 0 �*� k 0ml2�k...
...

...
J�J�J ...} � 0 k / ��p lk � �*� 0 k / ��p l2�k J�J�J � � k 0ml2� � 0 k / ��p l2�k} � 0 k / �k � 0 � k / �k J�J�J � 0 � k 0ml2� k / �k} � k / � 0mlk � �*� k / � 0ml2�k J�J�J � � k 0ml2� � k / � 0ml2�k} � k / � 0 �k � �*� k / � 0 � �k J�J�J � � k 0ml2� � k / � 0 � �k...

...
...

J�J�J ...} � lk � �k J�J�J � k 0mlk

� ������������������¡
J

The following figure is a gray scale display of the matrix
¥ ©k and

¦ ¥ ©k with U � }�´ . Note the change
of the locations of the basis vectors as well as symmetry

� ¥ ©k � � � ¥ ©k ,
�;¦¥ ©k � � �,¦¥ ©k ,
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� [Different forms of DFT] It is amazing to know that the definition of DFT varies with the software
systems one uses. We should always be careful what is the exact definition of the DFT for each
software system.

Matlab:
{ 7�p l ��µ k 0mlY2o � �~Y p l 1 �436587 Y / k for

'��� _^¶� U 
 } � .
S-Plus:

{ 7�p l � µ k 0mlY2o � �~Y p l 1 0 �43�587 Y / k for
'��� \^O� U 
 } � .

Mathematica:
{ 7 � l³ k µ kYwo l �~YT1 �43�5���7 0ml2� � Y 0ml2� / k for

'�� } ^ U .

Maple:
{ 7yp l � lk µ k 0mlY2o � �~Y�1 0 �436587 Y / k for

'��� �^O� U 
 } � .
MathCad:

{ 7 � l³ k µ k 0mlY2o � �~Y�1��436587 Y / k for
'��� �^O� U 
 } � .

For more information about the DFT, see [2]. Also, the DFT matrix has more profound properties. See
the challenging and deep paper by [1].
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