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A Brief History of the Convergence of the Fourier Series

Theorem 1 (Dirichlet, 1829) Suppose
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In particular, if
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Theorem 2 (du Bois Reymond, 1876) There exists
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such that B �C���	��
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diverges, where

?
is an

interval of unit length.

Theorem 3 (A weak version of Fejér’s Theorem) If
�

is � -periodic, continuous, and piecewise smooth on� , then the Fourier series of
�

converges to
�

absolutely and uniformly.

Definition: Suppose a series of functions � * HJI �����,�
converges to
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on a set
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. Then, the

convergence is called absolute if � * HKL I � ���,� L
also converges for
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.
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as \ Z^] , then we call this a uniform convergence.

Theorem 4 (Fejér 1904) If
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, then the Cesàro means of
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converge uniformly to
�

.

Definition: The c th Cesàro mean of partial sums is the mean of the first c 0 � partial sums, i.e.,dfe �	��
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Theorem 5 (Size of the Fourier coeficients and the smoothness of the functions) Suppose
�

is � -periodic.
If
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and
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is piecewise smooth (i.e.,
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exists and piecewise continuous), then the

Fourier coefficients of
�

, � � , satisfy � � L � � � � L4m
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. On the other hand,
suppose � ��n �po� D
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Theorem 6 (Kolmogorov, 1926) There exists
�_:Mw H �@?b�

such that B �����	��
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diverges for every

�
.

Theorem 7 (Carleson, 1966) If
�_:Mw � �@?b� , then
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converges to
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almost everywhere.

Theorem 8 (Hunt, 1967) If
�_:xwzyR�@?b� n@{ s � , then
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almost everywhere.

Mathematicians are still trying to simplify the proof of the Carlson-Hunt theorem as of today.
For the details of the above facts, see [1, Chap. 1,2], [2, Chap. 1], [3, Part 1], and [4, Chap. 1]. [5, Chap.

1].
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