MAT 280: Applied \& Computational Harmonic Analysis Supplementary Notes I by Naoki Saito

The Fourier Inversion Theorem

- The Fourier transform \mathcal{F} was defined initially on $L^{1}(\mathbb{R})$, a space of integrable functions, and \mathcal{F} : $L^{1}(\mathbb{R}) \rightarrow B C(\mathbb{R})=C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$.
- However, \widehat{f}, the Fourier transform of $f \in L^{1}$, may not be in L^{1}.

An example: $f(x)=\chi_{\left(-\frac{1}{2}, \frac{1}{2}\right)}(x) \Rightarrow \hat{f}(\xi)=\operatorname{sinc}(\xi)=\frac{\sin \pi \xi}{\pi \xi} \notin L^{1}$.

- The Inverse Fourier Transform: For $f \in L^{1}, \check{f}(x)=\int_{-\infty}^{\infty} f(\xi) \mathrm{e}^{2 \pi \mathrm{i} \xi x} \mathrm{~d} \xi$.
- [The Fourier Inversion Theorem] If both f and \hat{f} are in L^{1}, then $(\hat{f})=(\check{f})=f$ almost everywhere.
- There are many functions in L^{1} whose Fourier transforms are also in L^{1}; one needs only a little smoothness of f for necessary decay of \hat{f} as $|\xi| \rightarrow \infty$.
An example: If $f \in C^{2}(\mathbb{R}), f^{\prime}$ and $f^{\prime \prime}$ are both in L^{1}, then $\mathcal{F}\left\{f^{\prime \prime}\right\}(\xi)=-(2 \pi \xi)^{2} \hat{f}(\xi) \in B C(\mathbb{R})$. This boundedness implies that $|\hat{f}(\xi)| \leq C /\left(1+\xi^{2}\right)$. This, in turn, implies that $\hat{f} \in L^{1}$.

The Fourier Transforms on L^{2}

- The previous remark leads to the L^{2} theory of the Fourier transforms. In general, simply assuming $f \in L^{2}$ is not enough; $\int_{-\infty}^{\infty} f(x) \mathrm{e}^{-2 \pi \mathrm{i} \xi x} \mathrm{~d} x$ may not converge.
An example: $f(x)=\operatorname{sinc}(x)=\frac{\sin \pi x}{\pi x} \in L^{2}$, but not in L^{1}.
- We will overcome this problem as follows. Define a subspace of $L^{1}, X \triangleq\left\{f \in L^{1} \mid \hat{f} \in L^{1}\right\}$. We first note that for such functions, we can have the Parseval equality: $\langle f, g>=<\hat{f}, \hat{g}>$ as well as the Plancherel equality. Also, for any $f \in X, f, \hat{f} \in B C(\mathbb{R})$ as the remark after the Fourier inversion theorem. This implies that both f and \hat{f} are also in L^{2}; i.e., $\mathcal{X} \subset L^{2}$. Now, the point is that \mathcal{X} is also dense in L^{2}.
- We can proceed as follows: for any $f \in L^{2}$, we can find a sequence $\left\{f_{n}\right\} \subset X$ such that $\left\|f_{n}-f\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty .\left\{f_{n}\right\} \subset \mathcal{X}$ means that $\left\{\hat{f}_{n}\right\} \subset X$. Now using the Plancherel equality to this sequence, we can see $\left\|\hat{f}_{n}-\hat{f}_{m}\right\|_{2}=\left\|f_{n}-f_{m}\right\|_{2} \rightarrow 0$ as $m, n \rightarrow \infty$. In other words, $\left\{\hat{f}_{n}\right\}$ is a Cauchy sequence in L^{2}. Since L^{2} is complete, there exists the limit of \hat{f}_{n} in L^{2}, and we define this limit as \hat{f}, the Fourier transform of $f \in L^{2}$.
- [The Plancherel Theorem] For any $f, g \in L^{2},\langle f, g\rangle=\langle\hat{f}, \hat{g}\rangle$ and $\|f\|_{2}=\|\hat{f}\|_{2}$.
- Finally, we can use all these facts for computing the Fourier transform of L^{2} functions as follows: Suppose we set $\phi(x)=\hat{f}(x)$ where $\hat{f} \in L^{2}$. Then, $\hat{\phi}(\xi)=f(-\xi)$. An example: $\phi(x)=\operatorname{sinc}(x) \in$ L^{2}. Then, $\hat{\phi}(\xi)=\chi_{\left(-\frac{1}{2}, \frac{1}{2}\right)}(\xi)$.

