MAT 280: Applied & Computational Harmonic Analysis Supplementary Notes II by Naoki Saito

The Generalized Functions

- The generalized functions have more singular behavior than functions (thus the name "generalized functions"), and are always defined as *linear functionals* on the *dual space*. Thus, before we discuss the generalized functions, we need to know the following.
 - **Definition:** Let \mathfrak{X} be a vector space over, say, \mathbb{C} . A linear map from \mathfrak{X} to \mathbb{C} is called a *linear functional* on X. If X is a normed vector space, then the space $\mathcal{L}(X, \mathbb{C})$ of *bounded* linear functionals on X is called the *dual space*, and denoted by \mathfrak{X}^* (or \mathfrak{X}').

Examples: The dual of $L^p(\mathbb{R})$, $1 , is <math>L^q(\mathbb{R})$, where (1/p) + (1/q) = 1. These numbers are called *conjugate exponents*. In particular, L^2 is self dual. Similarly, the dual of the sequence space $\ell^p(\mathbb{Z})$ is $\ell^q(\mathbb{Z})$.

Hölder's Inequality: Let p and q are conjugate exponents. Then for any $f \in L^p$, $g \in L^q$, we have

$$||fg||_1 \le ||f||_p ||g||_q.$$

(As you can see, the Cauchy-Schwarz inequality is a special version of this with p = q = 1/2. The proof is a great exercise.)

- **The Riesz Representation Theorem:** Suppose p and q are conjugate exponents with 1 .Then for each linear functional $\varphi \in (L^p)^*$, there exists $g \in L^q$ such that $\varphi(f) = \int f(x)g(x) dx$ for all $f \in L^p$. In other words, $(L^p)^*$ is isometrically isomorphic to L^q .
- The more singular the class of the generalized functions, the more regular its dual.
- We now define the Schwartz class $S = \{f \in C^{\infty}(\mathbb{R}) \mid \sup_{x \in \mathbb{R}} |x^k \partial^{\ell} f| < \infty$, for any $k, \ell \in \mathbb{N}\}$, which are very smooth and decay faster than any polynomial at infinity, i.e., a very nice class of functions. An example: The Gaussian $g(x) = e^{-x^2}$.
- Then, we consider the dual S'. You can imagine that members of this class can be very singular or "spiky." This dual space is called the tempered distributions. Being as a linear functional, each member of S' acts on the Schwartz functions. More precisely, if $F \in S'$ and $\phi \in S$, then the value of F at ϕ (F is a linear map from S to C!!) is denoted as $\langle F, \phi \rangle = F(\phi) = \int F(x)\phi(x) dx$.
- An example: the Dirac delta function $\delta(x) \in S'$ is defined as $\langle \delta, \phi \rangle = \phi(0)$. In other words, $\int^{\infty} \delta(x) \phi(x) \, \mathrm{d}x = \phi(0).$
- For any $F \in S'$ and any $\phi \in S$, we can define the following operations:

Differentiation: $\langle \partial_x^k F, \phi \rangle = (-1)^k \langle F, \partial_x^k \phi \rangle$. This can be shown by integration by parts. An example: $\langle \delta', \phi \rangle = -\langle \delta, \phi' \rangle = -\phi'(0)$.

Convolution: $F * \phi(x) = \langle F, \tau_x \widetilde{\phi} \rangle$, where $\widetilde{\phi}(y) = \phi(-y)$. An example: $(\delta * \phi)(x) = \phi(x)$.

Fourier transform: $\langle \hat{F}, \phi \rangle = \langle F, \hat{\phi} \rangle$.

An example: $F = \delta$, then $\langle \hat{\delta}, \phi \rangle = \langle \delta, \hat{\phi} \rangle = \hat{\phi}(0)$. This essentially shows that $\hat{\delta}(\xi) \equiv 1$. Using the translation operator, we can also have $\mathcal{F}{\delta(x-a)} = e^{-2\pi i \xi a}$, and $\mathcal{F}{e^{-2\pi i x a}} = \delta(\xi+a)$.

- Definition: A tempered distribution F on R is called *periodic* with period A if ⟨F, τ_Aφ⟩ = ⟨F, φ⟩ for all φ ∈ S. A sequence of tempered distributions {F_n} is said to *converge temperately* to a tempered distribution F if ⟨F_n, φ⟩ → ⟨F, φ⟩ as n → ∞ for all φ ∈ S. (See that all these operations and definitions are now moved to the *nice spouses* of F!)
- [Theorem] If F is a periodic tempered distribution, then F can be expanded in a temperately convergent Fourier series, F(x) = 1/√A ∑[∞]_{-∞} α_ke^{2πikx/A}, i.e., ⟨F, φ⟩ = ∑[∞]_{-∞} α_k ⟨1/√A e^{2πik·/A}, φ⟩ for all φ ∈ S. Moreover, the coefficients α_k satisfy α_k ≤ C(1 + |k|)^N for some C, N ≥ 0. Conversely, if {α_k} is any sequence satisfying this estimate, the series 1/√A ∑[∞]_{-∞} α_ke^{2πikx/A} converges temperately to a periodic tempered distribution.
- Define the Shah function (or comb function), $III_A(x) = \sum_{k=-\infty}^{\infty} \delta(x kA)$. The facts about this function:
 - 1. Since this is a periodic tempered distribution, we can expand it into the temperately convergent Fourier series; $III_A(x) \sim \frac{1}{A} \sum_{-\infty}^{\infty} e^{2\pi i k x/A}$. Note that $\alpha_k \equiv 1/\sqrt{A}$ for all $k \in \mathbb{Z}$.
 - 2. $\mathcal{F}{\text{III}_A}(\xi) = \frac{1}{A} \operatorname{III}_{1/A}(\xi) = \frac{1}{A} \sum_{-\infty}^{\infty} \delta(\xi \frac{k}{A}).$
- Using the Shah function and its Fourier transform, we can see that the Fourier transform of the Fourier series of a periodic function on [-A/2, A/2] as follows:

$$f(x) \sim \frac{1}{\sqrt{A}} \sum_{-\infty}^{\infty} \alpha_k e^{2\pi i k x/A} \xrightarrow{\mathcal{F}} \frac{1}{\sqrt{A}} \sum_{-\infty}^{\infty} \alpha_k \delta(\xi - \frac{k}{A}) \quad \text{i.e., line spectrum (discrete)}$$

As you can see, as A gets large, we are doing the finer sampling in the frequency domain, i.e.,

$f\in L^2[-A/2,A/2]$	$\xrightarrow{\mathfrak{F}}$	$\widehat{f}\in L^2(\mathbb{R})$
* convolution	$\xrightarrow{ \ \ } \ \ \rightarrow$	· multiplication
$\mathrm{III}_A(x)$	$\xrightarrow{ \ \ } \ \ \rightarrow$	$(1/A) \operatorname{III}_{1/A}(\xi)$
\$	$\xrightarrow{\ \ \mathbb{F}}$	\uparrow
	~	

Periodization with period $A \xrightarrow{\mathcal{F}}$ Discretization with rate 1/A and scaling with factor 1/A

Periodization of a function with compact support \(\leftarrow Discretization in frequency domain (with amplitude rescaling)

For the details of the facts in these notes, see [1, Chap. 9], [2, Chap. 9], [3, Chap. 1].

References

- [1] G. B. FOLLAND, Fourier Analysis and Its Applications, Wadsworth & Brooks/Cole, 1992.
- [2] —, *Real Analysis: Modern Techniques and Their Applications*, John Wiley & Sons, Inc., 2nd ed., 1999.
- [3] E. M. STEIN AND G. WEISS, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.