
MAT 271: Applied & Computational Harmonic Analysis
Lecture 19: A Library of Orthonormal Bases and

Adapted Signal Analysis

Naoki Saito

Department of Mathematics
University of California, Davis

June 7, 2023

saito@math.ucdavis.edu (UC Davis) A Library of ONBs 06/07/23 1 / 35



Outline

1 A Library and Dictionaries of ONBs

2 How to Select a Best Basis from a Library?

3 Efficient Approximation of Geophysical Waveforms with Best Basis

4 More Dictionaries

5 References

saito@math.ucdavis.edu (UC Davis) A Library of ONBs 06/07/23 2 / 35



A Library and Dictionaries of ONBs

Outline

1 A Library and Dictionaries of ONBs
A Wavelet Packet Dictionary
The Block DCT Dictionary
How Many ONBs in Each Dictionary?

2 How to Select a Best Basis from a Library?
The Best Basis Selection Algorithm

3 Efficient Approximation of Geophysical Waveforms with Best Basis

4 More Dictionaries

5 References

saito@math.ucdavis.edu (UC Davis) A Library of ONBs 06/07/23 3 / 35



A Library and Dictionaries of ONBs

Our Basic Setup

Consider an ensemble of N 1D discrete signals, xm ∈Rn , m = 1, . . . , N ;
we then form the data matrix X ∈Rn×N consisting those signals as
column vectors.
For the notational convenience, let xm = (

x0,m , x1,m , . . . , xn−1,m
)T.

There are many tasks given X , such as joint compression; classifying
them into a set of groups in a supervised or unsupervised manner
(classification vs clustering), . . .
In order to perform such tasks efficiently, it is a good idea to use a
basis that is adapted to a given task and to the signal ensemble.
Once such a basis is selected, we can expand each xm relative to the
basis and analyze the coefficients/coordinates for the given task.
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A Library and Dictionaries of ONBs

A Library of Orthonormal Bases

A library of orthonormal bases consists of dictionaries of orthonormal bases:
each dictionary is a binary tree whose nodes are subspaces of Ω0,0 =Rn

with different time-frequency localization characteristics.
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A Library and Dictionaries of ONBs

Basis Dictionaries in a Library

Examples of dictionaries include:
Wavelet Packet Bases
Block Discrete Cosine Bases
Local Trigonometric/Fourier Bases

It costs O(n[logn]p ) to generate a dictionary for a signal of length n
(p = 1 for wavelet packets, p = 2 for BDCT/LTB).
Each dictionary may contain up to n(1+ log2 n) basis vectors and more
than 2n/2 possible orthonormal bases.
How to select the best possible basis for the problem at hand is a key
issue.
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A Library and Dictionaries of ONBs

Example of Local Basis Functions
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A Library and Dictionaries of ONBs

Time-Frequency Characteristics
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A Library and Dictionaries of ONBs A Wavelet Packet Dictionary

A Wavelet Packet Dictionary

View Ω0,0 as the basic space V0 of Multiresolution Analysis
A pair of filters {H ,G} consisting of convolution with the CMF
coefficients {hℓ}, {gℓ}, and subsequent subsampling, are applied to
each xm ∈Ω0,0, m = 1, . . . , N .
As usual, we need to pay attention to the boundary treatment of the
signals (e.g., need to do even reflection at the boundary or
periodization).
H xm ∈Ω1,0 =V1 while Gxm ∈Ω1,1 =W1. Hence, Ω0,0 =Ω1,0 ⊕Ω1,1.
In the case of the Discrete Wavelet Transform, we iterate this filtering
operations only on the lower frequency subspaces, i.e.,
Ω j−1,0 =Ω j ,0 ⊕Ω j ,1, j = 1, . . . , J (≤ log2 n). The high frequency
subspaces Ω j ,1 =W j , j = 1, . . . , J are kept intact once they are
generated.
A Wavelet Packet Dictionary also iterates the above filtering
procedure on the higher frequency subspaces, i.e.,
Ω j−1,k =Ω j ,2k ⊕Ω j ,2k+1, j = 1, . . . , J , k = 0, . . . ,2 j −1, are generated.
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A Library and Dictionaries of ONBs A Wavelet Packet Dictionary

A Wavelet Packet Dictionary . . .

This generates a complete binary tree of subspaces {Ω j ,k } with
dimΩ j ,k = n

2 j , j = 0, . . . , J , k = 0, . . . ,2 j −1.

Ω0,0

Ω1,0

Ω2,0

Ω3,0 Ω3,1

Ω2,1

Ω3,2 Ω3,3

Ω1,1

Ω2,2

Ω3,4 Ω3,5

Ω2,3

Ω3,6 Ω3,7

Of course, in the above tree, we set J = 3.
The red part forms the wavelet basis.
The cost of expanding an input signal xm into this binary tree of
subspaces is O(n J ), which can be easily understood by the repeated
applications of the filtering operations at each level j = 0, . . . , J −1.
Hence, the overall cost for the whole data matrix is O(N n J ).
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A Library and Dictionaries of ONBs The Block DCT Dictionary

The Block DCT Dictionary

Again let Ω0,0 =Rn .
Split each signal in X into two halves, i.e.,

xm =χ[
0, n

2 −1
] .∗xm +χ[ n

2 ,n−1
] .∗xm ,

where .∗ is the element-wise multiplication (following the MATLAB
convention), and χ[n1,n2] is the indicator function (on integer grids):

χ[n1,n2](i ) :=
{

1 if n1 ≤ i ≤ n2;

0 otherwise.

Hence, dimΩ1,0 = dimΩ1,1 = n/2. We now apply the DCT Type II for
length n/2 in those two half size signals. The cost is
O

(
2× n

2 log2
n
2

)≈O(n log2 n).
We repeat this splitting procedure recursively to generate the binary
tree of subspaces {Ω j ,k }, j = 0, . . . , J , k = 0, . . . ,2 j −1 with dimΩ j ,k = n

2 j .
Note that we are splitting the spatial (or time) axis instead of the
frequency axis in the wavelet packet case.
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Hence, dimΩ1,0 = dimΩ1,1 = n/2. We now apply the DCT Type II for
length n/2 in those two half size signals. The cost is
O

(
2× n

2 log2
n
2

)≈O(n log2 n).
We repeat this splitting procedure recursively to generate the binary
tree of subspaces {Ω j ,k }, j = 0, . . . , J , k = 0, . . . ,2 j −1 with dimΩ j ,k = n

2 j .
Note that we are splitting the spatial (or time) axis instead of the
frequency axis in the wavelet packet case.
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The Block DCT Dictionary . . .

Note the DCT-II treats the boundary with even reflection
automatically, i.e., a brutal cut by χ[

kn
2 j , (k+1)n

2 j −1
] for the signals in Ω j ,k

does not create artifitial discontinuities around the boundary points
x kn

2 j ,m , x (k+1)n

2 j ,m .

The total computational cost of expanding xm into this BDCT
dictionary is O(n J log2 n) ≤O(n[log2 n]2); hence for the whole data
matrix X , it costs at most O(N n[log2 n]2).
The local cosine transform dictionary, originally developed by
R. R. Coifman and Y. Meyer, uses the smoother cutoff functions
instead of χ[

kn
2 j , (k+1)n

2 j −1
], followed by DCT type IV, not by DCT type II.

Unfortunately, a good implementation is not straightforward, and the
advantage of using the smoother cutoff functions has not been drastic.
However, I would recommend you to read the nicer implementation
and discussions by Lars Villemoes [6].
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How Many ONBs in a Dictionary?

We can associate Ω j ,k as the dyadic interval
I j ,k :=

[
k
2 j , k+1

2 j

)
⊂ [0,1) =: I , j = 0, . . . , J , k = 0, . . . ,2 j −1.

Let the orthonormal basis of Ω j ,k generated by these hierarchical

operations be
{
ψ j ,k,ℓ

} n
2 j −1

ℓ=0 , where ψ j ,k,ℓ ∈Rn .
A family of dyadic subintervals I is said to be a disjoint cover of I if⋃
I j ,k∈I

I j ,k = I and I j ,k ∩ I j ′,k ′ =; for ( j ,k) ̸= ( j ′,k ′).

(Coifman & Wickerhauser 1992): If I is a disjoint cover of I , then
the collection of basis vectors {ψ j ,k,ℓ} where ( j ,k) are chosen such
that I j ,k ∈I , and ℓ= 0, . . . , n

2 j −1, form an ONB of Ω0,0.
Hence, every disjoint dyadic cover of I corresponds to an ONB for
Ω0,0. Then, the number of possible ONBs in this binary tree is equal
to the number of possible disjoint dyadic covers of I . How many such
covers?
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How Many ONBs in a Dictionary?

Let J be the deepest level of decomposition so that the j ranges
0 ≤ j ≤ J (i.e., J +1 levels).
Let A J be the number of ONBs in the tree with J+1 levels.
We do induction on J for A J . Clearly A0 = 1, A1 = 2.
Let’s relate A J+1 and A J . Consider the binary tree of J +2 levels.
Then, Ω1,0 and below forms a binary tree with J+1 levels so as Ω1,1

and below. By assumption, there are A J ONBs for each Ω1,k , k = 0,1.
Hence, we have

A J+1 = 1+ A2
J ,

where 1 comes from choosing the canonical basis at Ω0,0.
One can show that A J > 2n/2; in fact, it’s O(1.5n).
This sequence is cataloged as A003095 in the On-line Encyclopedia of
Integer Sequences by Neil J. A. Sloane. For example, A J for
J = 0,1,2,3,4,5,6,7 . . . , are: 1,2,5,26,677,458330,210066388901, . . .
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How to Select a Best Basis from a Library?

Let D be a orthonormal basis dictionary, i.e., the collection of all the
basis vectors in the binary tree of subspaces of {Ω j ,k }0≤ j≤J ;0≤k≤2 j−1,
which can be written as D := {ψ j ,k,ℓ}0≤ j≤J ;0≤k≤2 j−1;0≤ℓ≤ n

2 j −1.
In this dictionary, there are n J basis vectors.
D can also be written as D = {Bi }1≤i≤A J , where Bi ∈Rn×n is an ONB
contained in the binary tree of subspaces of {Ω j ,k }0≤ j≤J ;0≤k≤2 j−1, and
A J is the number of possible ONBs contained in this binary tree,
which could be huge, i.e., O(1.5n).
Let M (Bi ) be a measure of efficacy of Bi w.r.t. a given data matrix X
for a task given at hand.
Then the best basis w.r.t. M among D for X is:

Ψ=Ψ(X ;D) = argmax
Bi∈D

M
(
BT

i X
)

.

Finally, if a library L consists of multiple dictionaries, then the overall
best basis can be obtained by

Ψ(X ;L ) = argmax
D∈L

M
(
Ψ(X ;D)TX

)
.
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The Best Basis Selection Algorithm

Let B j ,k :=
(
ψ j ,k,0, . . . ,ψ j ,k, n

2 j −1

)
∈Rn× n

2 j be the ONB of Ω j ,k . Then, the
best basis algorithm of Coifman-Wickerhauser (1992) proceeds as follows:

Step 0: Choose a dictionary of orthonormal bases D (i.e., specify the
CMF for a wavelet packet dictionary or decide to use either
the BDCT dictionary or the LCT dictionary) and specify the
maximum depth of decomposition J and the measure of
efficacy M .

Step 1: Expand the columns of the data matrix X , into the dictionary
D and obtain coefficients

{
BT

j ,k X
}

0≤ j≤J ;0≤k≤2 j−1
.

Step 2: Set ΨJ ,k := B J ,k for k = 0, . . . ,2J −1 (i.e., start from the
bottom)

Step 3: Determine the best subspace basis Ψ j ,k for
j = J −1, . . . ,0, k = 0, . . . ,2 j −1 (i.e., from bottom to top) by

Ψ j ,k =
{

B j ,k if M
(
BT

j ,k X
)
≥M

(
ΨT

j+1,2k X ∪ΨT
j+1,2k+1X

)
,

Ψ j+1,2k ⊕Ψ j+1,2k+1 otherwise.
(1)
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How to Select a Best Basis from a Library? The Best Basis Selection Algorithm

To make this algorithm fast, the measure of efficacy M should be
additive:

Definition
A map M from sequences {xi } to R is said to be additive if M (0) = 0 and
M ({xi }) =∑

i M (xi ).

Thus, if M is additive, then Eq. (1) simplifies to

M
(
ΨT

j+1,2k X ∪ΨT

j+1,2k+1X
)
=M

(
ΨT

j+1,2k X
)
+M

(
ΨT

j+1,2k+1X
)

.

This implies that a simple addition suffices instead of computing the
efficacy of the union of the nodes.
In fact, the cost of selecting the best basis Ψ for an additive measure
M given all the expansion coefficients of X in D is O(n) while the
cost of expanding all the columns of X into D costs at most
O(N n[log2 n]p ), p = 1 for a wavelet packet dictionary and p = 2 for
the BDCT/LCT dictionaries.
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How to Select a Best Basis from a Library? The Best Basis Selection Algorithm

Now, the name of the game is how to define M for a given task.
For example, in the case of efficient approximation, one may want to
find a basis among D that most sparsifies the data matrix X on
average.
In that case, a possible choice of M is:

M
(
BT

j ,k X
)
=− 1

N

N∑
m=1

∥∥∥BT

j ,k xm

∥∥∥p

p
, 0 < p ≤ 1.

negative of the average sparsity of X measured by the ℓp-norm.
There are many many possibilities of M depending on the task such
as clustering, classification, regression, . . . . See [4], [5] for more
examples.
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Efficient Approx. of Geophysical Waveforms using JBB

An Example: Efficient Approximation of Geophysical
Acoustic Waveforms

Objective: Efficiently approximate the acoustic waveforms recorded in
a borehole propagated through sandstone layers in the subsurface.
We have 201 such waveforms each of which has n = 256 time samples.
First, randomly split this set of waveforms into the training and test
datasets. The training dataset consists of N = 101 waveforms while
the test dataset contains the remaining 100 waveforms.
Compare the performance of the global DCT, KLB, and the JBB
(Joint Best Basis for the whole training dataset) using the local cosine
dictionary.
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Efficient Approx. of Geophysical Waveforms using JBB

Observations

For the training dataset, the KLB approximation was perfect. In fact,
the KLB approximation with 86 terms already reached the relative ℓ2

error of 2.425×10−13 on average.
The same KLB approximates the test dataset better than the JBB
only up to 89 terms. If we try to have more accuracy by increasing the
number of terms, it got worse than the JBB approximation.
This implies that these geophysical acoustic waveforms do not obey
the multivariate Gaussian distribution, and the sample mean and the
covariance matrices computed from the training dataset were not
enough to capture the statistics of the test dataset.
On the other hand, the JBB and global DCT approximations are quite
consistent for both the training and the test datasets.
The locality of the basis functions of the JBB clearly gave a better
performance than the global DCT basis functions.
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number of terms, it got worse than the JBB approximation.
This implies that these geophysical acoustic waveforms do not obey
the multivariate Gaussian distribution, and the sample mean and the
covariance matrices computed from the training dataset were not
enough to capture the statistics of the test dataset.
On the other hand, the JBB and global DCT approximations are quite
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More Dictionaries

More Dictionaries

Straightforward generalizations of wavelet packets and BDCT/LCT
dictionaries via tensor products cannot always sparsify images or
signals in higher dimensions due to the lack of orientation selectivities.
Hence, many new dictionaries have been developed for images based
on mathematical modeling of images, e.g., curvelets (Candès-Donoho);
contourlets (Do-Vetterli); bandlets (LePennec-Mallat-Peyré); dual-tree
CWT (Selesnick-Baraniuk-Kingsbury); shearlets (Kutyniok-Labate);
. . .
On the other hand, data-driven dictionaries have become quite
popular, e.g., Sparse coding (Olshausen-Field); K-SVD
(Aharon-Elad-Bruckstein); . . .
See [3] for their nice review on all of the above dictionaries.
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