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Introductory Remarks

For much more details of this part of lecture, please check my course
website on “Harmonic Analysis on Graphs & Networks”:
http://www.math.ucdavis.edu/˜saito/courses/HarmGraph/ as well
as my articles with Jeff Irion at
http://www.math.ucdavis.edu/˜saito/publications/.

We rely on the so-called graph Laplacians to construct our multiscale basis
dictionaries. Some good references on graph Laplacian eigenvalues are:

R. B. Bapat: Graphs and Matrices, 2nd Ed., Springer, 2014.
A. E. Brouwer & W. H. Haemers: Spectra of Graphs, Springer, 2012.
F. R. K. Chung: Spectral Graph Theory, Amer. Math. Soc., 1997.
D. Cvetković, P. Rowlinson, & S. Simić: An Introduction to the Theory
of Graph Spectra, Cambridge Univ. Press, 2010.
D. Spielman: “Spectral graph theory,” in Combinatorial Scientific
Computing (O. Schenk, ed.), Chap. 18, pp. 495–524, CRC Press, 2012.

As for the graph Laplacian eigenfunctions, there are not too many books
(although there may be many papers); one of the good books is

T. Bıyıkoğlu, J. Leydold, & P. F. Stadler, Laplacian Eigenvectors of
Graphs, Lecture Notes in Mathematics, vol. 1915, Springer, 2007.
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Motivations: Why Graphs?

Motivations: Why Graphs?

More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

Data from sensor networks
Data from social networks, webpages, . . .
Data from biological networks
. . .

It is quite important to analyze:
Topology of graphs/networks (e.g., how nodes are connected, etc.)
Data measured on nodes (e.g., a node = a sensor, then what is an
edge?)

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 5 / 70



Motivations: Why Graphs?

Motivations: Why Graphs?

More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

Data from sensor networks
Data from social networks, webpages, . . .
Data from biological networks
. . .

It is quite important to analyze:
Topology of graphs/networks (e.g., how nodes are connected, etc.)
Data measured on nodes (e.g., a node = a sensor, then what is an
edge?)

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 5 / 70



Motivations: Why Graphs?

Motivations: Why Graphs?

More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

Data from sensor networks
Data from social networks, webpages, . . .
Data from biological networks
. . .

It is quite important to analyze:
Topology of graphs/networks (e.g., how nodes are connected, etc.)
Data measured on nodes (e.g., a node = a sensor, then what is an
edge?)

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 5 / 70



Motivations: Why Graphs?

Motivations: Why Graphs?

More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

Data from sensor networks
Data from social networks, webpages, . . .
Data from biological networks
. . .

It is quite important to analyze:
Topology of graphs/networks (e.g., how nodes are connected, etc.)
Data measured on nodes (e.g., a node = a sensor, then what is an
edge?)

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 5 / 70



Motivations: Why Graphs?

Motivations: Why Graphs?

More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

Data from sensor networks
Data from social networks, webpages, . . .
Data from biological networks
. . .

It is quite important to analyze:
Topology of graphs/networks (e.g., how nodes are connected, etc.)
Data measured on nodes (e.g., a node = a sensor, then what is an
edge?)

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 5 / 70



Motivations: Why Graphs?

Motivations: Why Graphs?

More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

Data from sensor networks
Data from social networks, webpages, . . .
Data from biological networks
. . .

It is quite important to analyze:
Topology of graphs/networks (e.g., how nodes are connected, etc.)
Data measured on nodes (e.g., a node = a sensor, then what is an
edge?)

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 5 / 70



Motivations: Why Graphs?

Motivations: Why Graphs?

More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

Data from sensor networks
Data from social networks, webpages, . . .
Data from biological networks
. . .

It is quite important to analyze:
Topology of graphs/networks (e.g., how nodes are connected, etc.)
Data measured on nodes (e.g., a node = a sensor, then what is an
edge?)

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 5 / 70



Motivations: Why Graphs?

Motivations: Why Graphs?

More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

Data from sensor networks
Data from social networks, webpages, . . .
Data from biological networks
. . .

It is quite important to analyze:
Topology of graphs/networks (e.g., how nodes are connected, etc.)
Data measured on nodes (e.g., a node = a sensor, then what is an
edge?)

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 5 / 70



Motivations: Why Graphs?

Motivations: Why Graphs?

Fourier analysis/synthesis and wavelet analysis/synthesis have been
‘crown jewels’ for data sampled on the regular lattices.
Hence, we need to lift such tools for unorganized and
irregularly-sampled datasets including those represented by graphs and
networks.
Moreover, constructing a graph from a usual signal or image and
analyzing it can also be very useful! E.g., Nonlocal means image
denoising of Buades-Coll-Morel.
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Motivations: Why Graphs?

An Example of Sensor Networks

Figure: Volcano monitoring sensor network architecture of Harvard Sensor
Networks Lab
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Motivations: Why Graphs?

An Example of Social Networks

Figure: Through the courtesy of Prof. Fan Chung, UC San Diego
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Motivations: Why Graphs?

An Example of Biological Networks

Figure: From E. Bullmore and O. Sporns, Nature Reviews Neuroscience, vol. 10,
pp.186–198, Mar. 2009.
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Motivations: Why Graphs?

Another Biological Example: Retinal Ganglion Cells
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Motivations: Why Graphs?

Retinal Ganglion Cells (D. Hubel: Eye, Brain, & Vision, ’95)
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Motivations: Why Graphs?

A Typical Neuron (from Wikipedia)
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Motivations: Why Graphs?

Mouse’s RGC as a Graph
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Motivations: Why Graphs?

Clustering using Features Derived by Neurolucida®
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Motivations: Why Graphs?

Representing a Regular Image as a Graph

often turns out to be quite useful for various purposes. In particular,
Nonlocal Means Denoising Algorithm of Buades-Coll-Morel is quite
impressive.

Construct a graph each of whose vertices represents k ×k patch of a
given image (k may be 3,5, . . ., etc.) So each vertex represents a point
in Rk2

.
Connect every pair of vertices with the weight
Wi j = exp(−∥patchi −patch j∥2/ϵ2) with appropriately chosen scale
parameter ϵ> 0.
Compute the weighted average of the center pixel of each patch using
the normalized weights Wi j /

∑
ℓWiℓ. More precisely, the average of

the center of the i th patch, c i =∑
j Wi j c j /

∑
ℓWiℓ.

See also an interesting work by Daitch-Kelner-Spielman: “Fitting a
Graph to Vector Data,” Proc. 26th Intern. Conf. Machine Learning,
2009.
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Motivations: Why Graphs?

From: A. Buades, B. Coll, and J.-M. Morel, SIAM Review,
vol. 52, no. 1, pp. 113–147, 2010.

Noisy Image; Total Variation Denoising; Neighborhood Filter

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IMAGE DENOISING METHODS 139

Fig. 13 Denoising experience on a periodic image. From left to right and from top to bottom: noisy
image (standard deviation 35), Gauss filtering, total variation, neighborhood filter, Wiener
filter (ideal filter), TIHWT, DCT empirical Wiener filtering, and NL-means.

Fig. 14 Denoising experience on a natural image. From left to right and from top to bottom: noisy
image (standard deviation 35), total variation, neighborhood filter, translation invariant
hard thresholding (TIHWT), empirical Wiener, and NL-means.

with the images presented in this paper. This error table seems to corroborate the
observations made for the other criteria. One sees, for example, how the frequency
domain filters have a lower mean square error than the local smoothing filters. One
also sees that in the presence of periodic or textural structures the empirical Wiener
filter based on a DCT transform performs better than the wavelet thresholding. Note
that, in the presence of periodic or stochastic patterns, NL-means is significantly more
precise than the other algorithms. Of course, the errors presented in this table cannot
be computed in a real denoising problem. Let us remark, however, that a small error
does not guarantee a good visual quality of the restored image.

Trans. Inv. Wavelets; Empirical Wiener; Nonlocal Means
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Motivations: Why Graphs?

Motivations: Multiscale Basis Dictionary on Graphs

Wavelets
Have been quite successful on regular domains
Have been extended to irregular domains ⇒ “2nd Generation
Wavelets”

For example:
Hammond, Vandergheynst, and Gribonval (2011): wavelets via
spectral graph theory
Coifman and Maggioni (2006): diffusion wavelets
=⇒ Bremer et al. (2006): diffusion wavelet packets

Key difficulty: The notion of frequency is ill-defined on graphs =⇒ The
Fourier transform is not properly defined on graphs
Common strategy: Develop wavelet-like multiscale transforms
Key Idea: Use of the graph Laplacian eigenvectors as the substitution of
the Fourier basis
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Motivations: Why Graphs?

Goals

Develop and implement multiscale transforms for data on graphs and
networks; in particular, build multiscale basis dictionaries on graphs.
Investigate their usefulness for a variety of applications including
approximation, denoising, classification, and regression on graphs.
In this lecture, we will focus on how to construct such dictionaries on
graphs and demonstrate their usefulness for data approximation on
graphs.
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Background Basic Graph Theory Terminology

Definitions and Notation

Let G be a graph.
V =V (G) = {v1, . . . , vN } is the set of vertices.
E = E(G) = {e1, . . . ,eN ′} is the set of edges, where ek = (vi , v j )
represents an edge (or line segment) connecting between adjacent
vertices vi , v j for some 1 ≤ i , j ≤ N .
W =W (G) ∈RN×N is the weight matrix, where wi j denotes the edge
weight between vertices i and j .

1 2 3

45

w12 w23

w34

w45

w35

w24
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Background Basic Graph Theory Terminology

Definitions and Notation

Note that there are many ways to define wi j .

For example, for unweighted graphs, we typically use

wi j :=
{

1 if vi ∼ v j (i.e., vi and v j are adjacent);

0 otherwise.

This is often referred to as the adjacency matrix and denoted by A(G).

For weighted graphs, wi j should reflect the similarity (or affinity) of
information at vi and v j , e.g., if vi ∼ v j , then

wi j := 1/dist(vi , v j ) or exp(−dist(vi , v j )2/ϵ2),

where dist(·, ·) is a certain measure of dissimilarity and ϵ> 0 is an
appropriate scale parameter.
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Background Basic Graph Theory Terminology

Our Assumptions

In this lecture, we assume that the graph is
connected. Otherwise, we would simply consider the components
separately.
undirected. Edges do not have direction, which means that
wi j = w j i and thus W is symmetric.

The graph may be weighted or unweighted.
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Background Graph Laplacians

Matrices Associated with a Graph

Let D = D(G) := diag(d1, . . . ,dN ) be the degree matrix of G where

di :=
N∑

j=1
wi j is the degree of the vertex i .

We can now define several Laplacian matrices of G:

L(G) := D −W Unnormalized

Lrw(G) := IN −D−1W = D−1L Random-Walk Normalized

Lsym(G) := IN −D− 1
2 W D− 1

2 = D− 1
2 L D− 1

2 Symmetrically-Normalized

Graph Laplacians can also be defined for directed graphs; However,
there are many different definitions based on the types/classes of
directed graphs, and in general, those matrices are nonsymmetric. See,
e.g., Fan Chung: “Laplacians and the Cheeger inequality for directed
graphs,” Ann. Comb., vol. 9, no. 1, pp. 1–19, 2005, for an attempt to
symmetrize graph Laplacian matrices for strongly connected digraphs.
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Background Graph Laplacians

Graph Laplacians . . .
Let f ∈RN be a data vector defined on V (G). Then

L f (i ) = di f (i )−
N∑

j=1
wi j f ( j ) =

N∑
j=1

wi j
(

f (i )− f ( j )
)

.

i.e., this is a generalization of the finite difference approximation to
the Laplace operator.
On the other hand,

Lrw f (i ) = f (i )−
N∑

j=1
pi j f ( j ) = 1

di

N∑
j=1

wi j
(

f (i )− f ( j )
)

.

Lsym f (i ) = f (i )− 1√
di

N∑
j=1

wi j√
d j

f ( j ) = 1√
di

N∑
j=1

wi j

 f (i )√
di

− f ( j )√
d j

 .

Note that these definitions of the graph Laplacian corresponds to −−−∆
in Rd , i.e., they are nonnegative operators (a.k.a. positive semi-definite
matrices).
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Background Graph Laplacians

Why Graph Laplacian Eigenfunctions?

The graph Laplacian eigenfunctions form an orthonormal basis on a
graph =⇒

can expand functions defined on a graph
can perform spectral analysis/synthesis/filtering of data measured on
vertices of a graph

Can be used for graph partitioning, graph drawing, data analysis,
clustering, . . .=⇒ Graph Cut, Spectral Clustering
Less studied than graph Laplacian eigenvalues
In this lecture, I will use the terms “eigenfunctions” and “eigenvectors”
interchangeably.
Also, an eigenvector/function is denoted by φ, and its value at vertex
x ∈V is denoted by φ(x).
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Background Graph Laplacians

A Simple Yet Important Example: A Path Graph



1 −1
−1 2 −1

−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 1


︸ ︷︷ ︸

L(G)

=



1
2

2

. . .
2

1


︸ ︷︷ ︸

D(G)

−



0 1
1 0 1

1 0 1

. . .
. . .

. . .
1 0 1

1 0


︸ ︷︷ ︸

W (G)

The eigenvectors of this matrix are exactly the DCT Type II basis vectors (used
for the JPEG standard) while those of Lsym are the DCT Type I basis! (See G.
Strang, “The discrete cosine transform,” SIAM Review, vol. 41, pp. 135–147,
1999).

λk = 2−2cos(πk/N ) = 4sin2(πk/2N ), k = 0 : N −1.

φk (ℓ) = ak;N cos
(
πk(ℓ+ 1

2 )/N
)
, k,ℓ= 0 : N −1; ak;N is a const. s.t. ∥φk∥2 = 1.

In this simple case, λ (eigenvalue) is a monotonic function w.r.t. the
frequency, which is the eigenvalue index k. For a general graph, however,
the notion of frequency is not well defined.
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Background Graph Laplacians

A Brief Review of Graph Laplacian Eigenpairs

In this slide, we only consider the unnormalized Laplacian
L(G) = D(G)−W (G). It is a good exercise to see how the statements
in this slide change for Lrw and Lsym.
L(G) is positive semi-definite. Hence, we can sort the eigenvalues of
L(G) as 0 =λ0(G) ≤λ1(G) ≤ ·· · ≤λN−1(G).
mG (λ) := the multiplicity of λ.
rankL(G) = n −mG (0) where mG (0) turns out to be the number of
connected components of G. L(G) has mG (0) diagonal blocks; the
eigenspace corresponding to λ= 0 is spanned by the indicator vectors
of each connected component.
In particular, λ1 ̸= 0, i.e., mG (0) = 1 iff G is connected. Then, the
eigenfunction corresponding to λ0 = 0 is the constant function
φ0 = 1N /

p
N = (

1/
p

N , . . . ,1/
p

N
)T

.
This led M. Fiedler (1973) to define the algebraic connectivity of G by
a(G) := λ1(G), viewing it as a quantitative measure of connectivity.
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Background Graph Partitioning via Spectral Clustering

Goal: split the vertices V into two “good” subsets, X and X c

Plan: use the signs of the entries in φ1, which is known as the Fiedler
vector

Why? Using φ1 to generate X and X c yields an approximate minimizer of
the RatioCut function1,2:

RatioCut(X , X c ) := cut(X , X c )

|X | + cut(X , X c )

|X c | ,

where
cut(X , X c ) := ∑

vi∈X ;v j∈X c

Wi j

Dividing by the number of nodes ensures that the partitions are of roughly
the same size ⇒ we do not simply cleave a small number of nodes

1L. Hagen and A. B. Kahng: “New spectral methods for ratio cut partitioning and
clustering,” IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992.

2We could also use the signs of φ1 for Lrw (equivalently, Lsym), which yield an
approximate minimizer of the popular Normalized Cut function: J. Shi & J. Malik:
“Normalized cuts and image segmentation”, IEEE Trans. Pattern Anal. Machine Intell.,
vol. 22, no. 8, pp. 888–905, 2000.
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2We could also use the signs of φ1 for Lrw (equivalently, Lsym), which yield an
approximate minimizer of the popular Normalized Cut function: J. Shi & J. Malik:
“Normalized cuts and image segmentation”, IEEE Trans. Pattern Anal. Machine Intell.,
vol. 22, no. 8, pp. 888–905, 2000.
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Background Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.
1 Define f ∈RN as

fi :=


√
|X c |
|X | if vi ∈ X

−
√

|X |
|X c | if vi ∈ X c

2 The RatioCut problem can be reformulated as

min
X⊂V

f TL f subject to f defined as above
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Background Graph Partitioning via Spectral Clustering

f TL f = 1

2

N∑
i , j=1

Wi j ( fi − f j )2

= 1

2

∑
vi∈X

v j∈X c

Wi j

(√
|X c |
|X | +

√
|X |
|X c |

)2

+ 1

2

∑
vi∈X c

v j∈X

Wi j

(
−

√
|X c |
|X | −

√
|X |
|X c |

)2

= cut(X , X c )

( |X c |
|X | + |X |

|X c | +2

)
= cut(X , X c )

( |X |+ |X c |
|X | + |X |+ |X c |

|X c |
)

= |V |RatioCut(X , X c )
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Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.
1 Define f ∈RN as

fi :=


√
|X c |
|X | if vi ∈ X

−
√

|X |
|X c | if vi ∈ X c

2 The RatioCut problem can be reformulated as

min
X⊂V

f TL f subject to f defined as above

Unfortunately, this problem is NP hard...
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Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.
1 Define f ∈RN as

fi :=


√
|X c |
|X | if vi ∈ X

−
√

|X |
|X c | if vi ∈ X c

2 The RatioCut problem can be reformulated as

min
X⊂V

f TL f subject to f defined as above

Unfortunately, this problem is NP hard... Relax!
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Background Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering

A couple things to note about f :
f ⊥ 1 ⇔ ∑

fi = 0

N∑
i=1

fi =
∑

vi∈X

√
|X c |
|X | − ∑

vi∈X c

√
|X |
|X c |

= |X |
√

|X c |
|X | − |X c |

√
|X |
|X c | = 0

∥ f ∥ =p
N

∥ f ∥2 =
N∑

i=1
f 2

i

= |X | |X
c |

|X | + |X c | |X |
|X c |

= |X |+ |X c | = N
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Background Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering

If we relax our previous definition of f and simply require that (i) f ⊥ 1
and (ii) ∥ f ∥ =p

N , then we get the relaxed minimization problem1:

min
f ∈RN

f TL f subject to f ⊥ 1, ∥ f ∥ =
p

N

By the Rayleigh-Ritz Theorem, the solution is given by φ1 (scaled as
necessary), where φ1 is the eigenvector corresponding to the second
smallest eigenvalue of L.
φ1 is known as the Fiedler vector and is often used to partition a
graph into two subsets.
von Luxburg recommends the use of the random-walk version of the
Laplacian matrix, Lrw := I −D−1W , over the usual Laplacian matrix L,
which leads to the NCut and the generalized eigenvalue problem:
Lφ=λDφ.

1U. von Luxburg: “A tutorial on spectral clustering,” Statistics and Computing, vol.
17, no. 4, pp.395-416, 2007.
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Graph Partitioning via Spectral Clustering

The practice of using the Fiedler vector to partition a graph is supported by
the following theory.

Definition (Weak Nodal Domain)

A positive (or negative) weak nodal domain of f on V (G) is a maximal
connected induced subgraph of G on vertices v ∈V with f (v) ≥ 0 (or
f (v) ≤ 0) that contains at least one nonzero vertex. The number of weak
nodal domains of f is denoted by W( f ).

Corollary (Fiedler (1975))

If G is connected, then W(φ1) = 2.
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Background Graph Partitioning via Spectral Clustering

Example of Graph Partitioning
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Figure: The MN road network
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Figure: The MN road network partitioned via the Fiedler vector of Lrw
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Background Graph Partitioning via Spectral Clustering

One Can Do This Recursively!
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The MN road network recursively partitioned via the Fiedler vectors of Lrw’s of
subgraphs: j = 2

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 38 / 70



Background Graph Partitioning via Spectral Clustering

One Can Do This Recursively!

−98 −96 −94 −92 −90
43

44

45

46

47

48

49

50

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

j = 3

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 38 / 70



Background Graph Partitioning via Spectral Clustering

One Can Do This Recursively!

−98 −96 −94 −92 −90
43

44

45

46

47

48

49

50

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

j = 4

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 38 / 70



Background Graph Partitioning via Spectral Clustering

One Can Do This Recursively!

−98 −96 −94 −92 −90
43

44

45

46

47

48

49

50

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

j = 5

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 38 / 70



Multiscale Basis Dictionaries

1 Introductory Remarks

2 Motivations: Why Graphs?

3 Background
Basic Graph Theory Terminology
Graph Laplacians
Graph Partitioning via Spectral Clustering

4 Multiscale Basis Dictionaries
Hierarchical Graph Laplacian Eigen Transform (HGLET)
Generalized Haar-Walsh Transform (GHWT)

5 Best-Basis Algorithm for HGLET & GHWT

6 Approximation Experiments

7 Summary and Further Developments

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 39 / 70



Multiscale Basis Dictionaries

Our transforms involve 2 main steps:

1 Recursively partition the graph

⇕ These steps can be performed concurrently, or we can fully partition
the graph and then generate a set of bases

2 Using the regions on each level of the graph partitioning, generate a
set of orthonormal bases for the graph
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Multiscale Basis Dictionaries Hierarchical Graph Laplacian Eigen Transform (HGLET)

Hierarchical Graph Laplacian Eigen Transform (HGLET)

Now we present a novel transform that can be viewed as a generalization of
the block Discrete Cosine Transform. We refer to this transform as the
Hierarchical Graph Laplacian Eigen Transform (HGLET).

The algorithm proceeds as follows...
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Multiscale Basis Dictionaries Hierarchical Graph Laplacian Eigen Transform (HGLET)

1 Generate an orthonormal basis for the entire graph ⇒ Laplacian
eigenvectors (Notation is φ j

k,l with j = 0)
2 Partition the graph using the Fiedler vector φ j

k,1
3 Generate an orthonormal basis for each of the partitions ⇒ Laplacian

eigenvectors
4 Repeat...
5 Select an orthonormal basis from this collection of orthonormal bases

[
φ0

0,0 φ0
0,1 φ0

0,2 · · · φ0
0,N 0

0−1

]

[
φ1

0,0 φ1
0,1 φ1

0,2 · · · φ1
0,N 1

0−1

] [
φ1

1,0 φ1
1,1 φ1

1,2 · · · φ1
1,N 1

1−1

]

[
φ2

0,0φ
2
0,1 · · ·φ2

0,N 2
0−1

] [
φ2

1,0φ
2
1,1 · · ·φ2

1,N 2
1−1

] [
φ2

2,0φ
2
2,1 · · ·φ2

2,N 2
2−1

] [
φ2

3,0φ
2
3,1 · · ·φ2

3,N 2
3−1

]
...
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Multiscale Basis Dictionaries Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

For an unweighted path graph, this yields a dictionary of the block
DCT-II
Similar to wavelet packet or local cosine dictionaries in that it
generates an overcomplete basis from which we can select a basis
useful for the task at hand ⇒ best-basis algorithm, local discriminant
basis algorithm, . . .

A union of bases on disjoint subsets is obviously orthonormal[
φ0

0,0 φ0
0,1 φ0

0,2 · · · φ0
0,N 0

0−1

]
[
φ1

0,0 φ1
0,1 φ1

0,2 · · · φ1
0,N 1

0−1

][
φ1

1,0 φ1
1,1 φ1

1,2 · · · φ1
1,N 1

1−1

]
[
φ2

0,0 · · · φ2
0,N 2

0−1

][
φ2

1,0 · · · φ2
1,N 2

1−1

][
φ2

2,0 · · · φ2
2,N 2

2−1

][
φ2

3,0 · · · φ2
3,N 2

3−1

]
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Multiscale Basis Dictionaries Hierarchical Graph Laplacian Eigen Transform (HGLET)

Related Work

The following work also proposed a similar strategy to construct a
multiscale basis dictionary, i.e., local cosine dictionary on a graph:

1 A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr.,
“Diffusion-driven multiscale analysis on manifolds and graphs:
top-down and bottom-up constructions,” in Wavelets XI (M.
Papadakis et al. eds.), Proc. SPIE 5914, Paper # 59141D, 2005.

However, in our opinion, the generalization of the folding/unfolding
operations (originally used in the construction of the local cosine transforms
on a regular domain) to the graph setting may be harmful. We believe that
such operations are not necessary for most tasks in practice. If one needs
smoother and overlapping basis vectors, then a better partitioning scheme
other than the folding/unfolding operations is called for.
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Multiscale Basis Dictionaries Hierarchical Graph Laplacian Eigen Transform (HGLET)

Computational Complexity: HGLET

Computational Run Time

Complexity for MN1

HGLET (redundant) O(N 3) 67 sec

1Computations performed on a personal laptop (4.00 GB RAM, 2.26 GHz), N = 2640 and

nnz(W)= 6604.
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

1 Introductory Remarks

2 Motivations: Why Graphs?

3 Background
Basic Graph Theory Terminology
Graph Laplacians
Graph Partitioning via Spectral Clustering

4 Multiscale Basis Dictionaries
Hierarchical Graph Laplacian Eigen Transform (HGLET)
Generalized Haar-Walsh Transform (GHWT)

5 Best-Basis Algorithm for HGLET & GHWT

6 Approximation Experiments

7 Summary and Further Developments
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Generalized Haar-Walsh Transform (GHWT)

HGLET is a generalization of the block DCT, and it generates basis vectors
that are smooth on their support.

The Generalized Haar-Walsh Transform (GHWT) is a generalization of the
classical Haar and Walsh-Hadamard Transforms, and it generates basis
vectors that are piecewise-constant on their support.

The algorithm proceeds as follows...
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

1 Generate a full recursive partitioning of the graph ⇒ Fiedler vectors
2 Generate an orthonormal basis for level jmax (the finest level) ⇒

scaling vectors on the single-node regions
As with HGLET, the notation is ψ j

k,l
3 Using the basis for level jmax, generate an orthonormal basis for level

jmax−1 ⇒ scaling and Haar-like vectors
4 Repeat... Using the basis for level j , generate an orthonormal basis for

level j −1 ⇒ scaling , Haar-like, and Walsh-like vectors
5 Select an orthonormal basis from this collection of orthonormal bases

[
ψ0

0,0 ψ0
0,1 ψ0

0,2 ψ0
0,3 · · · ψ0

0,N−2 ψ0
0,N−1

]
...[

ψ
jmax−1
0,0 ψ

jmax−1
0,1

] [
ψ

jmax−1
1,0 ψ

jmax−1
1,1

]
· · ·

[
ψ

jmax−1

K jmax−1−1,0
ψ

jmax−1

K jmax−1−1,1

]

[
ψ

jmax
0,0

] [
ψ

jmax
1,0

] [
ψ

jmax
2,0

] [
ψ

jmax
3,0

]
· · ·

[
ψ

jmax
K jmax−2,0

] [
ψ

jmax
K jmax−1,0

]
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level j −1 ⇒ scaling , Haar-like, and Walsh-like vectors
5 Select an orthonormal basis from this collection of orthonormal bases

[
ψ0

0,0 ψ0
0,1 ψ0

0,2 ψ0
0,3 · · · ψ0

0,N−2 ψ0
0,N−1

]
...[

ψ
jmax−1
0,0 ψ

jmax−1
0,1

] [
ψ

jmax−1
1,0 ψ

jmax−1
1,1

]
· · ·

[
ψ

jmax−1

K jmax−1−1,0
ψ

jmax−1

K jmax−1−1,1

]

[
ψ

jmax
0,0

] [
ψ

jmax
1,0

] [
ψ

jmax
2,0

] [
ψ

jmax
3,0

]
· · ·

[
ψ

jmax
K jmax−2,0

] [
ψ

jmax
K jmax−1,0

]
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

GHWT on P6

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 50 / 70



Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Remarks
For an unweighted path graph, this yields a dictionary of Haar-Walsh
functions
As with the HGLET, we can select an orthonormal basis for the entire
graph by taking the union of orthonormal bases on disjoint regions
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ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Remarks

We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like)

Figure:

This reorganization gives us more options for choosing a good basis

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 52 / 70



Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Remarks
We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like)

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

Figure: Default dictionary; i.e., coarse-to-fine

This reorganization gives us more options for choosing a good basis
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Remarks
We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like)

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

ψ2
0,0 ψ2

1,0 ψ2
2,0 ψ2

3,0 ψ2
0,1 ψ2

2,1

ψ1
0,0 ψ1

1,0 ψ1
0,1 ψ1

1,1 ψ1
0,2 ψ1

1,2

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

Figure: Reordered & regrouped dictionary; i.e., fine-to-coarse

This reorganization gives us more options for choosing a good basis
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Remarks
We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like)

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

ψ2
0,0 ψ2

1,0 ψ2
2,0 ψ2

3,0 ψ2
0,1 ψ2

2,1

ψ1
0,0 ψ1

1,0 ψ1
0,1 ψ1

1,1 ψ1
0,2 ψ1

1,2

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

Figure: Reordered & regrouped dictionary; i.e., fine-to-coarse

This reorganization gives us more options for choosing a good basis
saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 52 / 70



Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 0, Region k = 0, l = 1
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HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 0, Region k = 0, l = 2
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 0, Region k = 0, l = 3
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 0, Region k = 0, l = 4
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 0, Region k = 0, l = 5
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 0, Region k = 0, l = 6
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 0, Region k = 0, l = 7

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 53 / 70



Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 0, Region k = 0, l = 8
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 0, Region k = 0, l = 9

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 53 / 70



Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 1, Region k = 0, l = 1
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HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 1, Region k = 0, l = 2
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HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 1, Region k = 0, l = 3
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 2, Region k = 0, l = 1
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HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 2, Region k = 0, l = 2
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HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 2, Region k = 1, l = 1
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HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 2, Region k = 1, l = 2
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 3, Region k = 0, l = 1
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Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)
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HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 3, Region k = 2, l = 1
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HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 3, Region k = 2, l = 2
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Computational Complexity: GHWT

Computational Run Time

Complexity for MN1

HGLET (redundant) O(N 3) 67 sec

GHWT (redundant) O(N 2) 10 sec

1Computations performed on a personal laptop (4.00 GB RAM, 2.26 GHz), N = 2640 and

nnz(W)= 6604.
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Related Work

The following articles also discussed the Haar-like transform on graphs and
trees, but not the Walsh-Hadamard transform on them:

1 A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr.,
“Diffusion-driven multiscale analysis on manifolds and graphs:
top-down and bottom-up constructions,” in Wavelets XI (M.
Papadakis et al. eds.), Proc. SPIE 5914, Paper # 59141D, 2005.

2 F. Murtagh, “The Haar wavelet transform of a dendrogram,” J.
Classification, vol. 24, pp. 3–32, 2007.

3 A. Lee, B. Nadler, and L. Wasserman, “Treelets–an adaptive
multi-scale basis for sparse unordered data,” Ann. Appl. Stat., vol. 2,
pp. 435–471, 2008.

4 M. Gavish, B. Nadler, and R. Coifman, “Multiscale wavelets on trees,
graphs and high dimensional data: Theory and applications to semi
supervised learning,” in Proc. 27th Intern. Conf. Machine Learning (J.
Fürnkranz et al. eds.), pp. 367–374, Omnipress, Haifa, 2010.
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Best-Basis Algorithm for HGLET & GHWT

Coifman and Wickerhauser (1992) developed the best-basis algorithm as a
means of selecting the basis from a dictionary of wavelet packets that is
“best” for approximation/compression.

We generalize this approach, developing and implementing an algorithm for
selecting the basis from the dictionary of HGLET / GHWT bases that is
“best” for approximation.

As before, we require a cost functional J . For example:

J (x) =
(

n∑
i=1

|xi |p
)1/p

= norm(x,p) 0 < p ≤ 1

For our approximation experiments in the following pages, we used
p = 0.1.
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According to cost functional J , this is the best basis for approximation.
With the GHWT bases, we run the best-basis algorithm on both the
default (coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the cost of the 2 bases to determine the
best-basis.
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Approximation Experiments

(a) Thickness data on a dendritic tree
(b) A mutilated Gaussian on the MN
road network

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 60 / 70



Approximation Experiments

(a) Thickness data on a dendritic tree (b) A mutilated Gaussian on the MN
road network

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs 06/07/23 60 / 70



Approximation Experiments

HGLET on Dendrite (weights = inv. Euclidean dist.)
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Approximation Experiments

HGLET on MN Mutilated Gaussian (weights = inv.
Euclidean dist.)
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Approximation Experiments

GHWT vs. HGLET on Dendrite
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Approximation Experiments

GHWT vs. HGLET on MN Mutilated Gaussian
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Approximation Experiments

Discussion of Approximation Results

From the HGLET plots, we see that HGLET best-basis > HGLET
Level 5 > HGLET Level 3 > Laplacian eigenvectors (HGLET Level 0)
The HGLET best-basis performs the best on the MN Mutilated
Gaussian dataset while the GHWT best-basis outperformed the others
on the Dendrite dataset
These performances make a strong case for using localized basis
vectors on multiple scales
Also, these indicate that the smoothness of the basis vectors matters
depending on the smoothness inherent in data
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Summary and Further Developments

Summary

We developed multiscale basis dictionaries on graphs and networks:
HGLET and GHWT. We also developed a corresponding best-basis
algorithm.
The HGLET is a direct generalization of Hierarchical Block Discrete
Cosine Transforms originally developed for regularly-sampled signals
and images.
The GHWT is a generalization of the Haar Transform and the
Walsh-Hadamard Transform.
Both of these transforms allow us to choose an orthonormal basis
most suitable for the task at hand, e.g., approximation, classification,
regression, . . .
They may also be useful for regularly-sampled signals, e.g., can deal
with signals of non-dyadic length; adaptive segmentation, . . .
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Summary and Further Developments

Further Developments

A good signal segmentation algorithm based on HGLET
Matrix data analysis (e.g., term-document matrices) using the GHWT
best basis
Generalization of adapted time-frequency tilings to the graph setting
=⇒ eGHWT
Generalization of Shannon wavelet packets to the graph setting =⇒
Natural Graph Wavelet Packets by hierarchical groupings of the graph
Laplacian eigenvectors
Generalization of GHWT and HGLET to signals measured on edges,
triangles, tetrahedra, . . . instead of nodes
For the details of above projects, please check our papers at my
website!
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