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The Balian-Low Theorem
Suppose {gm,n}(m,n)∈Z2 constitutes a windowed Fourier frame of L2(R) with ∆x∆ξ = 1 (which

includes the case of an orthonormal basis). Then, either σx(g) =∞ or σξ(g) =∞.

Proof. We only prove here the orthonormal basis case due to Battle [1]. For the general non-orthogonal
case, which includes the Gabor frame, see [2].

Our strategy here is the following: Assume σx(g) <∞ and σξ(g) <∞, then lead to contradiction. Let
us consider the inner product, 〈xg, g′〉, which also appeared in the proof of the inequality of the Heisenberg
uncertainty principle. Note that xg is in L2(R) so as g′, because

‖xg‖2 =

∫
x2|g(x)|2 dx = σ2

x(g) <∞,

since the mean of g is 0 and ‖g‖2 = 1. Recognizing that Fg′ = 2πiξ ĝ(ξ) and σ2
ξ (g) < ∞, we can show

g′ ∈ L2(R).
Now, we have the following:〈

xg, g′
〉

=
∑
m∈Z

∑
n∈Z
〈xg, gm,n〉

〈
gm,n, g

′〉
(a)
=

∑
m∈Z

∑
n∈Z
〈g−m,−n, xg〉

〈
−(g′)m,n, g

〉
(b)
=

∑
m∈Z

∑
n∈Z
〈g−m,−n, xg〉

〈
−g′, g−m,−n

〉
=

∑
m∈Z

∑
n∈Z

〈
−g′, gm,n

〉
〈gm,n, xg〉

= −
〈
g′, xg

〉
. (1)

Here, (a) was derived by the following computations.

〈xg, gm,n〉 =

∫
xg(x)g(x−m∆x)e−2πin∆ξx dx

[by change of variable y = x−m∆x] =

∫
(y +m∆x)g(y +m∆x)g(y)e−2πin∆ξy dy · e−2πin∆ξm∆x

[since e−2πinm∆ξ∆x = e−2πinm = 1] =

∫
(x+m∆x)g(x+m∆x)g(x)e−2πin∆ξx dx

= 〈g−m,−n, xg〉+m∆x 〈g−m,−n, g〉
= 〈g−m,−n, xg〉 . (2)

The last equality holds since g−m,−n is orthogonal to g = g0,0 for (m,n) 6= (0, 0), and if (m,n) = (0, 0),
then m∆x = 0 at any rate.
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Similarly, we can proceed: 〈
gm,n, g

′〉 =

∫
gm,n(x)g′(x) dx

[by integration by parts] = gm,n(x)g(x)

∣∣∣∣∣
∞

−∞

−
∫

(gm,n(x))′g(x) dx

[since g, g′ ∈ L2(R)] = −
∫

(gm,n(x))′g(x) dx

=
〈
−(g′)m,n, g

〉
− 2πin∆ξ 〈gm,n, g〉

=
〈
−(g′)m,n, g

〉
,

where we used the same logic as in the last equality of (2).
As for (b) in (1), we use the same change of variable as in (2) to get 〈−(g′)m,n, g〉 = 〈−g′, g−m,−n〉.
Now, let us consider a function f ∈ C∞c (R), i.e., a C∞-function vanishing as |x| → ∞. Then,

〈
xf, f ′

〉
=

∫
xf(x)f ′(x) dx

[by integration by parts] = xf(x)f(x)
∣∣∣∞
−∞
−
∫
f(x)(xf ′(x) + f(x)) dx

[since f ∈ C∞c (R)] = −
∫
xf(x)f ′(x) dx−

∫
|f(x)|2 dx

= −
〈
f ′, xf

〉
− ‖f‖2.

Now, C∞c (R) is dense in H = {f ∈ L2 |xf ∈ L2, f ′ ∈ L2}. Hence, the function g under consideration
must satisfy 〈

xg, g′
〉

= −
〈
g′, xg

〉
− ‖g‖2.

Combining this with (1), we conclude ‖g‖ = 0. This contradicts the condition ‖g‖ = 1.
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