MAT 271: Applied \& Computational Harmonic Analysis Supplementary Notes V by Naoki Saito

The Balian-Low Theorem

Suppose $\left\{g_{m, n}\right\}_{(m, n) \in \mathbb{Z}^{2}}$ constitutes a windowed Fourier frame of $L^{2}(\mathbb{R})$ with $\Delta x \Delta \xi=1$ (which includes the case of an orthonormal basis). Then, either $\sigma_{x}(g)=\infty$ or $\sigma_{\xi}(g)=\infty$.

Proof. We only prove here the orthonormal basis case due to Battle [1]. For the general non-orthogonal case, which includes the Gabor frame, see [2].

Our strategy here is the following: Assume $\sigma_{x}(g)<\infty$ and $\sigma_{\xi}(g)<\infty$, then lead to contradiction. Let us consider the inner product, $\left\langle x g, g^{\prime}\right\rangle$, which also appeared in the proof of the inequality of the Heisenberg uncertainty principle. Note that $x g$ is in $L^{2}(\mathbb{R})$ so as g^{\prime}, because

$$
\|x g\|^{2}=\int x^{2}|g(x)|^{2} \mathrm{~d} x=\sigma_{x}^{2}(g)<\infty
$$

since the mean of g is 0 and $\|g\|^{2}=1$. Recognizing that $\mathcal{F} g^{\prime}=2 \pi \mathrm{i} \xi \widehat{g}(\xi)$ and $\sigma_{\xi}^{2}(g)<\infty$, we can show $g^{\prime} \in L^{2}(\mathbb{R})$.

Now, we have the following:

$$
\begin{align*}
\left\langle x g, g^{\prime}\right\rangle & =\sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}}\left\langle x g, g_{m, n}\right\rangle\left\langle g_{m, n}, g^{\prime}\right\rangle \\
& \stackrel{(a)}{=} \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}}\left\langle g_{-m,-n}, x g\right\rangle\left\langle-\left(g^{\prime}\right)_{m, n}, g\right\rangle \\
& \stackrel{(b)}{=} \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}}\left\langle g_{-m,-n}, x g\right\rangle\left\langle-g^{\prime}, g_{-m,-n}\right\rangle \\
& =\sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}}\left\langle-g^{\prime}, g_{m, n}\right\rangle\left\langle g_{m, n}, x g\right\rangle \\
& =-\left\langle g^{\prime}, x g\right\rangle . \tag{1}
\end{align*}
$$

Here, (a) was derived by the following computations.

$$
\begin{align*}
\left\langle x g, g_{m, n}\right\rangle & =\int x g(x) \overline{g(x-m \Delta x)} \mathrm{e}^{-2 \pi \mathrm{i} n \Delta \xi x} \mathrm{~d} x \\
{[\text { by change of variable } y=x-m \Delta x] } & =\int(y+m \Delta x) g(y+m \Delta x) \overline{g(y)} \mathrm{e}^{-2 \pi \mathrm{i} n \Delta \xi y} \mathrm{~d} y \cdot \mathrm{e}^{-2 \pi \mathrm{i} n \Delta \xi m \Delta x} \\
{\left[\text { since } \mathrm{e}^{-2 \pi \mathrm{i} n m \Delta \xi \Delta x}=\mathrm{e}^{-2 \pi \mathrm{i} n m}=1\right] } & =\int(x+m \Delta x) g(x+m \Delta x) \overline{g(x)} \mathrm{e}^{-2 \pi \mathrm{i} n \Delta \xi x} \mathrm{~d} x \\
& =\left\langle g_{-m,-n}, x g\right\rangle+m \Delta x\left\langle g_{-m,-n}, g\right\rangle \\
& =\left\langle g_{-m,-n}, x g\right\rangle . \tag{2}
\end{align*}
$$

The last equality holds since $g_{-m,-n}$ is orthogonal to $g=g_{0,0}$ for $(m, n) \neq(0,0)$, and if $(m, n)=(0,0)$, then $m \Delta x=0$ at any rate.

Similarly, we can proceed:

$$
\begin{aligned}
\left\langle g_{m, n}, g^{\prime}\right\rangle & =\int g_{m, n}(x) \overline{g^{\prime}(x)} \mathrm{d} x \\
{[\text { by integration by parts] }} & =\left.g_{m, n}(x) \overline{g(x)}\right|_{-\infty} ^{\infty}-\int\left(g_{m, n}(x)\right)^{\prime} \overline{g(x)} \mathrm{d} x \\
\text { [since } \left.g, g^{\prime} \in L^{2}(\mathbb{R})\right] & =-\int\left(g_{m, n}(x)\right)^{\prime} \overline{g(x)} \mathrm{d} x \\
& =\left\langle-\left(g^{\prime}\right)_{m, n}, g\right\rangle-2 \pi \mathrm{i} n \Delta \xi\left\langle g_{m, n}, g\right\rangle \\
& =\left\langle-\left(g^{\prime}\right)_{m, n}, g\right\rangle,
\end{aligned}
$$

where we used the same logic as in the last equality of (2).
As for (b) in (1), we use the same change of variable as in (2) to get $\left\langle-\left(g^{\prime}\right)_{m, n}, g\right\rangle=\left\langle-g^{\prime}, g_{-m,-n}\right\rangle$. Now, let us consider a function $f \in C_{c}^{\infty}(\mathbb{R})$, i.e., a C^{∞}-function vanishing as $|x| \rightarrow \infty$. Then,

$$
\begin{aligned}
\left\langle x f, f^{\prime}\right\rangle & =\int x f(x) \overline{f^{\prime}(x)} \mathrm{d} x \\
{[\text { by integration by parts] }} & =\left.x f(x) \overline{f(x)}\right|_{-\infty} ^{\infty}-\int \overline{f(x)}\left(x f^{\prime}(x)+f(x)\right) \mathrm{d} x \\
\text { [since } \left.f \in C_{c}^{\infty}(\mathbb{R})\right] & =-\int x \overline{f(x)} f^{\prime}(x) \mathrm{d} x-\int|f(x)|^{2} \mathrm{~d} x \\
& =-\left\langle f^{\prime}, x f\right\rangle-\|f\|^{2} .
\end{aligned}
$$

Now, $C_{c}^{\infty}(\mathbb{R})$ is dense in $\mathcal{H}=\left\{f \in L^{2} \mid x f \in L^{2}, f^{\prime} \in L^{2}\right\}$. Hence, the function g under consideration must satisfy

$$
\left\langle x g, g^{\prime}\right\rangle=-\left\langle g^{\prime}, x g\right\rangle-\|g\|^{2} .
$$

Combining this with (1), we conclude $\|g\|=0$. This contradicts the condition $\|g\|=1$.

References

[1] G. Battle, Heisenberg proof of the Balian-Low theorem, Lett. Math. Phys., 15 (1988), pp. 175-177.
[2] I. Daubechies and A. J. E. M. Janssen, Two theorems on lattice expansions, IEEE Trans. Inform. Theory, 39 (1993), pp. 3-6.

