
MAT 271: Applied & Computational Harmonic Analysis
Supplementary Notes III by Naoki Saito

The Discrete Fourier Transform (DFT)

• The DFT can be viewed as either an approximation to the Fourier transform or an approximation to
the Fourier series coefficients.

• Suppose f ∈ L2[−A/2, A/2], and f (x) = 0 for |x| > A/2. That is, f is a space-limited, square integrable
function, which is a reasonable assumption in practice. Then, we can invoke the dual version of the
Shannon-Whittaker sampling theorem in the frequency domain, which can also be stated in terms of
Fourier coefficients of the Fourier series (Recall that the Fourier transform of the periodic functions
gives the line spectrum in the frequency domain). In fact, we have the following relationship:

f̂ (k/A) =
∫ A/2

−A/2
f (x)e−2πikx/A dx =

〈
f ,e2πik·/A

〉
=
p

Aαk , k ∈Z. (1)

• In general, f ∈ L2[−A/2, A/2] is not a band-limited function. Therefore, to have a finite length vector
representing the frequency samples (or the Fourier coefficients), we need to truncate the frequency
information for |ξ| >Ω/2 for some Ω > 0. This is the first source of error of DFT approximation to
FT/FS. This truncation allows us to consider only k with |k| ≤ AΩ/2.

• We now need to approximate the Fourier integration in (1) numerically. We use the trapezoid rule.
Here is the second source of the error of DFT. Let’s divide the interval [−A/2, A/2] into N (positive
even integer1) subintervals of equal length of ∆x = A/N . Let x` = `∆x, ` = (−N /2) : (N /2) be the
points used in the trapezoid rule. Let g (x) = f (x)e−2πikx/A . Then we have

f̂ (k/A) ≈ ∆x

2

{
g (−A/2)+2

N /2−1∑
`=−N /2+1

g (x`)+ g (A/2)

}
.

If we assume f (−A/2) = f (A/2) (which we should do if possible by windowing or zero-padding),
then the above approximation is simplified:

f̂ (k/A) ≈∆x
N /2−1∑
`=−N /2

g (x`) = A

N

N /2−1∑
`=−N /2

f (`A/N )e−2πik`/N ,

• Now, let f` = f (`A/N ) Then, the N -point DFT is defined as follows:

Fk := 1p
N

N /2−1∑
`=−N /2

f` e−2πik`/N , k =−N /2, . . . , N /2−1. (2)

The factor 1/
p

N is to make DFT a unitary transformation (i.e., `2-norm (energy) preserving trans-
formation, so that the Parseval & Plancherel equalities holds.)2

1All the subsequent matrix representations assume this. See [2, Sec. 3.1] for N being positive odd integer as well as the other
cases, e.g., different starting and ending indices.

2Note that the definition used in the standard book [2] uses the factor 1/N instead, which makes DFT non-unitary. You need to
be careful about the definition of DFT when you read literature and use software packages. More about this in the end of this note.
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We now have the following relationship.

f̂ (k/A) =
p

Aαk ≈ Ap
N

Fk .

The N -point inverse DFT is defined, as you can imagine, as follows.

f` := 1p
N

N /2−1∑
k=−N /2

Fk e2πik`/N , `=−N /2, . . . , N /2−1.

The proof of this formula gets easier when we use the vector-matrix notation later in this note.

• [The reciprocity relations] Let ∆ξ be a sampling rate in the frequency domain, i.e., ∆ξ= 1/A. Since
we know ∆x = A/N , and k/A = Ω/2 at k = N /2 (highest frequency in consideration), we have the
following fundamental relations:

∆x∆ξ= 1

N
, AΩ= N .

Interpretation of these relations is very important. For example, fix N . Then increasing the length A
implies increasing ∆x, decreasing Ω, and decreasing ∆ξ (finer frequency sampling, but the frequency
bandwidth also decreases). If we fix A, then increasing N (finer space sampling) implies decreasing
∆x and increasing Ω while ∆ξ is kept constant (increasing the frequency bandwidth).

• [A vector-matrix notation of DFT] We can gain great insights by expressing DFT using vector-
matrix notation. To do this, we need to define a couple of things. Let ωN := e2πi/N , i.e., N th root of
unity. Note that ωN =ω−1

N , ω0
N =ωN

N = 1, ωN /2
N = −1, and ωk+N

N =ωk
N for any k ∈ Z. Then, define a

column vector

w k
N := 1p

N

(
ωk·0

N ,ωk·1
N , . . . ,ωk·N /2

N , . . . ,ωk·(N−1)
N

)T
, k = 0, . . . , N −1.

We also define another column vector

w̃ k
N := 1p

N

(
ωk·(−N /2)

N ,ωk·(−N /2+1)
N , . . . ,ωk·0

N , . . . ,ωk·(N /2−1)
N

)T
, k =−N /2, . . . , N /2−1.

Using the properties of ωN listed above, one can easily show that

w̃ k
N = SN w k

N ,

where SN is equivalent to fftshift in MATLAB, so its matrix representation is

SN :=
[

ON /2 IN /2

IN /2 ON /2

]
=



0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 1
1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0


.

Note that the above matrix representation only holds if N is an even integer, which is our assumption
here. In that case, we also have ST

N = S−1
N = SN . However, if N is an odd integer, this relationship
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does not hold (derive the matrix representation of SN for odd N as an exercise!) Hence, in general, it
is safer to use ifftshift in MATLAB to undo fftshift.

Let f = ( f−N /2, . . . , fN /2−1)T be a vector of sampled points f` = f (`∆x), `=−N /2, . . . , N /2−1. Now
DFT can be written as follows:

Fk =
〈

f , w̃ k
N

〉
, k =−N /2, . . . , N /2−1.

Finally, define an N -point DFT matrix commonly used in the literature

WN :=
w 0

N w 1
N · · · w N−1

N


whereas we define the following matrix compliant with our definition of DFT (2):

W̃N :=
w̃−N /2

N w̃−N /2+1
N · · · w̃ N /2−1

N

= SN WN ST
N .

Let F = (F−N /2, . . . ,FN /2−1)T ∈CN . Then, the N -point DFT/IDFT can be conveniently written as:

F = W̃ ∗
N f , f = W̃N F ,

where W̃ ∗
N is an hermitian conjugate (transposition followed by element-wise complex conjugation)

of W̃N , and also often written as W̃ H
N in literature. In fact, W̃ ∗

N = (
SN WN ST

N

)∗ = SN W ∗
N ST

N . We also
denote DN [ f ] := W̃ ∗

N f .

• [Theorem 1] Both WN and W̃N are N -by-N unitary matrix. In other words, both {w k
N }N−1

k=0 and
{w̃ k

N }N /2−1
k=−N /2 are orthonormal bases of CN .

(Proof) Exercise. A main thing is to prove
〈

w k
N , w`

N

〉= δk,`.

• [Theorem 2] All the eigenvalues of WN and W̃N are 1,−1, i,−i.
(Proof) See [1, 2, 3]. Note that from this theorem we have W 4

N = W̃ 4
N = IN .

• [Pictorial view of the matrix W ∗
N ] Using the properties of ωN , in particular the periodicity with
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period N , we have

W ∗
N =



(w 0
N )∗

(w 1
N )∗

(w 2
N )∗
...

(w N /2
N )∗
...

(w N−1
N )∗


= 1p

N



1 1 1 . . . 1
1 ω1

N ω2
N . . . ωN−1

N

1 ω2
N ω4

N . . . ω2(N−1)
N

...
...

... . . .
...

1 ωN /2
N ω2N /2

N . . . ω(N−1)N /2
N

...
...

... . . .
...

1 ωN−1
N ω2(N−1)

N . . . ω(N−1)(N−1)
N



= 1p
N



1 1 1 . . . 1
1 ω−1

N ω−2
N . . . ω−(N−1)

N
1 ω−2

N ω−4
N . . . ω−2(N−1)

N
...

...
... . . .

...
1 ω−N /2+1

N ω2(−N /2+1)
N . . . ω(N−1)(−N /2+1)

N
1 ω−N /2

N ω−2N /2
N . . . ω−(N−1)N /2

N
1 ωN /2−1

N ω2(N /2−1)
N . . . ω(N−1)(N /2−1)

N
1 ωN /2−2

N ω2(N /2−2)
N . . . ω(N−1)(N /2−2)

N
...

...
... . . .

...
1 ω1

N ω2
N . . . ωN−1

N



.

The following figure shows the matrix W ∗
N and W̃ ∗

N with N = 16 as waveforms. Note that the first
row vector of a matrix is displayed in the bottom while the last row in the top in each figure. Note the
change of the locations of the basis vectors as well as symmetry (W ∗

N )T =W ∗
N , (W̃ ∗

N )T = W̃ ∗
N .

• [Different forms of DFT] It is amazing to know that the definition of DFT varies with the software
systems one uses. We should always be careful what is the exact definition of the DFT for each
software system.

MATLAB, R, S-Plus: Fk =∑N
`=1 f` e−2πi(k−1)(`−1)/N for k = 1 : N .

Mathematica: Fk = 1p
N

∑N
`=1 f` e2πi(k−1)(`−1)/N for k = 1 : N .

Maple: Fk+1 = 1
N

∑N−1
`=0 f` e−2πik`/N for k = 0 : (N −1).

MathCad: Fk = 1p
N

∑N−1
`=0 f` e2πik`/N for k = 0 : (N −1).

• [Further caution]

– If an input argument to the DFT/FFT function is a matrix (or multidimensional array), then
MATLAB applies DFT on each column vector for a matrix (or the first non-singleton dimension
for a 3D or higher dimensional array.

– On the other hand, the DFT functions in the other packages perform the multidimensional DFT
on the input.

Hence, the DFT we defined in this note, i.e., F = W̃ ∗
N f , can be realized by the following MATLAB command

(assuming that f is a 1D vector):
F=fftshift(fft(ifftshift(f)))/sqrt(length(f));
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(a) Re(W ∗) (b) Im(W ∗)

(c) Re(W̃ ∗) (d) Im((W̃ ∗)

For more information about the DFT including higher-dimensional versions, see [2]. Also, the DFT
matrix has more profound properties. See the challenging and deep paper by [1].
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