MAT 271: Applied & Computational Harmonic Analysis: Supplementary Notes II by Naoki Saito

A Brief History of the Convergence of the Fourier Series

Theorem 1 (Dirichlet, 1829) Suppose f is 1-periodic, piecewise smooth on \mathbb{R} . Then, *n*th partial sum, $S_n[f](x) := \sum_{k=1}^{n} c_k e^{2\pi i k x}$, satisfies

$$\lim_{n\to\infty}S_n[f](x)=\frac{1}{2}\left[f(x+)+f(x-)\right].$$

In particular, if *x* is a point of continuity, then $\lim_{n\to\infty} S_n[f](x) = f(x)$.

- **Theorem 2** (du Bois Reymond, 1876) There exists $f \in C(I)$ such that $\{S_n[f](0)\}$ diverges, where *I* is an interval of unit length.
- **Theorem 3** (A weak version of Fejér's Theorem) If *f* is 1-periodic, *continuous*, and piecewise smooth on \mathbb{R} , then the Fourier series of *f* converges to *f* absolutely and uniformly.

Definition: Suppose a series of functions $\sum_{n=1}^{\infty} g_n(x)$ converges to g(x) on a set $x \in I$. Then, the convergence is called *absolute* if $\sum_{1}^{\infty} |g_n(x)|$ also converges for $x \in I$. If we have $\sup_{x \in I} \left| g(x) - \sum_{1}^{N} g_n(x) \right| \to 0$ as $N \to \infty$, then we call this a *uniform* convergence.

Theorem 4 (Fejér 1904) If $f \in C(I)$, then the Cesàro means of $S_n[f]$ converge *uniformly* to f.

Definition: The *m*th *Cesàro mean* of partial sums is the mean of the first m + 1 partial sums, i.e., $\sigma_m[f](x) := \frac{1}{m+1} \sum_{n=0}^m S_n[f](x).$

- **Theorem 5** (Size of the Fourier coefficients and the smoothness of the functions) Suppose f is 1-periodic. If $f \in C^{k-1}(\mathbb{R})$ and $f^{(k-1)}$ is piecewise smooth (i.e., $f^{(k)}$ exists and piecewise continuous), then the Fourier coefficients of f, c_n , satisfy $\sum |n^k c_n|^2 < \infty$. In particular, $n^k c_n \to 0$. On the other hand, suppose $c_n, n \neq 0$, satisfy $|c_n| \leq C |n|^{-(k+\gamma)}$ for some C > 0 and $\gamma > 1$. Then $f \in C^k(\mathbb{R})$.
- **Theorem 6** (Kolmogorov, 1926) There exists $f \in L^1(I)$ such that $\{S_n[f](x)\}$ diverges for every x.
- **Theorem 7** (Carleson, 1966) If $f \in L^2(I)$, then $S_n[f](x)$ converges to f(x) almost everywhere.
- **Theorem 8** (Hunt, 1967) If $f \in L^p(I)$, p > 1, then $S_n[f](x)$ converges to f(x) almost everywhere.

Mathematicians are still trying to simplify the proof of the Carlson-Hunt theorem as of today. For the details of the above facts, see [1, Chap. 1,2], [2, Chap. 1], [3, Part 1], and [4, Chap. 1]. [5, Chap. 1].

References

[1] J. M. ASH, ed., Studies in Harmonic Analysis, vol. 13 of MAA Studies in Mathematics, Math. Assoc. Amer., 1976.

- [2] H. DYM AND H. P. MCKEAN, Fourier Series and Integrals, Academic Press, 1972.
- [3] T. W. KÖRNER, Fourier Analysis, Cambridge Univ. Press, 1988.
- [4] S. G. KRANTZ, *A Panorama of Harmonic Analysis*, no. 27 in The Carus Mathematical Monographs, Math. Assoc. Amer., Washington, D.C., 1999.
- [5] M. A. PINSKY, *Introduction to Fourier Analysis and Wavelets*, Amer. Math. Soc., Providence, RI, 2002. Republished by AMS, 2009.