MAT 271: Applied & Computational Harmonic Analysis Supplementary Notes I by Naoki Saito

The Generalized Functions

• The generalized functions have more singular behavior than functions (thus the name "generalized functions"), and are always defined as *linear functionals* on the *dual space*. Thus, before we discuss the generalized functions, we need to know the following.

Definition: Let \mathscr{X} be a vector space over, say, \mathbb{C} . A linear map from \mathscr{X} to \mathbb{C} is called a *linear functional* on \mathscr{X} . If \mathscr{X} is a normed vector space, then the space $\mathscr{L}(\mathscr{X},\mathbb{C})$ of *bounded* linear functionals on \mathscr{X} is called the *dual space*, and denoted by \mathscr{X}^* (or \mathscr{X}').

Examples: The dual of $L^p(\mathbb{R})$, $1 , is <math>L^q(\mathbb{R})$, where (1/p) + (1/q) = 1. These numbers are called *conjugate exponents*. In particular, L^2 is self dual. Similarly, the dual of the sequence space $\ell^p(\mathbb{Z})$ is $\ell^q(\mathbb{Z})$.

Hölder's Inequality: Let p and q are conjugate exponents. Then for any $f \in L^p$, $g \in L^q$, we have

$$||fg||_1 \le ||f||_p ||g||_q$$
.

(As you can see, the Cauchy-Schwarz inequality is a special version of this with p = q = 2. The proof is a great exercise.)

The Riesz Representation Theorem: Suppose p and q are conjugate exponents with $1 . Then for each linear functional <math>\varphi \in (L^p)^*$, there exists $g \in L^q$ such that $\varphi(f) = \int f(x)g(x) \, dx$ for all $f \in L^p$. In other words, $(L^p)^*$ is isometrically isomorphic to L^q .

- The more singular the class of the generalized functions, the more regular its dual.
- We now define the *Schwartz class* $\mathcal{S} := \{ f \in C^{\infty}(\mathbb{R}) \mid \sup_{x \in \mathbb{R}} |x^k \partial^{\ell} f| < \infty$, for any $k, \ell \in \mathbb{N} \}$, which are very smooth and decay faster than any polynomial at infinity, i.e., a very nice class of functions. An example: The Gaussian $g(x) = e^{-x^2}$.
- Then, we consider the dual \mathscr{S}' . You can imagine that members of this class can be very singular or "spiky." This dual space is called the *tempered distributions*. Being as a linear functional, each member of \mathscr{S}' acts on the Schwartz functions. More precisely, if $F \in \mathscr{S}'$ and $\phi \in \mathscr{S}$, then the value of F at ϕ (F is a *linear map* from \mathscr{S} to \mathbb{C} !!) is denoted as $\langle F, \phi \rangle = F(\phi) = \int F(x)\phi(x) \, dx$.
- An example: the Dirac delta function $\delta(x) \in \mathcal{S}'$ is defined as $\langle \delta, \phi \rangle = \phi(0)$. In other words, $\int_{-\infty}^{\infty} \delta(x) \phi(x) dx = \phi(0)$.
- For any $F \in \mathcal{S}'$ and any $\phi \in \mathcal{S}$, we can define the following operations:

Differentiation: $\langle \partial_x^k F, \phi \rangle = (-1)^k \langle F, \partial_x^k \phi \rangle$.

This can be shown by integration by parts. An example: $\langle \delta', \phi \rangle = -\langle \delta, \phi' \rangle = -\phi'(0)$.

Convolution: $F * \phi(x) = \langle F, \tau_x \widetilde{\phi} \rangle$, where $\widetilde{\phi}(y) = \phi(-y)$.

An example: $(\delta * \phi)(x) = \phi(x)$.

Fourier transform: $\langle \hat{F}, \phi \rangle = \langle F, \hat{\phi} \rangle$.

An example: $F = \delta$, then $\langle \hat{\delta}, \phi \rangle = \langle \delta, \hat{\phi} \rangle = \hat{\phi}(0)$. This essentially shows that $\hat{\delta}(\xi) \equiv 1$. Using the translation operator, we can also have $\mathscr{F}\{\delta(x-a)\} = \mathrm{e}^{-2\pi\mathrm{i}\xi a}$, and $\mathscr{F}\{\mathrm{e}^{-2\pi\mathrm{i}xa}\} = \delta(\xi+a)$.

- **Definition:** A tempered distribution F on \mathbb{R} is called *periodic* with period A if $\langle F, \tau_A \phi \rangle = \langle F, \phi \rangle$ for all $\phi \in \mathcal{S}$. A sequence of tempered distributions $\{F_n\}$ is said to *converge temperately* to a tempered distribution F if $\langle F_n, \phi \rangle \to \langle F, \phi \rangle$ as $n \to \infty$ for all $\phi \in \mathcal{S}$. (See that all these operations and definitions are now moved to the *nice spouses* of F!)
- [Theorem] If F is a periodic tempered distribution, then F can be expanded in a temperately convergent Fourier series, $F(x) = \frac{1}{\sqrt{A}} \sum_{-\infty}^{\infty} \alpha_k \mathrm{e}^{2\pi \mathrm{i} k x/A}$, i.e., $\langle F, \phi \rangle = \sum_{-\infty}^{\infty} \alpha_k \left\langle \frac{1}{\sqrt{A}} \mathrm{e}^{2\pi \mathrm{i} k \cdot /A}, \phi \right\rangle$ for all $\phi \in \mathcal{S}$. Moreover, the coefficients α_k satisfy $\alpha_k \leq C(1+|k|)^N$ for some $C, N \geq 0$. Conversely, if $\{\alpha_k\}$ is any sequence satisfying this estimate, the series $\frac{1}{\sqrt{A}} \sum_{-\infty}^{\infty} \alpha_k \mathrm{e}^{2\pi \mathrm{i} k x/A}$ converges temperately to a periodic tempered distribution.
- Define the *Shah function* (or *comb function*), $\text{III}_A(x) := \sum_{k=-\infty}^{\infty} \delta(x-kA)$. The facts about this function:
 - 1. Since this is a periodic tempered distribution, we can expand it into the temperately convergent Fourier series; $\text{III}_A(x) \sim \frac{1}{A} \sum_{-\infty}^{\infty} e^{2\pi i k x/A}$. Note that $\alpha_k \equiv 1/\sqrt{A}$ for all $k \in \mathbb{Z}$.
 - 2. $\mathscr{F}\{\mathrm{III}_A\}(\xi) = \frac{1}{A}\mathrm{III}_{1/A}(\xi) = \frac{1}{A}\sum_{-\infty}^{\infty}\delta(\xi \frac{k}{A}).$
- Using the Shah function and its Fourier transform, we can see that the Fourier transform of the Fourier series of a periodic function on [-A/2, A/2] as follows:

$$f(x) \sim \frac{1}{\sqrt{A}} \sum_{-\infty}^{\infty} \alpha_k e^{2\pi i k x/A} \xrightarrow{\mathscr{F}} \frac{1}{\sqrt{A}} \sum_{-\infty}^{\infty} \alpha_k \delta(\xi - \frac{k}{A})$$
 i.e., line spectrum (discrete)

As you can see, as A gets large, we are doing the finer sampling in the frequency domain, i.e.,

$$f \in L^{2}[-A/2, A/2] \qquad \xrightarrow{\mathscr{F}} \qquad \qquad \hat{f} \in L^{2}(\mathbb{R})$$

$$* \text{ convolution} \qquad \xrightarrow{\mathscr{F}} \qquad \qquad \cdot \text{ multiplication}$$

$$III_{A}(x) \qquad \xrightarrow{\mathscr{F}} \qquad \qquad (1/A) III_{1/A}(\xi)$$

$$\updownarrow \qquad \qquad \updownarrow \qquad \qquad \updownarrow$$

Periodization with period $A \xrightarrow{\mathscr{F}}$ Discretization with rate 1/A and scaling with factor 1/A

For the details of the facts in these notes, see [1, Chap. 9], [2, Chap. 9], [3, Chap. 1].

References

- [1] G. B. FOLLAND, *Fourier Analysis and Its Applications*, Amer. Math. Soc., Providence, RI, 1992. Republished by AMS, 2009.
- [2] —, Real Analysis: Modern Techniques and Their Applications, John Wiley & Sons, Inc., 2nd ed., 1999.
- [3] E. M. STEIN AND G. WEISS, *Introduction to Fourier Analysis on Euclidean Spaces*, Princeton Univ. Press, 1971.