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@ Many natural and man-made signals exhibit time-varying frequencies
(e.g., chirps, FM radio waves).
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@ Many natural and man-made signals exhibit time-varying frequencies
(e.g., chirps, FM radio waves).

o Characterization and analysis of such a signal, u(f), based on
instantaneous amplitude a(t), instantaneous phase ¢(t), and
instantaneous frequency w(t) := ¢'(t), are very important:

u(t) = a(t) cosd(t).
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Analytic Signal

@ It is convenient to use a complexified version of the signal whose real
part is a given real-valued signal wu(t).
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Analytic Signal

@ It is convenient to use a complexified version of the signal whose real
part is a given real-valued signal wu(t).

e Given u(r), however, there are infinitely many ways to define the
instantaneous amplitude and phase (IAP) pairs so that

u(r) = a(t)cosd(t).
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Analytic Signal

@ It is convenient to use a complexified version of the signal whose real
part is a given real-valued signal wu(t).
e Given u(r), however, there are infinitely many ways to define the
instantaneous amplitude and phase (IAP) pairs so that
u(r) = a(t)cosd(t).
@ This is due to the arbitrariness of the complexified version of u, i.e.,
£ =u®) +iv(n)

where v(1) is an arbitrary real-valued signal; yet this yields the IAP
representation of u(f) via

a(t) =V ud(t) +v3(1), @)= arctan%.
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Analytic Signal

@ It is convenient to use a complexified version of the signal whose real
part is a given real-valued signal wu(t).

e Given u(r), however, there are infinitely many ways to define the
instantaneous amplitude and phase (IAP) pairs so that

u(r) = a(t)cosd(t).
@ This is due to the arbitrariness of the complexified version of u, i.e.,
f@)=u(t)+iv(e)

where v(1) is an arbitrary real-valued signal; yet this yields the IAP
representation of u(f) via
v(t
a(t) =V ud(t) +v3(1), @)= arctanﬁ.
u(t)
@ The instantaneous frequency is defined as
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Analytic Signal

@ Gabor (1946) proposed to use the the Hilbert transform of u(t) as
v(t), and called the complex-valued f(¢) an analytic signal.
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Analytic Signal

@ Gabor (1946) proposed to use the the Hilbert transform of u(t) as
v(t), and called the complex-valued f(¢) an analytic signal.

e Vakman (1972) proved that v(#) must be of the Hilbert transform of
u(t) if we impose some a priori physical assumptions:
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Analytic Signal

@ Gabor (1946) proposed to use the the Hilbert transform of u(t) as
v(t), and called the complex-valued f(¢) an analytic signal.
e Vakman (1972) proved that v(#) must be of the Hilbert transform of
u(t) if we impose some a priori physical assumptions:
@ v(1) must be derived from u(z).
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Analytic Signal

@ Gabor (1946) proposed to use the the Hilbert transform of u(t) as
v(t), and called the complex-valued f(¢) an analytic signal.

e Vakman (1972) proved that v(#) must be of the Hilbert transform of
u(t) if we impose some a priori physical assumptions:

@ v(1) must be derived from u(z).
@ Amplitude continuity: a small change in u = a small change in a(1).
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Analytic Signal

@ Gabor (1946) proposed to use the the Hilbert transform of u(t) as
v(t), and called the complex-valued f(¢) an analytic signal.
e Vakman (1972) proved that v(#) must be of the Hilbert transform of
u(t) if we impose some a priori physical assumptions:
@ v(1) must be derived from u(z).
@ Amplitude continuity: a small change in u = a small change in a(1).
© Phase independence of scale: if cu(t), c € R arbitrary scalar, then the

phase does not change from that of u(#) and its amplitude becomes ¢
times that of u(f).
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Analytic Signal

@ Gabor (1946) proposed to use the the Hilbert transform of u(t) as
v(t), and called the complex-valued f(¢) an analytic signal.
e Vakman (1972) proved that v(#) must be of the Hilbert transform of
u(t) if we impose some a priori physical assumptions:
@ v(1) must be derived from u(z).
@ Amplitude continuity: a small change in u = a small change in a(1).
© Phase independence of scale: if cu(t), c € R arbitrary scalar, then the
phase does not change from that of u(#) and its amplitude becomes ¢
times that of u(f).
@ Harmonic correspondence: if u(f) = agcos(wot + ), then a(r) = ay,
(1) =wot +¢po.
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Analytic Signal . ..

@ For simplicity, we assume that our signals are 27-periodic in
O€e[-m,mm).
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Analytic Signal . ..

@ For simplicity, we assume that our signals are 27-periodic in
O€e[-m,mm).
@ Hence, we work on the unit circle and unit disk D in C = R2.
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Analytic Signal . ..

@ For simplicity, we assume that our signals are 27-periodic in
O€e[-m,mm).

@ Hence, we work on the unit circle and unit disk D in C = R2.

@ Note that the signals over R = (—oo,00) can be treated similarly by
considering the real axis and the upper half plane of C.
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Analytic Signal . ..

@ For simplicity, we assume that our signals are 27-periodic in
O€e[-m,mm).

@ Hence, we work on the unit circle and unit disk D in C = R2.

@ Note that the signals over R = (—oo,00) can be treated similarly by
considering the real axis and the upper half plane of C.

@ The analytic signal of a given signal u(0) e R is often and simply

obtained via the Hilbert transform:
/A —_

fO)=u@) +ifu@), Hu®):= % pvf u(t) cot

-7

‘ dr.

saito@math.ucdavis.edu (UC Davis) Analytic Signals 02/20/2014 5/ 10



Analytic Signal . ..

@ For simplicity, we assume that our signals are 27-periodic in
O€e[-m,mm).

@ Hence, we work on the unit circle and unit disk D in C = R2.

@ Note that the signals over R = (—oo,00) can be treated similarly by
considering the real axis and the upper half plane of C.

@ The analytic signal of a given signal u(0) e R is often and simply

obtained via the Hilbert transform:
/A

1 —
fO)=u@) +ifu@), Hu®):= Y= pvf u(t) cot ‘ dr.
—7T
@ Note that
u@) = % + Z (ay cos kB + by sin k0) = A u(0) = Z (aysin kO — by cos k0).
k=1 k=1
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Analytic Signal . ..

@ For simplicity, we assume that our signals are 27-periodic in
O€e[-m,mm).

@ Hence, we work on the unit circle and unit disk D in C = R2.

@ Note that the signals over R = (—oo,00) can be treated similarly by
considering the real axis and the upper half plane of C.

@ The analytic signal of a given signal u(0) e R is often and simply

obtained via the Hilbert transform:
/A

1 —
fO)=u@) +ifu@), Hu®):= Y= pvf u(t) cot ‘ dr.
—7T
@ Note that
u@) = % + Z (ay cos kB + by sin k0) = A u(0) = Z (aysin kO — by cos k0).
k=1 k=1

o Furthermore,

FO) =24 Y (@ —ibpelt?.
2 k=1
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Analytic Signal . ..

We can gain a deeper insight by viewing this as the boundary value of an
analytic function F(z) where

F(z):=U(z2)+iU(z), ze€D,

where

UG = Ulre?) = Prxu@) =5 [ L= e
B T S 2mJ)-n1-2rcos(@—1)+r2 ’
_ ~ 1 [” 2rsin(@ — 1)
_ 0y _ _
U(z)=U(re")=Qr*u®) = 7). T 2rcos@=1) 512 u(r)dr.

In other words, the original signal u(0) = U (e!) is the boundary value of
the harmonic function U on 0D, which is constructed by the Poisson
integral. U and Q,(0) are referred to as the conjugate harmonic function
and the conjugate Poisson kernel, respectively.
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Analytic Signal ... An Example: u(60)

20
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Analytic Signal ... An Example: u(0) and #u(0)

20

u(e)
Hu(e)
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Analytic Signal ... An Example: U(z) and U(z)

(a) Uz
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Analytic Signal . ..

Even if we use the analytic signal, its IAP representation is not unique as
shown by Cohen, Loughlin, and Vakman (1999):

o f(0)=a®e??, where a@®) = u®) cos (@) + v(0) sing(0) may be
negative though ¢(0) is continuous;
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(a) Continuous phase
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Analytic Signal . ..

Even if we use the analytic signal, its IAP representation is not unique as
shown by Cohen, Loughlin, and Vakman (1999):
e f(O)= a(@)ei"’w), where a(0) = u(@) cosp(0) + v(0) sinp(0) may be
negative though ¢(0) is continuous;

o f(O)= Ia(H)Iei(‘p(g)”“(G)), where a(0) is an appropriate phase function,
which may be discontinuous.
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(a) Continuous phase (b) Nonnegative amplitude
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