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Introductory Remarks

@ For much more details of this part of lecture, please check my course
website on “Harmonic Analysis on Graphs & Networks':
http://www.math.ucdavis.edu/ saito/courses/HarmGraph/ as well
as my two short articles with Jeff Irion at
http://wwuw.math.ucdavis.edu/"saito/publications/.

@ We rely on the so-called graph Laplacians to construct our multiscale basis
dictionaries. Some good references on graph Laplacian eigenvalues are:
e R. B. Bapat: Graphs and Matrices, Universitext, Springer, 2010.
o A. E. Brouwer & W. H. Haemers: Spectra of Graphs, Springer, 2012.
e F. R. K. Chung: Spectral Graph Theory, Amer. Math. Soc., 1997.
o D. Cvetkovi¢, P. Rowlinson, & S. Simi¢: An Introduction to the Theory
of Graph Spectra, Vol. 75, London Mathematical Society Student
Texts, Cambridge Univ. Press, 2010.
e D. Spielman: “Spectral graph theory,” in Combinatorial Scientific
Computing (O. Schenk, ed.), Chap. 18, pp. 495-524, CRC Press, 2012.
@ As for the graph Laplacian eigenfunctions, there are not too many books (although
there may be many papers); one of the good books is
o T. Biyikoglu, J. Leydold, & P. F. Stadler, Laplacian Eigenvectors of
Graphs, Lecture Notes in Mathematics, vol. 1915, Springer, 2007.
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Motivations: Why Graphs?

© Motivations: Why Graphs?
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Motivations: Why Graphs?

@ More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:
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Motivations: Why Graphs?

@ More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

e Data from sensor networks
o Data from social networks, webpages, ...
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Motivations: Why Graphs?

@ More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

Data from sensor networks

o Data from social networks, webpages, ...

e Data from biological networks

]

@ It is quite important to analyze:
o Topology of graphs/networks (e.g., how nodes are connected, etc.)
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Motivations: Why Graphs?

@ More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

e Data from sensor networks

o Data from social networks, webpages, ...
e Data from biological networks

o ...

@ It is quite important to analyze:

o Topology of graphs/networks (e.g., how nodes are connected, etc.)
e Data measured on nodes (e.g., a node = a sensor, then what is an
edge?)
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Motivations: Why Graphs?

@ Fourier analysis/synthesis and wavelet analysis/synthesis have been
‘crown jewels' for data sampled on the regular lattices.
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Motivations: Why Graphs?

@ Fourier analysis/synthesis and wavelet analysis/synthesis have been
‘crown jewels' for data sampled on the regular lattices.

@ Hence, we need to lift such tools for unorganized and
irregularly-sampled datasets including those represented by graphs and
networks.
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Motivations: Why Graphs?

@ Fourier analysis/synthesis and wavelet analysis/synthesis have been
‘crown jewels' for data sampled on the regular lattices.

@ Hence, we need to lift such tools for unorganized and
irregularly-sampled datasets including those represented by graphs and
networks.

@ Moreover, constructing a graph from a usual signal or image and
analyzing it can also be very useful! E.g., Nonlocal means image
denoising of Buades-Coll-Morel.
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Motivations: Why Graphs?

An Example of Sensor Networks

1) Earthquake or eruption occurs
2) Nodes detect seismic event

3) Each node sends event report
to base station

GPS receiver
for time sync

Base station FreeWave

at observatory Long-distsnca radio modem
. radio link (4km}

Figure : Volcano monitoring sensor network architecture of Harvard Sensor
Networks Lab
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Motiv: Why Graphs?

An Example of Social Networks

Figure : Through the courtesy of Prof. Fan Chung, UC San Diego
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Motivations: Why Graphs?

An Example of Biological Networks

Y
€D

Anatomical parcellation 1 1 Recording sites

Occipital

) i
Infericr mnpe.a:‘\\.\ Orbitofrontal
4 Temporal pole
Graph theoretical analysis

Figure : From E. Bullmore and O. Sporns, Nature Reviews Neuroscience, vol. 10,
pp.186-198, Mar. 2009.
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Motivations: Why Graphs?

Another Biological Example: Retinal Ganglion Cells
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Motivations: Why Graphs?

Retinal Ganglion Cells (D. Hubel: Eye, Brain, & Vision, '95)

Ganglion  Horizontal
cell cell

cell

Optic
nerve
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A Typical Neuron (from Wikipedia)

Structure of a Typical Neuron

Dendrite Axon terminal

Schwann cell

Nucleus Myelin sheath
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Mouse's RGC as a Graph

- -100
400 150
X (m)
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Motivations: Why Graphs?

Clustering using Features Derived by Neurolucida®

P Y
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Motivations: Why Graphs?

Representing a Regular Image as a Graph

often turns out to be quite useful for various purposes. In particular,

Nonlocal Means Denoising Algorithm of Buades-Coll-Morel is quite
impressive.

@ Construct a graph each of whose vertices represents k x k patch of a

given image (k may be 3,5,..., etc.) So each vertex represents a point
in R¥".
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Representing a Regular Image as a Graph

often turns out to be quite useful for various purposes. In particular,

Nonlocal Means Denoising Algorithm of Buades-Coll-Morel is quite
impressive.

@ Construct a graph each of whose vertices represents k x k patch of a
given image (k may be 3,5,..., etc.) So each vertex represents a point
in R¥".

o Connect every pair of vertices with the weight

W;; = exp(—||patch; — patch; 2/€%) with appropriately chosen scale
parameter € > 0.
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Motivations: Why Graphs?

Representing a Regular Image as a Graph

often turns out to be quite useful for various purposes. In particular,
Nonlocal Means Denoising Algorithm of Buades-Coll-Morel is quite
impressive.

@ Construct a graph each of whose vertices represents k x k patch of a
given image (k may be 3,5,..., etc.) So each vertex represents a point
in R¥".

o Connect every pair of vertices with the weight
W;; = exp(—||patch; — patch; 2/€%) with appropriately chosen scale
parameter € > 0.

o Compute the weighted average of the center pixel of each patch using
the normalized weights W;;/ ¥, W;,. More precisely, the average of
the center of the ith patch, ¢; =Y ; Wjjc;/ ¥, Wip.
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Motivations: Why Graphs?

Representing a Regular Image as a Graph

often turns out to be quite useful for various purposes. In particular,
Nonlocal Means Denoising Algorithm of Buades-Coll-Morel is quite
impressive.

@ Construct a graph each of whose vertices represents k x k patch of a
given image (k may be 3,5,..., etc.) So each vertex represents a point
in RK.

o Connect every pair of vertices with the weight
W;; = exp(—||patch; — patch; 2/€%) with appropriately chosen scale
parameter € > 0.

o Compute the weighted average of the center pixel of each patch using
the normalized weights W;;/ ¥, W;,. More precisely, the average of
the center of the ith patch, ¢; =Y ; Wjjc;/ ¥, Wip.

@ See also an interesting work by Daitch-Kelner-Spielman: “Fitting a
Graph to Vector Data,” Proc. 26th Intern. Conf. Machine Learning,
2009.
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Motivations: Why Graphs?

From: A. Buades, B. Coll, and J.-M. Morel, SIAM Review,
vol. 52, no. 1, pp. 113-147, 2010.

Noisy Image; Total Variation Denoising; Neighborhood Filter

Trans. Inv. Wavelets; Empirical Wiener; Nonlocal Means
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Motivations: Why Graphs?

Motivations: Multiscale Basis Dictionary on Graphs

Wavelets

@ Have been quite successful on regular domains

@ Have been extended to irregular domains = “2nd Generation
Wavelets”
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@ Have been extended to irregular domains = “2nd Generation
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For example:
e Hammond, Vandergheynst, and Gribonval (2011): wavelets via
spectral graph theory
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= Bremer et al. (2006): diffusion wavelet packets
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Motivations: Why Graphs?

Motivations: Multiscale Basis Dictionary on Graphs

Wavelets
@ Have been quite successful on regular domains
@ Have been extended to irregular domains = “2nd Generation
Wavelets”
For example:

e Hammond, Vandergheynst, and Gribonval (2011): wavelets via
spectral graph theory

e Coifman and Maggioni (2006): diffusion wavelets
= Bremer et al. (2006): diffusion wavelet packets
Key difficulty: The notion of frequency is ill-defined on graphs = The
Fourier transform is not properly defined on graphs
Common strategy: Develop wavelet-/ike multiscale transforms

Key Idea: Use of the graph Laplacian eigenvectors as the substitution of
the Fourier basis
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Motivations: Why Graphs?

Goals

@ Develop and implement multiscale transforms for data on graphs and
networks; in particular, build multiscale basis dictionaries on graphs.
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Motivations: Why Graphs?

Goals

@ Develop and implement multiscale transforms for data on graphs and
networks; in particular, build multiscale basis dictionaries on graphs.

@ Investigate their usefulness for a variety of applications including
approximation, denoising, classification, and regression on graphs.
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Motivations: Why Graphs?

Goals

@ Develop and implement multiscale transforms for data on graphs and
networks; in particular, build multiscale basis dictionaries on graphs.

@ Investigate their usefulness for a variety of applications including
approximation, denoising, classification, and regression on graphs.

@ In this lecture, we will focus on how to construct such dictionaries on
graphs and demonstrate their usefulness for data approximation on
graphs.
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Background

© Background
@ Basic Graph Theory Terminology
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Background

Definitions and Notation

Let G be a graph.
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Definitions and Notation

Let G be a graph.
e V=V(G) ={vy,...,vN} is the set of vertices.
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Definitions and Notation

Let G be a graph.
e V=V(G) ={vy,...,vN} is the set of vertices.
o E=E(G) ={ey,...,en'} is the set of edges, where e; = (v;,v))
represents an edge (or line segment) connecting between adjacent
vertices v, vj for some 1<i,j<N.
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Definitions and Notation

Let G be a graph.

e V=V(G) ={vy,...,vN} is the set of vertices.

o E=E(G) ={ey,...,en'} is the set of edges, where e; = (v;,v))
represents an edge (or line segment) connecting between adjacent
vertices v, vj for some 1<i,j<N.

o W=W(G) eRV*N is the weight matrix, where w;; denotes the edge
weight between vertices i and j.
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Definitions and Notation
Note that there are many ways to define w;;.
For example, for unweighted graphs, we typically use

1 if v;~v; (i.e., v; and v; are adjacent);
wjj=
& 0 otherwise.

This is often referred to as the adjacency matrix and denoted by A(G).
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Definitions and Notation
Note that there are many ways to define w;;.
For example, for unweighted graphs, we typically use

1 if v;~v; (i.e., v; and v; are adjacent);
W=
N 0 otherwise.

This is often referred to as the adjacency matrix and denoted by A(G).

For weighted graphs, w;; should reflect the similarity (or affinity) of
information at v; and vj, e.g., if v; ~v;, then

w;j:= 1/dist(v;,vj) or exp(—dist(vi,vj)zlez),

where dist(-,-) is a certain measure of dissimilarity and € >0 is an
appropriate scale parameter.
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Background

Our Assumptions

In this lecture, we assume that the graph is
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Our Assumptions

In this lecture, we assume that the graph is

@ connected. Otherwise, we would simply consider the components
separately.
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Our Assumptions

In this lecture, we assume that the graph is

@ connected. Otherwise, we would simply consider the components
separately.

o undirected. Edges do not have direction, which means that
w;j = wj; and thus W is symmetric.
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Our Assumptions

In this lecture, we assume that the graph is

@ connected. Otherwise, we would simply consider the components
separately.

o undirected. Edges do not have direction, which means that
w;j = wj; and thus W is symmetric.

The graph may be weighted or unweighted.
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Background

© Background

@ Graph Laplacians
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T
Graph Laplacians

W(G) = (w;j) the weight matrix
N
D(G) :=diag(dy,,...,dy,) the degree matrix, where dy, := Y w;;.
=1

L(G):=D(G)-W(G) the Laplacian matrix
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Sizniliavlciae
Graph Laplacians

W(G) = (w;j) the weight matrix
N
D(G) :=diag(dy,,...,dy,) the degree matrix, where dy, := Y w;;.
j=1
L(G):=D(G)-W(G) the Laplacian matrix

We have:

@ sorted eigenvalues 0=Ag<A; <--- <Ay

@ associated eigenvectors ¢, ¢1,...,¢PnN-1
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Graph Laplacians

W(G) = (wij) the weight matrix

N

D(G) :=diag(dy,,...,dy,) the degree matrix, where dy, := Y w;;.
j=1

L(G):=D(G)-W(G) the Laplacian matrix

We have:

@ sorted eigenvalues 0=Ag<A; <--- <Ay

@ associated eigenvectors ¢, ¢1,...,¢PnN-1

The eigenvectors form a basis for RN In particular:

@ since L is symmetric, the eigenvectors form an orthonormal basis

o ¢po=1/VN
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Sizniliavlciae
Why Graph Laplacians?

o Let feRN. Then

Lf(wi) =dy, fw) =Y wijf(v)).
J#i

This is a generalization of the finite difference approximation to the
Laplace operator.
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Sizniliavlciae
Why Graph Laplacians?

o Let feRN. Then
Lf(vi)=dy, f) =) wijf(v)).
J#i
This is a generalization of the finite difference approximation to the
Laplace operator.

o After all, sines (cosines) are the eigenfunctions of the Laplacian on the
rectangular domain with Dirichlet (Neumann) boundary conditions.

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs Mar. 13, 2014 25 / 65



Sizniliavlciae
Why Graph Laplacians?

o Let feRN. Then
Lf(vi)=dy, f) =) wijf(v)).
7
This is a generalization of the finite difference approximation to the

Laplace operator.

o After all, sines (cosines) are the eigenfunctions of the Laplacian on the
rectangular domain with Dirichlet (Neumann) boundary conditions.

@ Hence, the expansion of data measured at the vertices w.r.t. the
eigenvectors of a graph Laplacian can be viewed as Fourier (or
spectral) analysis of the data on that graph.
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A Simple Yet Important Example: A Path Graph

1 -1 1 0 1
-1 2 -1 2 1 0
-1 2 -1 2 1 1
-1 2 -1 2 1 0
-1 1 1 1
L(G) D(G) AG)
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Sizniliavlciae
A Simple Yet Important Example: A Path Graph

1 -1 1 0
-1 2 -1 2 1

|
—
[\ ]
|
—
[\S)
—_ o ~
—
—

-1 1 1 1

L(G) D(G) AG)

The eigenvectors of this matrix are exactly the DCT Type I/ basis vectors
used for the JPEG image compression standard! (See e.g., Strang, SIAM
Review, 1999).

@ Ap=2-2cos(nk/N) =4sin’(rk/2N), k=0,1,...,N—1.

o ¢y(0)=V2/Ncos(nk(+3)/N), k,£=0,1,...,N—1.

e A (eigenvalue) is a monotonic function w.r.t. k (frequency). However,
for general graphs, A does not have a simple relationship with k.
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Background

© Background

@ Graph Partitioning via Spectral Clustering
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Background

Goal: split the vertices V into two “good” subsets, X and X¢
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EE ALY Graph Partitioning via Spectral Clustering

Goal: split the vertices V into two “good” subsets, X and X*

Plan: use the signs of the entries in ¢, which is known as the Fiedler
vector
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Background Graph Partitioning via Spectral Clustering

Goal: split the vertices V into two “good” subsets, X and X°

Plan: use the signs of the entries in ¢, which is known as the Fiedler
vector

Why? Using ¢ to generate X and X¢ yields an approximate minimizer of
the RatioCut function!?:
cut(X, X9 cut(X,X°

RatioCut(X, X¢) := + )
| X | X€

where
cut(X,X9:= ) W

yieX;vjeXC

1|, Hagen and A. B. Kahng: “New spectral methods for ratio cut partitioning and
clustering,” IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992.

2We could also use the signs of ¢ for Lny (equivalently, Lsym), which yield an
approximate minimizer of the popular Normalized Cut function: J. Shi & J. Malik:
“Normalized cuts and image segmentation”, IEEE Trans. Pattern Anal. Machine Intell.,
vol. 22, no. 8, pp. 888-905, 2000.
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Background Graph Partitioning via Spectral Clustering

Goal: split the vertices V into two “good” subsets, X and X°

Plan: use the signs of the entries in ¢, which is known as the Fiedler
vector

Why? Using ¢ to generate X and X¢ yields an approximate minimizer of
the RatioCut function!?:
cut(X, X9 cut(X,X°

RatioCut(X, X¢) := + ,
[X] | X
where
cut(X,X9:= ) W
yieX;vjeXC

@ Dividing by the number of nodes ensures that the partitions are of roughly
the same size = we do not simply cleave a small number of nodes

1|, Hagen and A. B. Kahng: “New spectral methods for ratio cut partitioning and
clustering,” IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992.

2We could also use the signs of ¢ for Lny (equivalently, Lsym), which yield an
approximate minimizer of the popular Normalized Cut function: J. Shi & J. Malik:
“Normalized cuts and image segmentation”, IEEE Trans. Pattern Anal. Machine Intell.,
vol. 22, no. 8, pp. 888-905, 2000.
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Graph Partitioning via Spectral Clustering
Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.
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Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.

@ Define feRY as

; 'l’)‘;l' if vieX
=
—\/ e ifvieX°
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Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.

@ Define feRY as
X4 if v;eX

fi:= 1X]
l —\/% if l}i€)(C

@ The RatioCut problem can be reformulated as

g{ningLf subject to f defined as above
C
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EE ALY Graph Partitioning via Spectral Clustering

fTLf—— Z Wi (fi = )

l] 1
IXC | X
U,EX |X |XC
1/]€X
IXer X
+_
UGXc | X| | X€|
vieX
o (1XE X
=cut(X, X )|—+—+2
IX] 1X€
o [1XI+1XC X +]X€
=cut(X, X") +
|X] | X€|

=|V|RatioCut(X, X°)
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Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.

@ Define feRY as
XA if vieX

fi3: [X]
_\/Il))((cll if ViEXC

@ The RatioCut problem can be reformulated as

I)}lingLf subject to f defined as above

Unfortunately, this problem is NP hard...
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Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.

@ Define feRY as
XA if vieX

fi3: [X]
_\/Il))((cll if ViEXC

@ The RatioCut problem can be reformulated as

I)}lingLf subject to f defined as above

Unfortunately, this problem is NP hard... Relax!
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Graph Partitioning via Spectral Clustering

A couple things to note about f:
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Graph Partitioning via Spectral Clustering

A couple things to note about f:
o fll & Yfi=0

i [lxel |X
i=1 v,EX |X v; EXC
X ey, [ X1
=|X] -1 X
| X IXC
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Graph Partitioning via Spectral Clustering

A couple things to note about f:

o fll & Y fi=0
N
X X
S -y Ay [
o1 vex VXD ke VIXE
Xc¢ X
=11y A e [ 2
X IX°]

N
IFI% =Y f?
i=1

o Ifll=vN

| X | X
=1X]| |XC|—C

| X1 | X<
=|X|+|X1=N
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Graph Partitioning via Spectral Clustering
Graph Partitioning via Spectral Clustering
o If we relax our previous definition of f and simply require that (i) f L1
and (ii) IIfl = V'N, then we get the relaxed minimization problem?:

min fTLf subjectto f 11, [Ifl=VN
FERN

1U. von Luxburg: “A tutorial on spectral clustering,” Statistics and Computing, vol.
17, no. 4, pp.395-416, 2007.
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Graph Partitioning via Spectral Clustering

o If we relax our previous definition of f and simply require that (i) f L1
and (ii) IIfl = V'N, then we get the relaxed minimization problem?:
min fTLf subjectto f L1, [Ifl=VN
FERN
@ By the Rayleigh-Ritz Theorem, the solution is given by ¢, (scaled as

necessary), where ¢, is the eigenvector corresponding to the second
smallest eigenvalue of L.

1U. von Luxburg: “A tutorial on spectral clustering,” Statistics and Computing, vol.
17, no. 4, pp.395-416, 2007.
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Graph Partitioning via Spectral Clustering
Graph Partitioning via Spectral Clustering

o If we relax our previous definition of f and simply require that (i) f L1
and (ii) IIfl = V'N, then we get the relaxed minimization problem?:
min fTLf subjectto f L1, [Ifl=VN
FERN
@ By the Rayleigh-Ritz Theorem, the solution is given by ¢, (scaled as
necessary), where ¢, is the eigenvector corresponding to the second
smallest eigenvalue of L.
@ ¢ is known as the Fiedler vector and is often used to partition a
graph into two subsets.

1U. von Luxburg: “A tutorial on spectral clustering,” Statistics and Computing, vol.
17, no. 4, pp.395-416, 2007.
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Graph Partitioning via Spectral Clustering
Graph Partitioning via Spectral Clustering

o If we relax our previous definition of f and simply require that (i) f L1

and (ii) IIfl = V'N, then we get the relaxed minimization problem?:
min fTLf subjectto f 11, [Ifl=VN
FERN

@ By the Rayleigh-Ritz Theorem, the solution is given by ¢, (scaled as
necessary), where ¢, is the eigenvector corresponding to the second
smallest eigenvalue of L.

@ ¢ is known as the Fiedler vector and is often used to partition a
graph into two subsets.

@ von Luxburg recommends the use of the random-walk version of the
Laplacian matrix, Ly := I—D™'W, over the usual Laplacian matrix L,
which leads to the NCut and the generalized eigenvalue problem:

L =AD¢.

1U. von Luxburg: “A tutorial on spectral clustering,” Statistics and Computing, vol.
17, no. 4, pp.395-416, 2007.
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Graph Partitioning via Spectral Clustering

The practice of using the Fiedler vector to partition a graph is supported by
the following theory.
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Graph Partitioning via Spectral Clustering

The practice of using the Fiedler vector to partition a graph is supported by
the following theory.

Definition (Weak Nodal Domain)

A positive (or negative) weak nodal domain of f on V(G) is a maximal
connected induced subgraph of G on vertices v e V with f(v) =0 (or
f(v) =0) that contains at least one nonzero vertex. The number of weak
nodal domains of f is denoted by 20(f).
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Graph Partitioning via Spectral Clustering
Graph Partitioning via Spectral Clustering

The practice of using the Fiedler vector to partition a graph is supported by
the following theory.

Definition (Weak Nodal Domain)

A positive (or negative) weak nodal domain of f on V(G) is a maximal
connected induced subgraph of G on vertices v e V with f(v) =0 (or
f(v) =0) that contains at least one nonzero vertex. The number of weak
nodal domains of f is denoted by 20(f).

Corollary (Fiedler (1975))
If G is connected, then () =2.

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs Mar. 13, 2014 34 / 65



Graph Partitioning via Spectral Clustering
Example of Graph Partitioning
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Figure : The MN road network
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Graph Partitioning via Spectral Clustering
Example of Graph Partitioning
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Figure : The MN road network partitioned via the Fiedler vector of L
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Multiscale Basis Dictionaries

@ Multiscale Basis Dictionaries
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Multiscale Basis Dictionaries

Our transforms involve 2 main steps:

@ Recursively partition the graph

@ Using the regions on each level of the graph partitioning, generate a
set of orthonormal bases for the graph
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Multiscale Basis Dictionaries

Our transforms involve 2 main steps:

@ Recursively partition the graph

(I These steps can be performed concurrently, or we can fully partition
the graph and then generate a set of bases

@ Using the regions on each level of the graph partitioning, generate a
set of orthonormal bases for the graph
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@ Multiscale Basis Dictionaries
@ Hierarchical Graph Laplacian Eigen Transform (HGLET)
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Hierarchical Graph Laplacian Eigen Transform (HGLET)
Hierarchical Graph Laplacian Eigen Transform (HGLET)

Now we present a novel transform that can be viewed as a generalization of
the block Discrete Cosine Transform. We refer to this transform as the
Hierarchical Graph Laplacian Eigen Transform (HGLET).

The algorithm proceeds as follows...
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(\ITNEE ENCEE RN DI EVEE  Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is "b{cl with j =0)

0 0 0 0
P00 $o1 $o,2 A NO-1

)
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(\ITNEE ENCEE RN DI EVEE  Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is "b{cl with j =0)

@ Partition the graph using the Fiedler vector ¢{;1

)

0 0 0 0
P00 Poy $o,2 ¢0,N8—1
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(\ITNEE ENCEE RN DI EVEE  Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is ¢f with j =0)

@ Partition the graph using the Fiedler vector ¢f
© Generate an orthonormal basis for each of the partltlons = Laplacian
eigenvectors

0 0 0 0
[ b0 Pon $o,2 ¢0,N8—1 l

1 1 1 1 1 1 1 1
[‘po,o $o1 Poo ¢0vNé—1l l‘p],o $11 b1 (pl,Nll—l]
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(\ITNEE ENCEE RN DI EVEE  Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is ¢f with j =0)

@ Partition the graph using the Fiedler vector ¢f

© Generate an orthonormal basis for each of the partltlons = Laplacian
eigenvectors

Q Repeat...

0 0 0 0
[ b0 Pon $o,2 ¢0,N8—1 l

1 1 1 1 1 1 1 1
[‘po,o $o1 Poo ¢0vNé—1l l‘p],o $11 b1 (pl,Nll—l]
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(\ITNEE ENCEE RN DI EVEE  Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is ¢f with j =0)

@ Partition the graph using the Fiedler vector ¢f

© Generate an orthonormal basis for each of the partltlons = Laplacian
eigenvectors

Q Repeat...

0 0 0 0
[ b0 Pon $o,2 ¢0,N8—1 l

1 1 1 1 1 1 1 1
[‘po,o P01 Poo ¢0vNé—1l l‘p],o b1y P12 (pl,Nll—l]
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(\ITNEE ENCEE RN DI EVEE  Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is ([)] with j =0)

@ Partition the graph using the Fiedler vector ¢f

© Generate an orthonormal basis for each of the partltlons = Laplacian
eigenvectors

Q Repeat...

T U RN P01 ]
[¢5,0 P61 P2 ¢;,N01_1] [«lz%,o Py bz ¢1YN11_1]

["’00"’01 ('bo N2- 1] [‘l’%,o"’%,l""”ilvlz_l] I"’%,o"’%,l""”;wzz_l} [¢§,o¢§,1-“¢§,1\,32_1]
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(\ITNEE ENCEE RN DI EVEE  Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is ([)] with j =0)

@ Partition the graph using the Fiedler vector ¢f

© Generate an orthonormal basis for each of the partltlons = Laplacian
eigenvectors

Q Repeat...

T U RN P01 ]
[¢5,0 P61 P2 ¢;,N01_1] [«lz%,o Py bz ¢1YN11_1]

[(”(Z),O(P?),l ""l’(z),Ng_l] [‘l’%,o‘P%,l ""”ile_l] l"’%,o‘l’é,l ""”;,sz_l} l‘l’%,o‘/jg,l "‘¢§,N32_1]
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(\ITNEE ENCEE RN DI EVEE  Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is ([)] with j =0)

@ Partition the graph using the Fiedler vector ¢f

© Generate an orthonormal basis for each of the partltlons = Laplacian
eigenvectors

Q Repeat...

T U RN P01 ]
[¢5,0 P61 P2 ¢;,N01_1] [«lz%,o Py bz ¢1YN11_1]

[(”(Z),O(P?),l ""l’(z),Ng_l] [‘l’%,o‘P%,l ""”ile_l] l"’%,o‘l’é,l ""”;,sz_l} l‘l’%,o‘/jg,l "‘¢§,N32_1]
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(\ITNEE ENCEE RN DI EVEE  Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is ([)] with j =0)

@ Partition the graph using the Fiedler vector ¢f

© Generate an orthonormal basis for each of the partltlons = Laplacian
eigenvectors

Q Repeat...

@ Select an orthonormal basis from this collection of orthonormal bases

TR U PR P01 ]
| 0ho oh #ho = @b | oo o ohe 0l |

[‘P(Z),O‘P?),l “"»”(Z),Ng_ll [‘l’%,o‘P%,l ""”ile_l] l"’%,o‘l’é,l ""”;,sz_l} l‘l’%,o‘/jg,l "“/’;st_l]
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(\ITNEE ENCEE RN DI EVEE  Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

@ For an unweighted path graph, this yields a dictionary of the block
DCT-II
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(\ITNEE ENCEE RN DI EVEE  Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

@ For an unweighted path graph, this yields a dictionary of the block
DCT-II

@ Similar to wavelet packet or local cosine dictionaries in that it
generates an overcomplete basis from which we can select a basis
useful for the task at hand = best-basis algorithm, local discriminant
basis algorithm, ...
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(\ITNEE ENCEE RN DI EVEE  Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

@ For an unweighted path graph, this yields a dictionary of the block
DCT-II

@ Similar to wavelet packet or local cosine dictionaries in that it
generates an overcomplete basis from which we can select a basis
useful for the task at hand = best-basis algorithm, local discriminant
basis algorithm, ...

e A union of bases on disjoint subsets is obviously orthonormal
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(\ITNEE ENCEE RN DI EVEE  Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

@ For an unweighted path graph, this yields a dictionary of the block
DCT-II

@ Similar to wavelet packet or local cosine dictionaries in that it
generates an overcomplete basis from which we can select a basis
useful for the task at hand = best-basis algorithm, local discriminant
basis algorithm,

e A union of bases on disjoint subsets is obviously orthonormal

0 0 0 0
[ $0,0 $o,1 $o,2 ¢0,N3—1 ]
060 900 b dpgl][ele Ol el o ]
[(I%’O 0N2 1] [¢ 1N2 1] [¢20 2N2 1] [¢30 ¢§,N32—1]
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Remarks

@ For an unweighted path graph, this yields a dictionary of the block
DCT-II

@ Similar to wavelet packet or local cosine dictionaries in that it
generates an overcomplete basis from which we can select a basis
useful for the task at hand = best-basis algorithm, local discriminant
basis algorithm,

e A union of bases on disjoint subsets is obviously orthonormal

0 0 0 0
[ $o0 $o,1 bo,2 4’0,1\13—1 ]
060 900 b dpgl][ele Ol el o ]
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Remarks

@ For an unweighted path graph, this yields a dictionary of the block
DCT-II

@ Similar to wavelet packet or local cosine dictionaries in that it
generates an overcomplete basis from which we can select a basis
useful for the task at hand = best-basis algorithm, local discriminant
basis algorithm,

e A union of bases on disjoint subsets is obviously orthonormal

0 0 0 0
[ $0,0 $o,1 $o,2 ¢0,Ng—1 ]
900 @00 Pho o Boga|[fe Ol Pl ey
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Remarks

@ For an unweighted path graph, this yields a dictionary of the block
DCT-II

@ Similar to wavelet packet or local cosine dictionaries in that it
generates an overcomplete basis from which we can select a basis
useful for the task at hand = best-basis algorithm, local discriminant
basis algorithm,

e A union of bases on disjoint subsets is obviously orthonormal

0 0 0 0
[ $o, $o,1 $o2 ¢0,N3—1 ]
060 900 b dpgl][ele Ol el o ]
[(’bgvo 0N2 1] [(pl" 1Nﬁ 1] [‘PZO 2NZ 1] [(’b ¢§,N§—l]
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Remarks

@ For an unweighted path graph, this yields a dictionary of the block
DCT-II

@ Similar to wavelet packet or local cosine dictionaries in that it
generates an overcomplete basis from which we can select a basis
useful for the task at hand = best-basis algorithm, local discriminant
basis algorithm,

e A union of bases on disjoint subsets is obviously orthonormal

0 0 0 0
[ $0,0 $o,1 $o,2 ¢0,Ng—1 ]
[‘»”(1),0 ‘/’(1),1 ‘l’(l),z ‘»b(l),N&_l] ["’io ‘l’i,l ‘l’i,z }’Nll_l]
[(I%’O 0N2 1] [¢ 1N2 1] [‘PZO 2NZ 1] [(’b ¢§,N§—l]
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Remarks

@ For an unweighted path graph, this yields a dictionary of the block
DCT-II

@ Similar to wavelet packet or local cosine dictionaries in that it
generates an overcomplete basis from which we can select a basis
useful for the task at hand = best-basis algorithm, local discriminant
basis algorithm,

e A union of bases on disjoint subsets is obviously orthonormal

0 0 0 0
[ $0,0 $o,1 $o,2 ¢0,N3—1 ]
(060 90 b dpgl][ele ol 0l o o]
["b%ﬂ (po NZ- 1] [(pio 1N2 1] [¢20 ¢§,NZZ—1] [‘P%,o ¢§,N32—1]
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Hierarchical Graph Laplacian Eigen Transform (HGLET)
Related Work

The following work also proposed a similar strategy to construct a
multiscale basis dictionary, i.e., local cosine dictionary on a graph:

@ A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr.,
“Diffusion-driven multiscale analysis on manifolds and graphs:
top-down and bottom-up constructions,” in Wavelets XI (M.
Papadakis et al. eds.), Proc. SPIE 5914, Paper # 59141D, 2005.
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Hierarchical Graph Laplacian Eigen Transform (HGLET)
Related Work

The following work also proposed a similar strategy to construct a
multiscale basis dictionary, i.e., local cosine dictionary on a graph:

@ A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr.,
“Diffusion-driven multiscale analysis on manifolds and graphs:
top-down and bottom-up constructions,” in Wavelets XI (M.
Papadakis et al. eds.), Proc. SPIE 5914, Paper # 59141D, 2005.

However, in our opinion, the generalization of the folding/unfolding
operations (originally used in the construction of the local cosine transforms
on a regular domain) to the graph setting may be harmful. We believe that
such operations are not necessary for most tasks in practice. If one needs
smoother and overlapping basis vectors, then a better partitioning scheme
other than the folding/unfolding operations is called for.
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Hierarchical Graph Laplacian Eigen Transform (HGLET)
Computational Complexity: HGLET

Computational | Run Time
Complexity for MN1
HGLET (redundant) O(N3) 67 sec

]'Computations performed on a personal laptop (4.00 GB RAM, 2.26 GHz), N =2640 and

nnz (W) =6604.
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@ Multiscale Basis Dictionaries

@ Generalized Haar-Walsh Transform (GHWT)
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Generalized Haar-Walsh Transform (GHWT)
Generalized Haar-Walsh Transform (GHWT)

HGLET is a generalization of the block DCT, and it generates basis vectors
that are smooth on their support.

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs Mar. 13, 2014 45 / 65



Generalized Haar-Walsh Transform (GHWT)
Generalized Haar-Walsh Transform (GHWT)

HGLET is a generalization of the block DCT, and it generates basis vectors
that are smooth on their support.

The Generalized Haar-Walsh Transform (GHWT) is a generalization of the
classical Haar and Walsh-Hadamard Transforms, and it generates basis
vectors that are piecewise-constant on their support.

The algorithm proceeds as follows...
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Multiscale Basis Dictionaries

@ Generate a full recursive partitioning of the graph = Fiedler vectors
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

© Generate a full recursive partitioning of the graph = Fiedler vectors

@ Generate an orthonormal basis for level jmax (the finest level) =

scaling vectors on the single-node regions
o As with HGLET, the notation is V’{cl

Jmax Jmax Jmax Jmax Jmax
R [wils | [ws Rz ]["’
saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

© Generate a full recursive partitioning of the graph = Fiedler vectors
@ Generate an orthonormal basis for level jmax (the finest level) =
scaling vectors on the single-node regions
o As with HGLET, the notation is V’i,l
© Using the basis for level jnax, generate an orthonormal basis for level
Jjmax— 1 = scaling and Haar-like vectors

jmax_l jma)(_l jmaX_l jmaX_l jn’\a)(_1 jmaX_l
[ VIO,O 1”0,1 ] [ 1”1,0 l,Il,l ] [ WijaX7171,0 w}{jmaxflfl‘l
jmaX jmaX jmaX jmaX e jmaX jmax
[ Y0,0 [ Y10 ] [ Y30 [ Y30 ] [ Y imax 2,0 ] [ W icimax 10 ]
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

Generate a full recursive partitioning of the graph = Fiedler vectors
Generate an orthonormal basis for level jmax (the finest level) =
scaling vectors on the single-node regions
o As with HGLET, the notation is V’i,l
© Using the basis for level jnax, generate an orthonormal basis for level
Jjmax— 1 = scaling and Haar-like vectors
@ Repeat... Using the basis for level j, generate an orthonormal basis for
level j—1 = scaling, Haar-like, and Walsh-like vectors

o
2]

0 0 0 0 0
[ ¥o,0 Yo, Vo2 Vo3 7 Yon-2 Yo,N-1 ]

jmax_l jma)(_l jmaX_l jmaX_l jn’\a)(_1 jmaX_l
[ VIO,O 1’/0,1 ] [ 1”1,0 l,Il,l ] [ w[(]'maxflfl,() ijmax—l,Ll
jmaX jmaX jmaX jmaX e jmaX jmax
[ Y0,0 [ Y10 ] [ Y30 [ Y30 ] [ Y imax 2,0 ] [ Wicimax 10 ]
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

© Generate a full recursive partitioning of the graph = Fiedler vectors
@ Generate an orthonormal basis for level jmax (the finest level) =
scaling vectors on the single-node regions

o As with HGLET, the notation is V’{c,l
© Using the basis for level jnax, generate an orthonormal basis for level
Jjmax— 1 = scaling and Haar-like vectors
@ Repeat... Using the basis for level j, generate an orthonormal basis for
level j—1 = scaling, Haar-like, and Walsh-like vectors
© Select an orthonormal basis from this collection of orthonormal bases

0 0 0 0 0
[ ¥o,0 Yo, Vo2 Vo3 7 Yon-2 Yo,N-1 ]

jmax_l jma)(_l jmaX_l jmaX_l jn’\a)(_1 jmaX_l
[ VIO,O l’/(),1 ] [ 1”1,0 l,Il,l ] [ w[(]'maxflfl,() ijmax—l,Ll
jmaX jmaX jmaX jmaX e jmaX jmaX
[ Y0,0 [ Y10 ] [ Y30 [ Y30 ] [ Y imax 2,0 ] [ Wicimax 10 ]
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

Remarks

@ For an unweighted path graph, this yields a dictionary of Haar-Walsh
functions
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

Remarks

@ For an unweighted path graph, this yields a dictionary of Haar-Walsh

functions

o As with the HGLET, we can select an orthonormal basis for the entire
graph by taking the union of orthonormal bases on disjoint regions

Yoo
e

min

o0
o2

Yos

0,

"1"1"@1%%

7/)0,0

1//’0,1

%,2

e o e

Uio

1//’1 1

Uia

i Bt

-

-

eelee

esls

¢(2),0 7?(2),1 wio wQ 0 2, x 0
I . A ) O
1/’8,0 ¢11)),0 w2 0 wSA,O 1/}4,0 ¢5 0

saito@math.ucdavis.edu (UC Davis)

Multiscale Basis Dicionaries on Graphs

Mar. 13, 2014 47 / 65



\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

Remarks

@ We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like)
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

Remarks

@ We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like)

17[)00
e

0
0,2

o3

O
0,4

o

Vo5

1/’0,0

7/’0,1

Yo

e

1/}10

“'m*"wlr

¥ia

7/)12

Yoo Vb1 | Yio Yo
L - ...n. mxl. weee]
Yoo | Yio | ¥ho | W30 | ¥io | o
Teesse | ofoses | coluen | sonten | ansele | asees]
Figure : Default dictionary; i.e., coarse-to-fine
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

Remarks

@ We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like)

3 3 3 3 3 3
Yoo Pio Yy L0 Yo V0

T o oo el

2 2 2 2
Yoo Y1 a0 Y30

W vE,
n......L.....n......TLl......Ll.

1 1 1 1
Yoo Y1 Yo Pig

mﬁ%ﬂﬁ%

0 0
Yoo '/Jo,l 7/’0 2 1/Jo 4

| | ] 1

Figure : Reordered & regrouped dictionary; i.e., fine-to-coarse
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

Remarks

@ We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like)

3 3 3 3 3 3
Yoo Pio Yy L0 Yo V0

T o oo el

2 2 2 2
Yoo Y1 a0 Y30

W vE,
n......L.....n......TLl......Ll.

1 1 1 1
Yoo Y1 Yo Pig

mﬁ%ﬂﬁ%

0 0
Yoo '/Jo,l 7/’0 2 1/Jo 4

| | ] 1

Figure : Reordered & regrouped dictionary; i.e., fine-to-coarse

e This reorganization gives us more options for choosing a good basis
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest
scale, j =14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)
HGLET vs. GHWT
Here we display some of the basis vectors generated by our HGLET (left) and

GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest
scale, j =14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)
HGLET vs. GHWT
Here we display some of the basis vectors generated by our HGLET (left) and

GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest
scale, j =14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)
HGLET vs. GHWT
Here we display some of the basis vectors generated by our HGLET (left) and

GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest
scale, j =14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)
HGLET vs. GHWT
Here we display some of the basis vectors generated by our HGLET (left) and

GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest
scale, j =14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)
HGLET vs. GHWT
Here we display some of the basis vectors generated by our HGLET (left) and

GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest
scale, j =14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)
HGLET vs. GHWT
Here we display some of the basis vectors generated by our HGLET (left) and

GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest
scale, j =14 is the finest.)
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest

scale, j =14 is the finest.)
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest

scale, j =14 is the finest.)
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest

scale, j =14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)
HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest
scale, j =14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)
HGLET vs. GHWT
Here we display some of the basis vectors generated by our HGLET (left) and

GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest
scale, j =14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)
HGLET vs. GHWT
Here we display some of the basis vectors generated by our HGLET (left) and

GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest
scale, j =14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)
HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and

GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest
scale, j =14 is the finest.)
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest

scale, j =14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)
HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and

GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest
scale, j =14 is the finest.)
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest

scale, j =14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)
HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and

GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest
scale, j =14 is the finest.)
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\YITEIE ENEEEEN DI EIEE Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and

GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest

scale, j =14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)
HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and

GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest
scale, j =14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)
HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j =0 is the coarsest
scale, j =14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)
Computational Complexity: GHWT

Computational | Run Time
Complexity for MN1

HGLET (redundant) O(N®) 67 sec

GHWT (redundant) O(N?) 10 sec

]'Computations performed on a personal laptop (4.00 GB RAM, 2.26 GHz), N =2640 and

nnz (W) =6604.
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Generalized Haar-Walsh Transform (GHWT)
Related Work

The following articles also discussed the Haar-like transform on graphs and
trees, but not the Walsh-Hadamard transform on them:

@ A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr.,
“Diffusion-driven multiscale analysis on manifolds and graphs:
top-down and bottom-up constructions,” in Wavelets XI (M.
Papadakis et al. eds.), Proc. SPIE 5914, Paper # 59141D, 2005.

@ F. Murtagh, “The Haar wavelet transform of a dendrogram,” J.
Classification, vol. 24, pp. 3-32, 2007.

© A. Lee, B. Nadler, and L. Wasserman, “Treelets—an adaptive
multi-scale basis for sparse unordered data,” Ann. Appl. Stat., vol. 2,
pp. 435471, 2008.

@ M. Gavish, B. Nadler, and R. Coifman, “Multiscale wavelets on trees,
graphs and high dimensional data: Theory and applications to semi
supervised learning,” in Proc. 27th Intern. Conf. Machine Learning (J.
Fiirnkranz et al. eds.), pp. 367-374, Omnipress, Haifa, 2010.
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Best-Basis Algorithm for HGLET & GHWT

© Best-Basis Algorithm for HGLET & GHWT

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs



Best-Basis Algorithm for HGLET & GHWT

Coifman and Wickerhauser (1992) developed the best-basis algorithm as a
means of selecting the basis from a dictionary of wavelet packets that is
“best” for approximation/compression.
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Best-Basis Algorithm for HGLET & GHWT

Coifman and Wickerhauser (1992) developed the best-basis algorithm as a
means of selecting the basis from a dictionary of wavelet packets that is
“best” for approximation/compression.

We generalize this approach, developing and implementing an algorithm for
selecting the basis from the dictionary of HGLET / GHWT bases that is
“best” for approximation.
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Best-Basis Algorithm for HGLET & GHWT

Coifman and Wickerhauser (1992) developed the best-basis algorithm as a
means of selecting the basis from a dictionary of wavelet packets that is
“best” for approximation/compression.

We generalize this approach, developing and implementing an algorithm for
selecting the basis from the dictionary of HGLET / GHWT bases that is

“best” for approximation.

As before, we require a cost functional _#. For example:

n 1/p
f(x)=(Z|xi|p) =norm(x,p) 0<p<l
i=1

@ For our approximation experiments in the following pages, we used
p=0.1.
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Best-Basis Algorithm for HGLET & GHWT
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Best-Basis Algorithm for HGLET & GHWT

141 1 1
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2 2
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According to cost functional _#, this is the best basis for approximation.
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Best-Basis Algorithm for HGLET & GHWT

11 ] 1
o0 Po1 P02 ‘/’O,Né,l]

1 1 1 1
doo dpy oo doﬁ\;&,l

2 2 2 2 2 2
[¢2,0¢2,1 ”’¢2,N22—ll [¢3,0¢3,1 ".¢3,N§—1

2 2 2 2 2 2
dZ,O dZ,l dz,i\“';‘f*l dfi,o d3,1 dS,JV:?*I

According to cost functional _¢, this is the best basis for approximation.

e With the GHWT bases, we run the best-basis algorithm on both the
default (coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the cost of the 2 bases to determine the
best-basis.

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dicionaries on Graphs Mar. 13, 2014 54 / 65



Approximation Experiments

e Approximation Experiments

saito@math.ucdavis.edu C Davis) Multiscale Basis Dicionaries on Graphs



Approximation Experiments
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HGLET on Dendrite (weights = inv. Euclidean dist.)
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Approximation Experiments

HGLET on MN Mutilated Gaussian (weights = inv.
Euclidean dist.)
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GHWT vs. HGLET on Dendrite
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GHWT vs. HGLET on MN Mutilated Gaussian
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Approximation Experiments

Discussion of Approximation Results

@ From the HGLET plots, we see that HGLET best-basis > HGLET
Level 5 > HGLET Level 3 > Laplacian eigenvectors (HGLET Level 0)
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vectors on multiple scales
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Approximation Experiments

Discussion of Approximation Results

@ From the HGLET plots, we see that HGLET best-basis > HGLET
Level 5 > HGLET Level 3 > Laplacian eigenvectors (HGLET Level 0)

@ The HGLET best-basis performs the best on the MN Mutilated
Gaussian dataset while the GHWT best-basis outperformed the others
on the Dendrite dataset

@ These performances make a strong case for using localized basis
vectors on multiple scales

@ Also, these indicate that the smoothness of the basis vectors matters
depending on the smoothness inherent in data
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Summary and Future Work

Summary

o We developed multiscale basis dictionaries on graphs and networks:
HGLET and GHWT. We also developed a corresponding best-basis
algorithm.
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Summary

o We developed multiscale basis dictionaries on graphs and networks:
HGLET and GHWT. We also developed a corresponding best-basis
algorithm.

@ The HGLET is a direct generalization of Hierarchical Block Discrete
Cosine Transforms originally developed for regularly-sampled signals
and images.

@ The GHWT s a generalization of the Haar Transform and the
Walsh-Hadamard Transform.

@ Both of these transforms allow us to choose an orthonormal basis
most suitable for the task at hand, e.g., approximation, classification,
regression, ...
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with signals of non-dyadic length; adaptive segmentation, ...
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Summary

o We developed multiscale basis dictionaries on graphs and networks:
HGLET and GHWT. We also developed a corresponding best-basis
algorithm.

@ The HGLET is a direct generalization of Hierarchical Block Discrete
Cosine Transforms originally developed for regularly-sampled signals
and images.

@ The GHWT s a generalization of the Haar Transform and the
Walsh-Hadamard Transform.

@ Both of these transforms allow us to choose an orthonormal basis
most suitable for the task at hand, e.g., approximation, classification,
regression, ...

@ They may also be useful for regularly-sampled signals, e.g., can deal
with signals of non-dyadic length; adaptive segmentation, ...

@ Developing a true generalization of smoother wavelet and wavelet
packet transforms is more challenging due to the difficulty of the
notion of the frequency domain of a given graph.
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Future Work

@ Perform classification experiments and compare the results using
HGLET and GHWT.
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Future Work

@ Perform classification experiments and compare the results using
HGLET and GHWT.

@ Explore other methods for graph partitioning:

o Allow for splitting of a region into an arbitrary number of subregions;

o Consider a bottom-up clustering method, rather than a top-down
partitioning method;

e Incorporate the diffuse interface model and the minimization of the
Ginsburg-Landau functional proposed by Bertozzi and Flenner (2012).
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