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Motivation

Many natural and man-made signals exhibit time-varying frequencies
(e.g., chirps, FM radio waves).
Characterization and analysis of such a signal, u(t ), based on
instantaneous amplitude a(t ), instantaneous phase φ(t ), and
instantaneous frequency ω(t ) :=φ′(t ), are very important:

u(t ) = a(t )cosφ(t ).
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Analytic Signal

It is convenient to use a complexified version of the signal whose real
part is a given real-valued signal u(t ).
Given u(t ), however, there are infinitely many ways to define the
instantaneous amplitude and phase (IAP) pairs so that

u(t ) = a(t )cosφ(t ).

This is due to the arbitrariness of the complexified version of u, i.e.,

f (t ) = u(t )+ iv(t )

where v(t ) is an arbitrary real-valued signal; yet this yields the IAP
representation of u(t ) via

a(t ) =
√

u2(t )+ v2(t ), φ(t ) = arctan
v(t )

u(t )
.

The instantaneous frequency is defined as

ω(t ) := dφ

dt
= u(t )v ′(t )−u′(t )v(t )

u2(t )+ v2(t )
.
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Analytic Signal

Gabor (1946) proposed to use the the Hilbert transform of u(t ) as
v(t ), and called the complex-valued f (t ) an analytic signal.
Vakman (1972) proved that v(t ) must be of the Hilbert transform of
u(t ) if we impose some a priori physical assumptions:

1 v(t ) must be derived from u(t ).
2 Amplitude continuity: a small change in u =⇒ a small change in a(t ).
3 Phase independence of scale: if cu(t ), c ∈R arbitrary scalar, then the

phase does not change from that of u(t ) and its amplitude becomes c
times that of u(t ).

4 Harmonic correspondence: if u(t ) = a0 cos(ω0t +φ0), then a(t ) ≡ a0,
φ(t ) ≡ω0t +φ0.
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Analytic Signal . . .

For simplicity, we assume that our signals are 2π-periodic in
θ ∈ [−π,π).
Hence, we work on the unit circle and unit disk D in C=R2.
Note that the signals over R= (−∞,∞) can be treated similarly by
considering the real axis and the upper half plane of C.
The analytic signal of a given signal u(θ) ∈R is often and simply
obtained via the Hilbert transform:

f (θ) = u(θ)+ iH u(θ), H u(θ) := 1

2π
pv

∫ π

−π
u(τ)cot

θ−τ
2

dτ.

Note that

u(θ) = a0

2
+ ∑

k≥1
(ak coskθ+bk sinkθ) ⇒H u(θ) = ∑

k≥1
(ak sinkθ−bk coskθ).

Furthermore,
f (θ) = a0

2
+ ∑

k≥1
(ak − ibk )eikθ.
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Analytic Signal . . .

We can gain a deeper insight by viewing this as the boundary value of an
analytic function F (z) where

F (z) :=U (z)+ iŨ (z), z ∈D,

where

U (z) =U
(
r eiθ)= Pr ∗u(θ) = 1

2π

∫ π

−π
1− r 2

1−2r cos(θ−τ)+ r 2 u(τ)dτ,

Ũ (z) = Ũ
(
r eiθ)=Qr ∗u(θ) = 1

2π

∫ π

−π
2r sin(θ−τ)

1−2r cos(θ−τ)+ r 2 u(τ)dτ.

In other words, the original signal u(θ) =U
(
eiθ

)
is the boundary value of

the harmonic function U on ∂D, which is constructed by the Poisson
integral. Ũ and Qr (θ) are referred to as the conjugate harmonic function
and the conjugate Poisson kernel, respectively.
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Analytic Signal . . . An Example: u(θ)
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Analytic Signal . . . An Example: u(θ) and H u(θ)
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Analytic Signal . . . An Example: U (z) and Ũ (z)

(a) U (z) (b) Ũ (z)
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Analytic Signal . . .

Even if we use the analytic signal, its IAP representation is not unique as
shown by Cohen, Loughlin, and Vakman (1999):

f (θ) = a(θ)eiφ(θ), where a(θ) = u(θ)cosφ(θ)+ v(θ)sinφ(θ) may be
negative though φ(θ) is continuous;
f (θ) = |a(θ)|ei(φ(θ)+πα(θ)), where α(θ) is an appropriate phase function,
which may be discontinuous.

(a) Continuous phase

(b) Nonnegative amplitude
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