Basics of Analytic Signals

Naoki Saito
Professor of Department of Mathematics
University of California, Davis

February 24, 2016

Motivation

- Many natural and man-made signals exhibit time-varying frequencies (e.g., chirps, FM radio waves).

Motivation

- Many natural and man-made signals exhibit time-varying frequencies (e.g., chirps, FM radio waves).
- Characterization and analysis of such a signal, $u(t)$, based on instantaneous amplitude $a(t)$, instantaneous phase $\phi(t)$, and instantaneous frequency $\omega(t):=\phi^{\prime}(t)$, are very important:

$$
u(t)=a(t) \cos \phi(t)
$$

Analytic Signal

- It is convenient to use a complexified version of the signal whose real part is a given real-valued signal $u(t)$.
where $v(t)$ is an arbitrary real-valued signal; yet this yields the IAP representation of $u(t)$ via

Analytic Signal

- It is convenient to use a complexified version of the signal whose real part is a given real-valued signal $u(t)$.
- Given $u(t)$, however, there are infinitely many ways to define the instantaneous amplitude and phase (IAP) pairs so that

$$
u(t)=a(t) \cos \phi(t)
$$

where $v(t)$ is an arbitrary real-valued signal; yet this yields the IAP representation of $u(t)$ via

Analytic Signal

- It is convenient to use a complexified version of the signal whose real part is a given real-valued signal $u(t)$.
- Given $u(t)$, however, there are infinitely many ways to define the instantaneous amplitude and phase (IAP) pairs so that

$$
u(t)=a(t) \cos \phi(t) .
$$

- This is due to the arbitrariness of the complexified version of u, i.e.,

$$
f(t)=u(t)+\mathrm{i} v(t)
$$

where $v(t)$ is an arbitrary real-valued signal; yet this yields the IAP representation of $u(t)$ via

$$
a(t)=\sqrt{u^{2}(t)+v^{2}(t)}, \quad \phi(t)=\arctan \frac{v(t)}{u(t)} .
$$

Analytic Signal

- It is convenient to use a complexified version of the signal whose real part is a given real-valued signal $u(t)$.
- Given $u(t)$, however, there are infinitely many ways to define the instantaneous amplitude and phase (IAP) pairs so that

$$
u(t)=a(t) \cos \phi(t) .
$$

- This is due to the arbitrariness of the complexified version of u, i.e.,

$$
f(t)=u(t)+\mathrm{i} v(t)
$$

where $v(t)$ is an arbitrary real-valued signal; yet this yields the IAP representation of $u(t)$ via

$$
a(t)=\sqrt{u^{2}(t)+v^{2}(t)}, \quad \phi(t)=\arctan \frac{v(t)}{u(t)} .
$$

- The instantaneous frequency is defined as

$$
\omega(t):=\frac{\mathrm{d} \phi}{\mathrm{~d} t}=\frac{u(t) v^{\prime}(t)-u^{\prime}(t) v(t)}{u^{2}(t)+v^{2}(t)}
$$

Analytic Signal

- Gabor (1946) proposed to use the the Hilbert transform of $u(t)$ as $\nu(t)$, and called the complex-valued $f(t)$ an analytic signal.
$u(t)$ if we impose some a priori physical assumptions:

Analytic Signal

- Gabor (1946) proposed to use the the Hilbert transform of $u(t)$ as $\nu(t)$, and called the complex-valued $f(t)$ an analytic signal.
- Vakman (1972) proved that $v(t)$ must be of the Hilbert transform of $u(t)$ if we impose some a priori physical assumptions:

Analytic Signal

- Gabor (1946) proposed to use the the Hilbert transform of $u(t)$ as $v(t)$, and called the complex-valued $f(t)$ an analytic signal.
- Vakman (1972) proved that $v(t)$ must be of the Hilbert transform of $u(t)$ if we impose some a priori physical assumptions:
(1) $v(t)$ must be derived from $u(t)$.

4 Harmonic correspondence:

Analytic Signal

- Gabor (1946) proposed to use the the Hilbert transform of $u(t)$ as $\nu(t)$, and called the complex-valued $f(t)$ an analytic signal.
- Vakman (1972) proved that $v(t)$ must be of the Hilbert transform of $u(t)$ if we impose some a priori physical assumptions:
(1) $v(t)$ must be derived from $u(t)$.
(2) Amplitude continuity: a small change in $u \Longrightarrow$ a small change in $a(t)$.
\qquad

Analytic Signal

- Gabor (1946) proposed to use the the Hilbert transform of $u(t)$ as $v(t)$, and called the complex-valued $f(t)$ an analytic signal.
- Vakman (1972) proved that $v(t)$ must be of the Hilbert transform of $u(t)$ if we impose some a priori physical assumptions:
(1) $v(t)$ must be derived from $u(t)$.
(2) Amplitude continuity: a small change in $u \Longrightarrow$ a small change in $a(t)$.
(3) Phase independence of scale: if $c u(t), c \in \mathbb{R}$ arbitrary scalar, then the phase does not change from that of $u(t)$ and its amplitude becomes c times that of $u(t)$.

Analytic Signal

- Gabor (1946) proposed to use the the Hilbert transform of $u(t)$ as $v(t)$, and called the complex-valued $f(t)$ an analytic signal.
- Vakman (1972) proved that $v(t)$ must be of the Hilbert transform of $u(t)$ if we impose some a priori physical assumptions:
(1) $v(t)$ must be derived from $u(t)$.
(2) Amplitude continuity: a small change in $u \Longrightarrow$ a small change in $a(t)$.
(3) Phase independence of scale: if $c u(t), c \in \mathbb{R}$ arbitrary scalar, then the phase does not change from that of $u(t)$ and its amplitude becomes c times that of $u(t)$.
(4) Harmonic correspondence: if $u(t)=a_{0} \cos \left(\omega_{0} t+\phi_{0}\right)$, then $a(t) \equiv a_{0}$, $\phi(t) \equiv \omega_{0} t+\phi_{0}$.

Analytic Signal

- For simplicity, we assume that our signals are 2π-periodic in $\theta \in[-\pi, \pi)$.
- Note that
- Furthermore,

Analytic Signal

- For simplicity, we assume that our signals are 2π-periodic in $\theta \in[-\pi, \pi)$.
- Hence, we work on the unit circle and unit disk \mathbb{D} in $\mathbb{C}=\mathbb{R}^{2}$.
considering the real axis and the upper half plane of \mathbb{C}. The analytic signal of a given signal $u(\theta) \in \mathbb{R}$ is often and simply obtained via the Hilbert transform:

Analytic Signal

- For simplicity, we assume that our signals are 2π-periodic in $\theta \in[-\pi, \pi)$.
- Hence, we work on the unit circle and unit disk \mathbb{D} in $\mathbb{C}=\mathbb{R}^{2}$.
- Note that the signals over $\mathbb{R}=(-\infty, \infty)$ can be treated similarly by considering the real axis and the upper half plane of \mathbb{C}.
- Furthermore,

Analytic Signal

- For simplicity, we assume that our signals are 2π-periodic in $\theta \in[-\pi, \pi)$.
- Hence, we work on the unit circle and unit disk \mathbb{D} in $\mathbb{C}=\mathbb{R}^{2}$.
- Note that the signals over $\mathbb{R}=(-\infty, \infty)$ can be treated similarly by considering the real axis and the upper half plane of \mathbb{C}.
- The analytic signal of a given signal $u(\theta) \in \mathbb{R}$ is often and simply obtained via the Hilbert transform:

$$
f(\theta)=u(\theta)+\mathrm{i} \mathscr{H} u(\theta), \quad \mathscr{H} u(\theta):=\frac{1}{2 \pi} \mathrm{pv} \int_{-\pi}^{\pi} u(\tau) \cot \frac{\theta-\tau}{2} \mathrm{~d} \tau .
$$

Analytic Signal

- For simplicity, we assume that our signals are 2π-periodic in $\theta \in[-\pi, \pi)$.
- Hence, we work on the unit circle and unit disk \mathbb{D} in $\mathbb{C}=\mathbb{R}^{2}$.
- Note that the signals over $\mathbb{R}=(-\infty, \infty)$ can be treated similarly by considering the real axis and the upper half plane of \mathbb{C}.
- The analytic signal of a given signal $u(\theta) \in \mathbb{R}$ is often and simply obtained via the Hilbert transform:

$$
f(\theta)=u(\theta)+\mathrm{i} \mathscr{H} u(\theta), \quad \mathscr{H} u(\theta):=\frac{1}{2 \pi} \mathrm{pv} \int_{-\pi}^{\pi} u(\tau) \cot \frac{\theta-\tau}{2} \mathrm{~d} \tau .
$$

- Note that
$u(\theta)=\frac{a_{0}}{2}+\sum_{k \geq 1}\left(a_{k} \cos k \theta+b_{k} \sin k \theta\right) \Rightarrow \mathscr{H} u(\theta)=\sum_{k \geq 1}\left(a_{k} \sin k \theta-b_{k} \cos k \theta\right)$.

Analytic Signal

- For simplicity, we assume that our signals are 2π-periodic in $\theta \in[-\pi, \pi)$.
- Hence, we work on the unit circle and unit disk \mathbb{D} in $\mathbb{C}=\mathbb{R}^{2}$.
- Note that the signals over $\mathbb{R}=(-\infty, \infty)$ can be treated similarly by considering the real axis and the upper half plane of \mathbb{C}.
- The analytic signal of a given signal $u(\theta) \in \mathbb{R}$ is often and simply obtained via the Hilbert transform:

$$
f(\theta)=u(\theta)+\mathrm{i} \mathscr{H} u(\theta), \quad \mathscr{H} u(\theta):=\frac{1}{2 \pi} \mathrm{pv} \int_{-\pi}^{\pi} u(\tau) \cot \frac{\theta-\tau}{2} \mathrm{~d} \tau .
$$

- Note that
$u(\theta)=\frac{a_{0}}{2}+\sum_{k \geq 1}\left(a_{k} \cos k \theta+b_{k} \sin k \theta\right) \Rightarrow \mathscr{H} u(\theta)=\sum_{k \geq 1}\left(a_{k} \sin k \theta-b_{k} \cos k \theta\right)$.
- Furthermore,

$$
f(\theta)=\frac{a_{0}}{2}+\sum_{k \geq 1}\left(a_{k}-\mathrm{i} b_{k}\right) \mathrm{e}^{\mathrm{i} k \theta}
$$

Analytic Signal

We can gain a deeper insight by viewing this as the boundary value of an analytic function $F(z)$ where

$$
F(z):=U(z)+\mathrm{i} \widetilde{U}(z), \quad z \in \mathbb{D},
$$

where

$$
\begin{aligned}
& U(z)=U\left(r \mathrm{e}^{\mathrm{i} \theta}\right)=P_{r} * u(\theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1-r^{2}}{1-2 r \cos (\theta-\tau)+r^{2}} u(\tau) \mathrm{d} \tau \\
& \widetilde{U}(z)=\widetilde{U}\left(r \mathrm{e}^{\mathrm{i} \theta}\right)=Q_{r} * u(\theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{2 r \sin (\theta-\tau)}{1-2 r \cos (\theta-\tau)+r^{2}} u(\tau) \mathrm{d} \tau
\end{aligned}
$$

In other words, the original signal $u(\theta)=U\left(\mathrm{e}^{\mathrm{i} \theta}\right)$ is the boundary value of the harmonic function U on $\partial \mathbb{D}$, which is constructed by the Poisson integral. \widetilde{U} and $Q_{r}(\theta)$ are referred to as the conjugate harmonic function and the conjugate Poisson kernel, respectively.

Analytic Signal . . An Example: $u(\theta)$

Analytic Signal . . An Example: $u(\theta)$ and $\mathscr{H} u(\theta)$

Analytic Signal ... An Example: $U(z)$ and $\widetilde{U}(z)$

Analytic Signal

Even if we use the analytic signal, its IAP representation is not unique as shown by Cohen, Loughlin, and Vakman (1999):

- $f(\theta)=a(\theta) \mathrm{e}^{\mathrm{i} \phi(\theta)}$, where $a(\theta)=u(\theta) \cos \phi(\theta)+v(\theta) \sin \phi(\theta)$ may be negative though $\phi(\theta)$ is continuous;

(a) Continuous phase

Analytic Signal

Even if we use the analytic signal, its IAP representation is not unique as shown by Cohen, Loughlin, and Vakman (1999):

- $f(\theta)=a(\theta) \mathrm{e}^{\mathrm{i} \phi(\theta)}$, where $a(\theta)=u(\theta) \cos \phi(\theta)+v(\theta) \sin \phi(\theta)$ may be negative though $\phi(\theta)$ is continuous;
- $f(\theta)=|a(\theta)| \mathrm{e}^{\mathrm{i}(\phi(\theta)+\pi \alpha(\theta))}$, where $\alpha(\theta)$ is an appropriate phase function, which may be discontinuous.

(a) Continuous phase

(b) Nonnegative amplitude

