MAT 271: Applied \& Computational Harmonic Analysis

 Lecture 7: Discrete Fourier Transform (DFT)Naoki Saito

Department of Mathematics University of California, Davis

January 27, 2016

Outline

(1) Definitions
(2) The Reciprocity Relations
(3) The Vector-Matrix Notation of DFT
(4) Pictorial View of W_{N}^{*}
(5) Different Definitions of DFT
(6) References

Outline

(1) Definitions

(2) The Reciprocity Relations
(3) The Vector-Matrix Notation of DFT
4. Pictorial View of W_{N}^{*}
(5) Different Definitions of DFT
6) References

Definitions

- The DFT can be viewed as either an approximation to the Fourier transform or an approximation to the Fourier series coefficients.

Definitions

- The DFT can be viewed as either an approximation to the Fourier transform or an approximation to the Fourier series coefficients.
- Suppose $f \in L^{2}[-A / 2, A / 2]$, and $f(x)=0$ for $|x|>A / 2$. That is, f is a space-limited, square integrable function, which is a reasonable assumption in practice.
the periodic functions gives the line spectrum in the frequency

Definitions

- The DFT can be viewed as either an approximation to the Fourier transform or an approximation to the Fourier series coefficients.
- Suppose $f \in L^{2}[-A / 2, A / 2]$, and $f(x)=0$ for $|x|>A / 2$. That is, f is a space-limited, square integrable function, which is a reasonable assumption in practice.
- Then, we can invoke the dual version of the Sampling Theorem in the frequency domain, which can also be stated in terms of Fourier coefficients of the Fourier series (Recall that the Fourier transform of the periodic functions gives the line spectrum in the frequency domain).

Definitions

- The DFT can be viewed as either an approximation to the Fourier transform or an approximation to the Fourier series coefficients.
- Suppose $f \in L^{2}[-A / 2, A / 2]$, and $f(x)=0$ for $|x|>A / 2$. That is, f is a space-limited, square integrable function, which is a reasonable assumption in practice.
- Then, we can invoke the dual version of the Sampling Theorem in the frequency domain, which can also be stated in terms of Fourier coefficients of the Fourier series (Recall that the Fourier transform of the periodic functions gives the line spectrum in the frequency domain).
- In fact, we have the following relationship:

$$
\begin{equation*}
\hat{f}(k / A)=\int_{-A / 2}^{A / 2} f(x) \mathrm{e}^{-2 \pi \mathrm{i} k x / A} \mathrm{~d} x=\left\langle f, \mathrm{e}^{2 \pi \mathrm{i} k \cdot / A}\right\rangle=\sqrt{A} \alpha_{k}, \quad k \in \mathbb{Z} . \tag{1}
\end{equation*}
$$

- In general, $f \in L^{2}[-A / 2, A / 2]$ is not a band-limited function; Recall the uncertainty principles!

- In general, $f \in L^{2}[-A / 2, A / 2]$ is not a band-limited function; Recall the uncertainty principles!
- Therefore, to have a finite length vector representing the frequency samples (or the Fourier coefficients), we need to truncate the frequency information for $|\xi|>\Omega / 2$ for some $\Omega>0$.
- In general, $f \in L^{2}[-A / 2, A / 2]$ is not a band-limited function; Recall the uncertainty principles!
- Therefore, to have a finite length vector representing the frequency samples (or the Fourier coefficients), we need to truncate the frequency information for $|\xi|>\Omega / 2$ for some $\Omega>0$.
- This is the first source of error of DFT approximation to FT/FS.
- In general, $f \in L^{2}[-A / 2, A / 2]$ is not a band-limited function; Recall the uncertainty principles!
- Therefore, to have a finite length vector representing the frequency samples (or the Fourier coefficients), we need to truncate the frequency information for $|\xi|>\Omega / 2$ for some $\Omega>0$.
- This is the first source of error of DFT approximation to FT/FS.
- This truncation allows us to consider only k with $|k| \leq A \Omega / 2$.

$$
\begin{equation*}
\hat{f}(k / A)=\int_{-A / 2}^{A / 2} f(x) \mathrm{e}^{-2 \pi \mathrm{i} k x / A} \mathrm{~d} x=\left\langle f, \mathrm{e}^{2 \pi \mathrm{i} k \cdot / A}\right\rangle=\sqrt{A} \alpha_{k}, \quad k \in \mathbb{Z} . \tag{1}
\end{equation*}
$$

- We now need to approximate the integration in (1) numerically. We use the trapezoid rule. Here is the second source of the error of DFT.
- We now need to approximate the integration in (1) numerically. We use the trapezoid rule. Here is the second source of the error of DFT.
- Let's divide the interval $[-A / 2, A / 2]$ into N (positive even integer ${ }^{1}$) subintervals of equal length of $\Delta x=A / N$. Let $x_{\ell}=\ell \Delta x$, $\ell=(-N / 2):(N / 2)$ be the points used in the trapezoid rule. Let $g(x)=f(x) \mathrm{e}^{-2 \pi \mathrm{i} k x / A}$. Then we have

$$
\hat{f}(k / A) \approx \frac{\Delta x}{2}\left\{g(-A / 2)+2 \sum_{\ell=-N / 2+1}^{N / 2-1} g\left(x_{\ell}\right)+g(A / 2)\right\} .
$$

[^0]- We now need to approximate the integration in (1) numerically. We use the trapezoid rule. Here is the second source of the error of DFT.
- Let's divide the interval $[-A / 2, A / 2]$ into N (positive even integer ${ }^{1}$) subintervals of equal length of $\Delta x=A / N$. Let $x_{\ell}=\ell \Delta x$, $\ell=(-N / 2):(N / 2)$ be the points used in the trapezoid rule. Let $g(x)=f(x) \mathrm{e}^{-2 \pi \mathrm{i} k x / A}$. Then we have

$$
\hat{f}(k / A) \approx \frac{\Delta x}{2}\left\{g(-A / 2)+2 \sum_{\ell=-N / 2+1}^{N / 2-1} g\left(x_{\ell}\right)+g(A / 2)\right\} .
$$

- If we assume $f(-A / 2)=f(A / 2)$ (which we can do by extending f by reflection, windowing, or zero-padding followed by redefining A), then the above approximation is simplified:

$$
\hat{f}(k / A) \approx \Delta x \sum_{\ell=-N / 2+1}^{N / 2} g\left(x_{\ell}\right)=\frac{A}{N} \sum_{\ell=-N / 2+1}^{N / 2} f(\ell A / N) \mathrm{e}^{-2 \pi \mathrm{i} k \ell / N}
$$

[^1]- Now, let $f_{\ell}:=f(\ell A / N)$ Then, the N-point DFT is defined as follows:

$$
\begin{equation*}
F_{k}:=\frac{1}{\sqrt{N}} \sum_{\ell=-N / 2+1}^{N / 2} f_{\ell} \mathrm{e}^{-2 \pi \mathrm{i} k \ell / N}, \quad k=-\frac{N}{2}+1, \ldots, \frac{N}{2} . \tag{2}
\end{equation*}
$$

- Now, let $f_{\ell}:=f(\ell A / N)$ Then, the N-point DFT is defined as follows:

$$
\begin{equation*}
F_{k}:=\frac{1}{\sqrt{N}} \sum_{\ell=-N / 2+1}^{N / 2} f_{\ell} \mathrm{e}^{-2 \pi \mathrm{i} k \ell / N}, \quad k=-\frac{N}{2}+1, \ldots, \frac{N}{2} . \tag{2}
\end{equation*}
$$

- The factor $1 / \sqrt{N}$ is to make DFT a unitary transformation (i.e., ℓ^{2}-norm (energy) preserving transformation, so that the Parseval \& Plancherel equalities holds.) $)^{2}$
${ }^{2}$ Note that the definition used in the standard book [2] uses the factor $1 / N$ instead, which makes DFT non-unitary. You need to be careful about various definitions of DFT!
- Now, let $f_{\ell}:=f(\ell A / N)$ Then, the N-point DFT is defined as follows:

$$
\begin{equation*}
F_{k}:=\frac{1}{\sqrt{N}} \sum_{\ell=-N / 2+1}^{N / 2} f_{\ell} \mathrm{e}^{-2 \pi \mathrm{i} k \ell / N}, \quad k=-\frac{N}{2}+1, \ldots, \frac{N}{2} . \tag{2}
\end{equation*}
$$

- The factor $1 / \sqrt{N}$ is to make DFT a unitary transformation (i.e., ℓ^{2}-norm (energy) preserving transformation, so that the Parseval \& Plancherel equalities holds.) ${ }^{2}$
- We now have the following relationship.

$$
\hat{f}(k / A)=\sqrt{A} \alpha_{k} \approx \frac{A}{\sqrt{N}} F_{k}
$$

${ }^{2}$ Note that the definition used in the standard book [2] uses the factor $1 / N$ instead, which makes DFT non-unitary. You need to be careful about various definitions of DFT!

- Now, let $f_{\ell}:=f(\ell A / N)$ Then, the N-point DFT is defined as follows:

$$
\begin{equation*}
F_{k}:=\frac{1}{\sqrt{N}} \sum_{\ell=-N / 2+1}^{N / 2} f_{\ell} \mathrm{e}^{-2 \pi \mathrm{i} k \ell / N}, \quad k=-\frac{N}{2}+1, \ldots, \frac{N}{2} . \tag{2}
\end{equation*}
$$

- The factor $1 / \sqrt{N}$ is to make DFT a unitary transformation (i.e., ℓ^{2}-norm (energy) preserving transformation, so that the Parseval \& Plancherel equalities holds.) ${ }^{2}$
- We now have the following relationship.

$$
\hat{f}(k / A)=\sqrt{A} \alpha_{k} \approx \frac{A}{\sqrt{N}} F_{k} .
$$

- The N-point inverse DFT is defined, as you can imagine, as follows.

$$
f_{\ell}:=\frac{1}{\sqrt{N}} \sum_{k=-N / 2+1}^{N / 2} F_{k} \mathrm{e}^{2 \pi \mathrm{i} k \ell / N}, \quad \ell=-\frac{N}{2}+1, \ldots, \frac{N}{2}
$$

The proof of this formula gets easier when we use the vector-matrix notation later in this lecture.
${ }^{2}$ Note that the definition used in the standard book [2] uses the factor $1 / N$ instead, which makes DFT non-unitary. You need to be careful about various definitions of DFT!

Outline

1) Definitions

(2) The Reciprocity Relations
(3) The Vector-Matrix Notation of DFT
4. Pictorial View of W_{N}^{*}
(5) Different Definitions of DFT

6 References

The Reciprocity Relations

- Let $\Delta \xi$ be a sampling rate in the frequency domain, i.e., $\Delta \xi=1 / A$. Since we know $\Delta x=A / N$, and $k / A=\Omega / 2$ at $k=N / 2$ (highest frequency in consideration), we have the following fundamental relations:

$$
\Delta x \Delta \xi=\frac{1}{N}, \quad A \Omega=N
$$

The Reciprocity Relations

- Let $\Delta \xi$ be a sampling rate in the frequency domain, i.e., $\Delta \xi=1 / A$. Since we know $\Delta x=A / N$, and $k / A=\Omega / 2$ at $k=N / 2$ (highest frequency in consideration), we have the following fundamental relations:

$$
\Delta x \Delta \xi=\frac{1}{N}, \quad A \Omega=N
$$

- Interpretation of these relations is very important! For example:

The Reciprocity Relations

- Let $\Delta \xi$ be a sampling rate in the frequency domain, i.e., $\Delta \xi=1 / A$. Since we know $\Delta x=A / N$, and $k / A=\Omega / 2$ at $k=N / 2$ (highest frequency in consideration), we have the following fundamental relations:

$$
\Delta x \Delta \xi=\frac{1}{N}, \quad A \Omega=N
$$

- Interpretation of these relations is very important! For example:
- For fixed $N, A \uparrow \Longrightarrow \Delta x \uparrow \Omega \downarrow \Delta \xi \downarrow$ (coarser space sampling leads to finer frequency sampling, but the frequency bandwidth also decreases).

The Reciprocity Relations

- Let $\Delta \xi$ be a sampling rate in the frequency domain, i.e., $\Delta \xi=1 / A$. Since we know $\Delta x=A / N$, and $k / A=\Omega / 2$ at $k=N / 2$ (highest frequency in consideration), we have the following fundamental relations:

$$
\Delta x \Delta \xi=\frac{1}{N}, \quad A \Omega=N
$$

- Interpretation of these relations is very important! For example:
- For fixed $N, A \uparrow \Longrightarrow \Delta x \uparrow \Omega \downarrow \Delta \xi \downarrow$ (coarser space sampling leads to finer frequency sampling, but the frequency bandwidth also decreases).
- For fixed $A, N \uparrow \Longrightarrow \Delta x \downarrow \Omega \uparrow \Delta \xi \equiv$ const. $=1 / A$ (finer space sampling leads to the increase of the frequency bandwidth).

Outline

1) Definitions

(2) The Reciprocity Relations

(3) The Vector-Matrix Notation of DFT
4. Pictorial View of W_{N}^{*}
(5) Different Definitions of DFT

6 References

The vector-matrix notation of DFT

- We can gain great insights by expressing DFT using the vector-matrix notation. To do this, we need to define a couple of things.

The vector-matrix notation of DFT

- We can gain great insights by expressing DFT using the vector-matrix notation. To do this, we need to define a couple of things.
- Let $\omega_{N}:=\mathrm{e}^{2 \pi \mathrm{i} / N}$, i.e., the N th root of unity.

The vector-matrix notation of DFT

- We can gain great insights by expressing DFT using the vector-matrix notation. To do this, we need to define a couple of things.
- Let $\omega_{N}:=\mathrm{e}^{2 \pi \mathrm{i} / N}$, i.e., the N th root of unity.
- Note that $\bar{\omega}_{N}=\omega_{N}^{-1} ; \omega_{N}^{0}=\omega_{N}^{N}=1 ; \omega_{N}^{N / 2}=-1 ;$ and $\omega_{N}^{k+N}=\omega_{N}^{k}$ for any $k \in \mathbb{Z}$.

The vector-matrix notation of DFT

- We can gain great insights by expressing DFT using the vector-matrix notation. To do this, we need to define a couple of things.
- Let $\omega_{N}:=\mathrm{e}^{2 \pi \mathrm{i} / N}$, i.e., the N th root of unity.
- Note that $\bar{\omega}_{N}=\omega_{N}^{-1} ; \omega_{N}^{0}=\omega_{N}^{N}=1 ; \omega_{N}^{N / 2}=-1 ;$ and $\omega_{N}^{k+N}=\omega_{N}^{k}$ for any $k \in \mathbb{Z}$.
- Then, define a column vector:

$$
\boldsymbol{w}_{N}^{k}:=\frac{1}{\sqrt{N}}\left(\omega_{N}^{k \cdot 0}, \omega_{N}^{k \cdot 1}, \ldots, \omega_{N}^{k \cdot \frac{N}{2}}, \ldots, \omega_{N}^{k \cdot(N-1)}\right)^{\top}, \quad k=0, \ldots, N-1
$$

The vector-matrix notation of DFT

- We can gain great insights by expressing DFT using the vector-matrix notation. To do this, we need to define a couple of things.
- Let $\omega_{N}:=\mathrm{e}^{2 \pi \mathrm{i} / N}$, i.e., the N th root of unity.
- Note that $\bar{\omega}_{N}=\omega_{N}^{-1} ; \omega_{N}^{0}=\omega_{N}^{N}=1 ; \omega_{N}^{N / 2}=-1 ;$ and $\omega_{N}^{k+N}=\omega_{N}^{k}$ for any $k \in \mathbb{Z}$.
- Then, define a column vector:

$$
\boldsymbol{w}_{N}^{k}:=\frac{1}{\sqrt{N}}\left(\omega_{N}^{k \cdot 0}, \omega_{N}^{k \cdot 1}, \ldots, \omega_{N}^{k \cdot \frac{N}{2}}, \ldots, \omega_{N}^{k \cdot(N-1)}\right)^{\top}, \quad k=0, \ldots, N-1
$$

- We also define another column vector:

$$
\widetilde{\boldsymbol{w}}_{N}^{k}:=\frac{1}{\sqrt{N}}\left(\omega_{N}^{k \cdot\left(-\frac{N}{2}+1\right)}, \omega_{N}^{k \cdot\left(-\frac{N}{2}+2\right)}, \ldots, \omega_{N}^{k \cdot 0}, \ldots, \omega_{N}^{k \cdot \frac{N}{2}}\right)^{\top}, \quad k=-\frac{N}{2}+1, \ldots, \frac{N}{2}
$$

- Using the properties of ω_{N} listed above, one can easily show that

$$
\widetilde{\boldsymbol{w}}_{N}^{k}=P_{N} \boldsymbol{w}_{N}^{k}, \quad P_{N}:=T_{N}^{-1} S_{N},
$$

- Using the properties of ω_{N} listed above, one can easily show that

$$
\widetilde{\boldsymbol{w}}_{N}^{k}=P_{N} \boldsymbol{w}_{N}^{k}, \quad P_{N}:=T_{N}^{-1} S_{N}
$$

- T_{N} shifts vector entries circularly in one step "down", i.e., $T_{N}\left(a_{1}, \ldots, a_{N}\right)^{\top}=\left(a_{N}, a_{1}, \ldots, a_{N-1}\right)^{\top}$.
- Using the properties of ω_{N} listed above, one can easily show that

$$
\widetilde{\boldsymbol{w}}_{N}^{k}=P_{N} \boldsymbol{w}_{N}^{k}, \quad P_{N}:=T_{N}^{-1} S_{N},
$$

- T_{N} shifts vector entries circularly in one step "down", i.e., $T_{N}\left(a_{1}, \ldots, a_{N}\right)^{\top}=\left(a_{N}, a_{1}, \ldots, a_{N-1}\right)^{\top}$.
- Note that $T_{N}^{-1}=T_{N}^{\top}$ represents the "up" circular shift operation.
- Using the properties of ω_{N} listed above, one can easily show that

$$
\widetilde{\boldsymbol{w}}_{N}^{k}=P_{N} \boldsymbol{w}_{N}^{k}, \quad P_{N}:=T_{N}^{-1} S_{N},
$$

- T_{N} shifts vector entries circularly in one step "down", i.e., $T_{N}\left(a_{1}, \ldots, a_{N}\right)^{\top}=\left(a_{N}, a_{1}, \ldots, a_{N-1}\right)^{\top}$.
- Note that $T_{N}^{-1}=T_{N}^{\top}$ represents the "up" circular shift operation.
- In MATLAB, $T_{N}^{m} \boldsymbol{a}$ corresponds to circshift (a, m) where m is an arbitrary integer (positive or negative).
- Using the properties of ω_{N} listed above, one can easily show that

$$
\widetilde{\boldsymbol{w}}_{N}^{k}=P_{N} \boldsymbol{w}_{N}^{k}, \quad P_{N}:=T_{N}^{-1} S_{N},
$$

- T_{N} shifts vector entries circularly in one step "down", i.e., $T_{N}\left(a_{1}, \ldots, a_{N}\right)^{\top}=\left(a_{N}, a_{1}, \ldots, a_{N-1}\right)^{\top}$.
- Note that $T_{N}^{-1}=T_{N}^{\top}$ represents the "up" circular shift operation.
- In MATLAB, $T_{N}^{m} \boldsymbol{a}$ corresponds to circshift (a,m) where m is an arbitrary integer (positive or negative).
- On the other hand, S_{N} is equivalent to fftshift in MATLAB:

$$
\begin{aligned}
& \qquad S_{N}:=\left[\begin{array}{cc}
O_{\frac{N}{2}} & I_{\frac{N}{2}} \\
I_{\frac{N}{2}} & O_{\frac{N}{2}}
\end{array}\right] \\
& \text { i.e., } S_{N}\left(a_{1}, \ldots, a_{N}\right)^{\top}=\left(a_{\frac{N}{2}+1}, \ldots, a_{N}, a_{1}, \ldots, a_{\frac{N}{2}}\right)^{\top} .
\end{aligned}
$$

- Using the properties of ω_{N} listed above, one can easily show that

$$
\widetilde{\boldsymbol{w}}_{N}^{k}=P_{N} \boldsymbol{w}_{N}^{k}, \quad P_{N}:=T_{N}^{-1} S_{N},
$$

- T_{N} shifts vector entries circularly in one step "down", i.e., $T_{N}\left(a_{1}, \ldots, a_{N}\right)^{\top}=\left(a_{N}, a_{1}, \ldots, a_{N-1}\right)^{\top}$.
- Note that $T_{N}^{-1}=T_{N}^{\top}$ represents the "up" circular shift operation.
- In MATLAB, $T_{N}^{m} \boldsymbol{a}$ corresponds to circshift (a,m) where m is an arbitrary integer (positive or negative).
- On the other hand, S_{N} is equivalent to fftshift in MATLAB:

$$
\begin{aligned}
& \qquad S_{N}:=\left[\begin{array}{cc}
O_{\frac{N}{2}} & I_{\frac{N}{2}} \\
I_{\frac{N}{2}} & O_{\frac{N}{2}}
\end{array}\right] \\
& \text { i.e., } S_{N}\left(a_{1}, \ldots, a_{N}\right)^{\top}=\left(a_{\frac{N}{2}+1}, \ldots, a_{N}, a_{1}, \ldots, a_{\frac{N}{2}}\right)^{\top}
\end{aligned}
$$

- Note that $S_{N}^{\top}=S_{N}^{-1}=S_{N}$.

Just in case, the matrix representations of T_{N} and P_{N} are:

$$
\begin{gathered}
T_{N}:=\left[\begin{array}{ccccc}
0 & \cdots & \cdots & 0 & 1 \\
1 & 0 & \cdots & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 & 0 \\
0 & \cdots & 0 & 1 & 0
\end{array}\right] \in \mathbb{R}^{N \times N} ; \\
P_{N}:=\left[\begin{array}{cccc|cccc}
0 & \cdots & \cdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
1 & 0 & \cdots & 0 & 0 & \cdots & \cdots & 0 \\
\hline 0 & 1 & \cdots & 0 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & 0 & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 & 0 & \cdots & 0
\end{array}\right] \in \mathbb{R}^{N \times N} .
\end{gathered}
$$

- Let $\boldsymbol{f}=\left(f_{-\frac{N}{2}+1}, \ldots, f_{\frac{N}{2}}\right)^{\top}$ be a vector of sampled points $f_{\ell}=f(\ell \Delta x)$.

- Now DFT can be written as follows:

- On the other hand, we define the following matrix compliant with our definition of DFT in Eq. (2):
- Let $\boldsymbol{f}=\left(f_{-\frac{N}{2}+1}, \ldots, f_{\frac{N}{2}}\right)^{\top}$ be a vector of sampled points $f_{\ell}=f(\ell \Delta x)$.
- Now DFT can be written as follows:

$$
F_{k}=\left\langle\boldsymbol{f}, \widetilde{\boldsymbol{w}}_{N}^{k}\right\rangle, \quad k=-\frac{N}{2}+1, \ldots, \frac{N}{2} .
$$

- Let $\boldsymbol{f}=\left(f_{-\frac{N}{2}+1}, \ldots, f_{\frac{N}{2}}\right)^{\top}$ be a vector of sampled points $f_{\ell}=f(\ell \Delta x)$.
- Now DFT can be written as follows:

$$
F_{k}=\left\langle\boldsymbol{f}, \widetilde{\boldsymbol{w}}_{N}^{k}\right\rangle, \quad k=-\frac{N}{2}+1, \ldots, \frac{N}{2} .
$$

- Finally, define an N-point DFT matrix commonly used in the literature:

$$
W_{N}:=\left[\begin{array}{l|l|l|l}
\boldsymbol{w}_{N}^{0} & \boldsymbol{w}_{N}^{1} & \cdots & \boldsymbol{w}_{N}^{N-1}
\end{array}\right]
$$

- Let $\boldsymbol{f}=\left(f_{-\frac{N}{2}+1}, \ldots, f_{\frac{N}{2}}\right)^{\top}$ be a vector of sampled points $f_{\ell}=f(\ell \Delta x)$.
- Now DFT can be written as follows:

$$
F_{k}=\left\langle\boldsymbol{f}, \widetilde{\boldsymbol{w}}_{N}^{k}\right\rangle, \quad k=-\frac{N}{2}+1, \ldots, \frac{N}{2} .
$$

- Finally, define an N-point DFT matrix commonly used in the literature:

$$
W_{N}:=\left[\begin{array}{l|l|l|l}
\boldsymbol{w}_{N}^{0} & \boldsymbol{w}_{N}^{1} & \cdots & \boldsymbol{w}_{N}^{N-1}
\end{array}\right]
$$

- On the other hand, we define the following matrix compliant with our definition of DFT in Eq. (2):

$$
\widetilde{W}_{N}:=\left[\begin{array}{l|l|l|l}
\widetilde{\boldsymbol{w}}_{N}^{-\frac{N}{2}+1} & \widetilde{\boldsymbol{w}}_{N}^{-\frac{N}{2}+2} & \cdots & \widetilde{\boldsymbol{w}}_{N}^{\frac{N}{2}}
\end{array}\right]=P_{N} W_{N} P_{N}^{\top} .
$$

- Let $\boldsymbol{F}=\left(F_{-\frac{N}{2}+1}, \ldots, F_{\frac{N}{2}}\right)^{\top} \in \mathbb{C}^{N}$.
- Then, the N-point DFT/IDFT can be conveniently written as:

$$
\boldsymbol{F}=\widetilde{W}_{N}^{*} \boldsymbol{f}, \quad \boldsymbol{f}=\widetilde{W}_{N} \boldsymbol{F},
$$

where \widetilde{W}_{N}^{*} is an hermitian conjugate (transposition followed by element-wise complex conjugation) of \widetilde{W}_{N}, and also often written as \widetilde{W}_{N} in literature.

- We also denote $\mathscr{D}_{N}[\boldsymbol{f}]:=\widetilde{W}_{N}^{*} \boldsymbol{f}$.

\square
- Let $\boldsymbol{F}=\left(F_{-\frac{N}{2}+1}, \ldots, F_{\frac{N}{2}}\right)^{\top} \in \mathbb{C}^{N}$.
- Then, the N-point DFT/IDFT can be conveniently written as:

$$
\boldsymbol{F}=\widetilde{W}_{N}^{*} \boldsymbol{f}, \quad \boldsymbol{f}=\widetilde{W}_{N} \boldsymbol{F},
$$

where \widetilde{W}_{N}^{*} is an hermitian conjugate (transposition followed by element-wise complex conjugation) of \widetilde{W}_{N}, and also often written as \widetilde{W}_{N}^{H} in literature.

- Let $\boldsymbol{F}=\left(F_{-\frac{N}{2}+1}, \ldots, F_{\frac{N}{2}}\right)^{\top} \in \mathbb{C}^{N}$.
- Then, the N-point DFT/IDFT can be conveniently written as:

$$
\boldsymbol{F}=\widetilde{W}_{N}^{*} \boldsymbol{f}, \quad \boldsymbol{f}=\widetilde{W}_{N} \boldsymbol{F},
$$

where \widetilde{W}_{N}^{*} is an hermitian conjugate (transposition followed by element-wise complex conjugation) of \widetilde{W}_{N}, and also often written as \widetilde{W}_{N}^{H} in literature.

- In fact, $\widetilde{W}_{N}^{*}=\left(P_{N} W_{N} P_{N}^{\top}\right)^{*}=P_{N} W_{N}^{*} P_{N}^{\top}$.
- Let $\boldsymbol{F}=\left(F_{-\frac{N}{2}+1}, \ldots, F_{\frac{N}{2}}\right)^{\top} \in \mathbb{C}^{N}$.
- Then, the N-point DFT/IDFT can be conveniently written as:

$$
\boldsymbol{F}=\widetilde{W}_{N}^{*} \boldsymbol{f}, \quad \boldsymbol{f}=\widetilde{W}_{N} \boldsymbol{F},
$$

where \widetilde{W}_{N}^{*} is an hermitian conjugate (transposition followed by element-wise complex conjugation) of \widetilde{W}_{N}, and also often written as \widetilde{W}_{N}^{H} in literature.

- In fact, $\widetilde{W}_{N}^{*}=\left(P_{N} W_{N} P_{N}^{\top}\right)^{*}=P_{N} W_{N}^{*} P_{N}^{\top}$.
- We also denote $\mathscr{D}_{N}[\boldsymbol{f}]:=\widetilde{W}_{N}^{*} \boldsymbol{f}$.
- Let $\boldsymbol{F}=\left(F_{-\frac{N}{2}+1}, \ldots, F_{\frac{N}{2}}\right)^{\top} \in \mathbb{C}^{N}$.
- Then, the N-point DFT/IDFT can be conveniently written as:

$$
\boldsymbol{F}=\widetilde{W}_{N}^{*} \boldsymbol{f}, \quad \boldsymbol{f}=\widetilde{W}_{N} \boldsymbol{F},
$$

where \widetilde{W}_{N}^{*} is an hermitian conjugate (transposition followed by element-wise complex conjugation) of \widetilde{W}_{N}, and also often written as \widetilde{W}_{N}^{H} in literature.

- In fact, $\widetilde{W}_{N}^{*}=\left(P_{N} W_{N} P_{N}^{\top}\right)^{*}=P_{N} W_{N}^{*} P_{N}^{\top}$.
- We also denote $\mathscr{D}_{N}[\boldsymbol{f}]:=\widetilde{W}_{N}^{*} \boldsymbol{f}$.

Theorem

Both W_{N} and \widetilde{W}_{N} are N-by- N unitary matrix. In other words, both $\left\{\boldsymbol{w}_{N}^{k}\right\}_{k=0}^{N-1}$ and $\left\{\widetilde{\boldsymbol{w}}_{N}^{k}\right\}_{k=-\frac{N}{2}+1}^{\frac{N}{2}}$ are orthonormal bases of \mathbb{C}^{N}.

- Let $\boldsymbol{F}=\left(F_{-\frac{N}{2}+1}, \ldots, F_{\frac{N}{2}}\right)^{\top} \in \mathbb{C}^{N}$.
- Then, the N-point DFT/IDFT can be conveniently written as:

$$
\boldsymbol{F}=\widetilde{W}_{N}^{*} \boldsymbol{f}, \quad \boldsymbol{f}=\widetilde{W}_{N} \boldsymbol{F},
$$

where \widetilde{W}_{N}^{*} is an hermitian conjugate (transposition followed by element-wise complex conjugation) of \widetilde{W}_{N}, and also often written as \widetilde{W}_{N}^{H} in literature.

- In fact, $\widetilde{W}_{N}^{*}=\left(P_{N} W_{N} P_{N}^{\top}\right)^{*}=P_{N} W_{N}^{*} P_{N}^{\top}$.
- We also denote $\mathscr{D}_{N}[\boldsymbol{f}]:=\widetilde{W}_{N}^{*} \boldsymbol{f}$.

Theorem

Both W_{N} and \widetilde{W}_{N} are N-by- N unitary matrix. In other words, both $\left\{\boldsymbol{w}_{N}^{k}\right\}_{k=0}^{N-1}$ and $\left\{\widetilde{\boldsymbol{w}}_{N}^{k}\right\}_{k=-\frac{N}{2}+1}^{\frac{N}{2}}$ are orthonormal bases of \mathbb{C}^{N}.
(Proof) Exercise. A main thing is to prove $\left\langle\boldsymbol{w}_{N}^{k}, \boldsymbol{w}_{N}^{\ell}\right\rangle=\delta_{k, \ell}$.

Theorem
All the eigenvalues of W_{N} and \widetilde{W}_{N} are $1,-1, \mathrm{i},-\mathrm{i}$.

Research Opportunity: W_{N} and \widetilde{W}_{N} are already the ONBs of \mathbb{C}^{N}. What is the use of their eigenvectors?

Theorem

All the eigenvalues of W_{N} and \widetilde{W}_{N} are $1,-1, \mathrm{i},-\mathrm{i}$.
(Proof) See e.g., [1, 2, 3]. Note that from this theorem we have $W_{N}^{4}=\widetilde{W}_{N}^{4}=I_{N}$.

The multiplicities of the eigenvalues of W_{N} are summarized as:

Research Opportunity: W_{N} and W_{N} are already the ONBs of \mathbb{C}^{N}. What

 is the use of their eigenvectors?
Theorem

All the eigenvalues of W_{N} and \widetilde{W}_{N} are $1,-1, \mathbf{i},-\mathbf{i}$.
(Proof) See e.g., [1, 2, 3]. Note that from this theorem we have $W_{N}^{4}=\widetilde{W}_{N}^{4}=I_{N}$.

Theorem (McClellan-Parks [3])

The multiplicities of the eigenvalues of W_{N} are summarized as:

N	mult(1)	$\operatorname{mult}(-1)$	mult(i)	mult(-i)
$4 m$	$m+1$	m	m	$m-1$
$4 m+1$	$m+1$	m	m	m
$4 m+2$	$m+1$	$m+1$	m	m
$4 m+3$	$m+1$	$m+1$	$m+1$	m

Theorem

All the eigenvalues of W_{N} and \widetilde{W}_{N} are $1,-1, \mathbf{i},-\mathbf{i}$.
(Proof) See e.g., [1, 2, 3]. Note that from this theorem we have $W_{N}^{4}=\widetilde{W}_{N}^{4}=I_{N}$.

Theorem (McClellan-Parks [3])
The multiplicities of the eigenvalues of W_{N} are summarized as:

N	mult(1)	mult(-1)	mult(i)	mult(-i)
$4 m$	$m+1$	m	m	$m-1$
$4 m+1$	$m+1$	m	m	m
$4 m+2$	$m+1$	$m+1$	m	m
$4 m+3$	$m+1$	$m+1$	$m+1$	m

Research Opportunity: W_{N} and \widetilde{W}_{N} are already the ONBs of \mathbb{C}^{N}. What is the use of their eigenvectors?

Outline

(1) Definitions

(2) The Reciprocity Relations

(3) The Vector-Matrix Notation of DFT
(4) Pictorial View of W_{N}^{*}

(5) Different Definitions of DFT

6 References

Using the properties of ω_{N}, in particular the periodicity with period N, we have:

$$
W_{N}^{*}=\left[\begin{array}{c}
\left(\boldsymbol{w}_{N}^{0}\right)^{*} \\
\left(\boldsymbol{w}_{N}^{1}\right)^{*} \\
\left(\boldsymbol{w}_{N}^{2}\right)^{*} \\
\vdots \\
\left(\boldsymbol{w}_{N}^{N / 2}\right)^{*} \\
\vdots \\
\left(\boldsymbol{w}_{N}^{N-1}\right)^{*}
\end{array}\right]
$$

Using the properties of ω_{N}, in particular the periodicity with period N, we have:

$$
W_{N}^{*}=\left[\begin{array}{c}
\left(\boldsymbol{w}_{N}^{0}\right)^{*} \\
\left(\boldsymbol{w}_{N}^{1}\right)^{*} \\
\left(\boldsymbol{w}_{N}^{2}\right)^{*} \\
\vdots \\
\left(\boldsymbol{w}_{N}^{N / 2}\right)^{*} \\
\vdots \\
\left(\boldsymbol{w}_{N}^{N-1}\right)^{*}
\end{array}\right]=\frac{1}{\sqrt{N}}\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & \bar{\omega}_{N}^{1} & \bar{\omega}_{N}^{2} & \ldots & \bar{\omega}_{N}^{N-1} \\
1 & \bar{\omega}_{N}^{2} & \bar{\omega}_{N}^{4} & \ldots & \bar{\omega}_{N}^{2(N-1)} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & \bar{\omega}_{N}^{N / 2} & \bar{\omega}_{N}^{2 N / 2} & \ldots & \bar{\omega}_{N}^{(N-1) N / 2} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & \bar{\omega}_{N}^{N-1} & \bar{\omega}_{N}^{2(N-1)} & \ldots & \bar{\omega}_{N}^{(N-1)(N-1)}
\end{array}\right]
$$

Using the properties of ω_{N}, in particular the periodicity with period N, we have:

$$
\begin{aligned}
W_{N}^{*} & =\left[\begin{array}{c}
\left(\boldsymbol{w}_{N}^{0}\right)^{*} \\
\left(\boldsymbol{w}_{N}^{1}\right)^{*} \\
\left(\boldsymbol{w}_{N}^{2}\right)^{*} \\
\vdots \\
\left(\boldsymbol{w}_{N}^{N / 2}\right)^{*} \\
\vdots \\
\left(\boldsymbol{w}_{N}^{N-1}\right)^{*}
\end{array}\right]=\frac{1}{\sqrt{N}}\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & \bar{\omega}_{N}^{1} & \bar{\omega}_{N}^{2} & \ldots & \bar{\omega}_{N}^{N-1} \\
1 & \bar{\omega}_{N}^{2} & \bar{\omega}_{N}^{4} & \ldots & \bar{\omega}_{N}^{2(N-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & \bar{\omega}_{N}^{N / 2} & \bar{\omega}_{N}^{2 N / 2} & \ldots & \bar{\omega}_{N}^{(N-1) N / 2} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & \bar{\omega}_{N}^{N-1} & \bar{\omega}_{N}^{2(N-1)} & \ldots & \bar{\omega}_{N}^{(N-1)(N-1)}
\end{array}\right] \\
& =\frac{1}{\sqrt{N}}\left[\begin{array}{cccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & \omega_{N}^{-1} & \omega_{N}^{-2} & \ldots & \omega_{N}^{-(N-1)} \\
1 & \omega_{N}^{-2} & \omega_{N}^{-4} & \ldots & \omega_{N}^{-2(N-1)} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & \omega_{N}^{-N / 2+1} & \omega_{N}^{2(-N / 2+1)} & \cdots & \omega_{N}^{(N-1)(-N / 2+1)} \\
1 & \omega_{N}^{-N / 2} & \omega_{N}^{-2 N / 2} & \ldots & \omega_{N}^{-(N-1) N / 2} \\
1 & \omega_{N}^{N / 2-1} & \omega_{N}^{2(N / 2-1)} & \ldots & \omega_{N}^{(N-1)(N / 2-1)} \\
1 & \omega_{N}^{N / 2-2} & \omega_{N}^{2(N / 2-2)} & \ldots & \omega_{N}^{(N-1)(N / 2-2)} \\
\vdots & \vdots & & \vdots & \ldots & \vdots \\
1 & \omega_{N}^{1} & \omega_{N}^{2} & \cdots & \omega_{N}^{N-1}
\end{array}\right] .
\end{aligned}
$$

The following figures show the matrix W_{N}^{*} with $N=16$ as waveforms.

The following figures show the matrix W_{N}^{*} with $N=16$ as waveforms.

(a) $\operatorname{Re}\left(W^{*}\right)$

(b) $\operatorname{Im}\left(W^{*}\right)$
Note that the first row vector of a matrix is displayed in the bottom while
the last row in the top in each figure.

The following figures show the matrix W_{N}^{*} with $N=16$ as waveforms.

(a) $\operatorname{Re}\left(W^{*}\right)$

(b) $\operatorname{Im}\left(W^{*}\right)$

Note that the first row vector of a matrix is displayed in the bottom while the last row in the top in each figure.

Now, how about \widetilde{W}_{N}^{*} ?

Now, how about \widetilde{W}_{N}^{*} ?

(a) $\operatorname{Re}\left(\widetilde{W}^{*}\right)$

(b) $\operatorname{Im}\left(\widetilde{W}^{*}\right)$

Now, how about \widetilde{W}_{N}^{*} ?

Note the change of the locations of the basis vectors as well as symmetry $\left(W_{N}^{*}\right)^{\top}=W_{N}^{*},\left(\widetilde{W}_{N}^{*}\right)^{\top}=\widetilde{W}_{N}^{*}$.

Outline

(1) Definitions

(2) The Reciprocity Relations

(3) The Vector-Matrix Notation of DFT
4. Pictorial View of W_{N}^{*}
(5) Different Definitions of DFT

6 References

- It is amazing to know that the definition of DFT varies with the software systems one uses. We should always be careful what is the exact definition of the DFT for each software system.
- It is amazing to know that the definition of DFT varies with the software systems one uses. We should always be careful what is the exact definition of the DFT for each software system.
MATLAB, R, S-Plus: $F_{k}=\sum_{\ell=1}^{N} f_{\ell} \mathrm{e}^{-2 \pi \mathrm{i}(k-1)(\ell-1) / N}$ for $k=1: N$.
- It is amazing to know that the definition of DFT varies with the software systems one uses. We should always be careful what is the exact definition of the DFT for each software system.
MATLAB, R, S-Plus: $F_{k}=\sum_{\ell=1}^{N} f_{\ell} \mathrm{e}^{-2 \pi \mathrm{i}(k-1)(\ell-1) / N}$ for $k=1: N$.
Mathematica: $F_{k}=\frac{1}{\sqrt{N}} \sum_{\ell=1}^{N} f_{\ell} \mathrm{e}^{2 \pi \mathrm{i}(k-1)(\ell-1) / N}$ for $k=1: N$.
- It is amazing to know that the definition of DFT varies with the software systems one uses. We should always be careful what is the exact definition of the DFT for each software system.
MATLAB, R, S-Plus: $F_{k}=\sum_{\ell=1}^{N} f_{\ell} \mathrm{e}^{-2 \pi \mathrm{i}(k-1)(\ell-1) / N}$ for $k=1: N$.
Mathematica: $F_{k}=\frac{1}{\sqrt{N}} \sum_{\ell=1}^{N} f_{\ell} \mathrm{e}^{2 \pi \mathrm{i}(k-1)(\ell-1) / N}$ for $k=1: N$.

$$
\text { Maple: } F_{k+1}=\frac{1}{N} \sum_{\ell=0}^{N-1} f_{\ell} \mathrm{e}^{-2 \pi \mathrm{i} k \ell / N} \text { for } k=0:(N-1) \text {. }
$$

- It is amazing to know that the definition of DFT varies with the software systems one uses. We should always be careful what is the exact definition of the DFT for each software system.
MATLAB, R, S-Plus: $F_{k}=\sum_{\ell=1}^{N} f_{\ell} \mathrm{e}^{-2 \pi \mathrm{i}(k-1)(\ell-1) / N}$ for $k=1: N$.
Mathematica: $F_{k}=\frac{1}{\sqrt{N}} \sum_{\ell=1}^{N} f_{\ell} \mathrm{e}^{2 \pi \mathrm{i}(k-1)(\ell-1) / N}$ for $k=1: N$.
Maple: $F_{k+1}=\frac{1}{N} \sum_{\ell=0}^{N-1} f_{\ell} \mathrm{e}^{-2 \pi \mathrm{i} k \ell / N}$ for $k=0:(N-1)$.
MathCad: $F_{k}=\frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} f_{\ell} \mathrm{e}^{2 \pi \mathrm{i} k \ell / N}$ for $k=0:(N-1)$.
- It is amazing to know that the definition of DFT varies with the software systems one uses. We should always be careful what is the exact definition of the DFT for each software system.
MATLAB, R, S-Plus: $F_{k}=\sum_{\ell=1}^{N} f_{\ell} \mathrm{e}^{-2 \pi \mathrm{i}(k-1)(\ell-1) / N}$ for $k=1: N$.
Mathematica: $F_{k}=\frac{1}{\sqrt{N}} \sum_{\ell=1}^{N} f_{\ell} \mathrm{e}^{2 \pi \mathrm{i}(k-1)(\ell-1) / N}$ for $k=1: N$.
Maple: $F_{k+1}=\frac{1}{N} \sum_{\ell=0}^{N-1} f_{\ell} \mathrm{e}^{-2 \pi \mathrm{i} k \ell / N}$ for $k=0:(N-1)$.
MathCad: $F_{k}=\frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} f_{\ell} \mathrm{e}^{2 \pi \mathrm{i} k \ell / N}$ for $k=0:(N-1)$.
- Hence, the DFT we defined in this lecture, i.e., $\boldsymbol{F}=\widetilde{W}_{N}^{*} \boldsymbol{f}$, can be realized by the following MATLAB command (assuming that f is a $1 D$ vector):
- It is amazing to know that the definition of DFT varies with the software systems one uses. We should always be careful what is the exact definition of the DFT for each software system.
MATLAB, R, S-Plus: $F_{k}=\sum_{\ell=1}^{N} f_{\ell} \mathrm{e}^{-2 \pi \mathrm{i}(k-1)(\ell-1) / N}$ for $k=1: N$.
Mathematica: $F_{k}=\frac{1}{\sqrt{N}} \sum_{\ell=1}^{N} f_{\ell} \mathrm{e}^{2 \pi \mathrm{i}(k-1)(\ell-1) / N}$ for $k=1: N$.

$$
\text { Maple: } F_{k+1}=\frac{1}{N} \sum_{\ell=0}^{N-1} f_{\ell} \mathrm{e}^{-2 \pi \mathrm{i} k \ell / N} \text { for } k=0:(N-1) \text {. }
$$

MathCad: $F_{k}=\frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} f_{\ell} \mathrm{e}^{2 \pi \mathrm{i} k \ell / N}$ for $k=0:(N-1)$.

- Hence, the DFT we defined in this lecture, i.e., $\boldsymbol{F}=\widetilde{W}_{N}^{*} \boldsymbol{f}$, can be realized by the following MATLAB command (assuming that f is a $1 D$ vector):

F=circshift(fftshift(fft(fftshift(circshift(f,1)))),-1)/sqrt(length(f));

Outline

(1) Definitions

(2) The Reciprocity Relations
(3) The Vector-Matrix Notation of DFT
4. Pictorial View of W_{N}^{*}
(5) Different Definitions of DFT
(6) References

References

For more information about the DFT including higher-dimensional versions, see [2].
Also, the DFT matrix has more profound properties. See the challenging and deep paper by [1].
[1] L. Auslander and R. Tolimieri, Is computing with the finite Fourier transform pure or applied mathematics?, Bull. Amer. Math. Soc., 1 (1979), pp. 847-897.
[2] W. L. Briggs and V. E. Henson, The DFT: An Owner's Manual for the Discrete Fourier Transform, SIAM, Philadelphia, PA, 1995.
[3] J. H. McClellan and T. W. Parks, Eigenvalue and eigenvector decomposition of the discrete Fourier transform, IEEE Trans. Audio Electacoust., AU-20 (1972), pp. 66-74.
See also comments appeared in AU-21, pp. 65, 1973.

[^0]: ${ }^{1}$ All the subsequent matrix representations assume this. See [2, Sec. 3.1] for N being positive odd integer as well as the other cases, e.g., different starting and ending indices.

[^1]: ${ }^{1}$ All the subsequent matrix representations assume this. See [2, Sec. 3.1] for N being positive odd integer as well as the other cases, e.g., different starting and ending indices.

