Basics of Analytic Signals

Naoki Saito

Professor of Department of Mathematics University of California, Davis

February 28, 2018

Motivation

- Many natural and man-made signals exhibit time-varying frequencies (e.g., chirps, FM radio waves).
- Characterization and analysis of such a signal, u(t), based on instantaneous amplitude a(t), instantaneous phase $\phi(t)$, and instantaneous frequency $\omega(t) := \phi'(t)$, are very important:

$$u(t) = a(t)\cos\phi(t).$$

Motivation

- Many natural and man-made signals exhibit time-varying frequencies (e.g., chirps, FM radio waves).
- Characterization and analysis of such a signal, u(t), based on instantaneous amplitude a(t), instantaneous phase $\phi(t)$, and instantaneous frequency $\omega(t) := \phi'(t)$, are very important:

$$u(t) = a(t)\cos\phi(t)$$
.

- It is convenient to use a complexified version of the signal whose real part is a given real-valued signal u(t).
- Given u(t), however, there are infinitely many ways to define the instantaneous amplitude and phase (IAP) pairs so that

$$u(t) = a(t)\cos\phi(t).$$

 \bullet This is due to the arbitrariness of the complexified version of u, i.e.

$$f(t) = u(t) + iv(t)$$

where v(t) is an arbitrary real-valued signal; yet this yields the IAP representation of u(t) via

$$a(t) = \sqrt{u^2(t) + v^2(t)}, \quad \phi(t) = \arctan \frac{v(t)}{u(t)}.$$

The instantaneous frequency is defined as

$$\omega(t) := \frac{\mathrm{d}\phi}{\mathrm{d}t} = \frac{u(t)v'(t) - u'(t)v(t)}{u^2(t) + v^2(t)}.$$

- It is convenient to use a complexified version of the signal whose real part is a given real-valued signal u(t).
- Given u(t), however, there are infinitely many ways to define the instantaneous amplitude and phase (IAP) pairs so that

$$u(t) = a(t)\cos\phi(t).$$

 \bullet This is due to the arbitrariness of the complexified version of u, i.e.

$$f(t) = u(t) + iv(t)$$

where v(t) is an arbitrary real-valued signal; yet this yields the IAP representation of u(t) via

$$a(t) = \sqrt{u^2(t) + v^2(t)}, \quad \phi(t) = \arctan \frac{v(t)}{u(t)}.$$

The instantaneous frequency is defined as

$$\omega(t) := \frac{\mathrm{d}\phi}{\mathrm{d}t} = \frac{u(t)v'(t) - u'(t)v(t)}{u^2(t) + v^2(t)}.$$

- It is convenient to use a complexified version of the signal whose real part is a given real-valued signal u(t).
- Given u(t), however, there are infinitely many ways to define the instantaneous amplitude and phase (IAP) pairs so that

$$u(t) = a(t)\cos\phi(t).$$

ullet This is due to the arbitrariness of the complexified version of u, i.e.,

$$f(t) = u(t) + iv(t)$$

where v(t) is an arbitrary real-valued signal; yet this yields the IAP representation of u(t) via

$$a(t) = \sqrt{u^2(t) + v^2(t)}, \quad \phi(t) = \arctan \frac{v(t)}{u(t)}.$$

The instantaneous frequency is defined as

$$\omega(t) := \frac{\mathrm{d}\phi}{\mathrm{d}t} = \frac{u(t)v'(t) - u'(t)v(t)}{u^2(t) + v^2(t)}.$$

- It is convenient to use a complexified version of the signal whose real part is a given real-valued signal u(t).
- Given u(t), however, there are infinitely many ways to define the instantaneous amplitude and phase (IAP) pairs so that

$$u(t) = a(t)\cos\phi(t).$$

This is due to the arbitrariness of the complexified version of u, i.e.,

$$f(t) = u(t) + iv(t)$$

where v(t) is an arbitrary real-valued signal; yet this yields the IAP representation of u(t) via

$$a(t) = \sqrt{u^2(t) + v^2(t)}, \quad \phi(t) = \arctan \frac{v(t)}{u(t)}.$$

• The *instantaneous frequency* is defined as

$$\omega(t) := \frac{\mathrm{d}\phi}{\mathrm{d}t} = \frac{u(t)v'(t) - u'(t)v(t)}{u^2(t) + v^2(t)}.$$

- Gabor (1946) proposed to use the *the Hilbert transform* of u(t) as v(t), and called the complex-valued f(t) an *analytic signal*.
- Vakman (1972) proved that v(t) must be of the Hilbert transform of u(t) if we impose some a priori physical assumptions:

- Gabor (1946) proposed to use the *the Hilbert transform* of u(t) as v(t), and called the complex-valued f(t) an *analytic signal*.
- Vakman (1972) proved that v(t) must be of the Hilbert transform of u(t) if we impose some a priori physical assumptions:
 - ① v(t) must be derived from u(t).
 - 2 Amplitude continuity: a small change in $u \Longrightarrow$ a small change in a(t)
 - ③ Phase independence of scale: if cu(t), $c \in \mathbb{R}$ arbitrary scalar, then the phase does not change from that of u(t) and its amplitude becomes c times that of u(t).
 - Harmonic correspondence: if $u(t) = a_0 \cos(\omega_0 t + \phi_0)$, then $a(t) \equiv a_0$, $\phi(t) \equiv \omega_0 t + \phi_0$.

- Gabor (1946) proposed to use the *the Hilbert transform* of u(t) as v(t), and called the complex-valued f(t) an *analytic signal*.
- Vakman (1972) proved that v(t) must be of the Hilbert transform of u(t) if we impose some a priori physical assumptions:
 - **1** v(t) must be derived from u(t).
 - 2 Amplitude continuity: a small change in $u \Longrightarrow$ a small change in a(t)
 - ③ Phase independence of scale: if cu(t), $c \in \mathbb{R}$ arbitrary scalar, then the phase does not change from that of u(t) and its amplitude becomes c times that of u(t).
 - ① Harmonic correspondence: if $u(t) = a_0 \cos(\omega_0 t + \phi_0)$, then $a(t) \equiv a_0$, $\phi(t) \equiv \omega_0 t + \phi_0$.

- Gabor (1946) proposed to use the *the Hilbert transform* of u(t) as v(t), and called the complex-valued f(t) an *analytic signal*.
- Vakman (1972) proved that v(t) must be of the Hilbert transform of u(t) if we impose some a priori physical assumptions:
 - **1** v(t) must be derived from u(t).
 - **2** Amplitude continuity: a small change in $u \Longrightarrow$ a small change in a(t).
 - ③ Phase independence of scale: if cu(t), $c \in \mathbb{R}$ arbitrary scalar, then the phase does not change from that of u(t) and its amplitude becomes a times that of u(t).
 - Harmonic correspondence: if $u(t) = a_0 \cos(\omega_0 t + \phi_0)$, then $a(t) \equiv a_0$, $\phi(t) \equiv \omega_0 t + \phi_0$.

- Gabor (1946) proposed to use the *the Hilbert transform* of u(t) as v(t), and called the complex-valued f(t) an *analytic signal*.
- Vakman (1972) proved that v(t) must be of the Hilbert transform of u(t) if we impose some a priori physical assumptions:
 - **1** v(t) must be derived from u(t).
 - ② Amplitude continuity: a small change in $u \Longrightarrow$ a small change in a(t).
 - **3** Phase independence of scale: if cu(t), $c \in \mathbb{R}$ arbitrary scalar, then the phase does not change from that of u(t) and its amplitude becomes c times that of u(t).
 - ① Harmonic correspondence: if $u(t) = a_0 \cos(\omega_0 t + \phi_0)$, then $a(t) \equiv a_0$, $\phi(t) \equiv \omega_0 t + \phi_0$.

- Gabor (1946) proposed to use the *the Hilbert transform* of u(t) as v(t), and called the complex-valued f(t) an *analytic signal*.
- Vakman (1972) proved that v(t) must be of the Hilbert transform of u(t) if we impose some a priori physical assumptions:
 - **1** v(t) must be derived from u(t).
 - ② Amplitude continuity: a small change in $u \Longrightarrow$ a small change in a(t).
 - **3** Phase independence of scale: if cu(t), $c \in \mathbb{R}$ arbitrary scalar, then the phase does not change from that of u(t) and its amplitude becomes c times that of u(t).
 - **4** Harmonic correspondence: if $u(t) = a_0 \cos(\omega_0 t + \phi_0)$, then $a(t) \equiv a_0$, $\phi(t) \equiv \omega_0 t + \phi_0$.

- For simplicity, we assume that our signals are 2π -periodic in $\theta \in [-\pi, \pi)$.
- Hence, we work on the unit circle and unit disk \mathbb{D} in $\mathbb{C} = \mathbb{R}^2$
- Note that the signals over $\mathbb{R} = (-\infty, \infty)$ can be treated similarly by considering the real axis and the upper half plane of \mathbb{C} .
- The analytic signal of a given signal $u(\theta) \in \mathbb{R}$ is often and simply obtained via the *Hilbert transform*:

$$f(\theta) = u(\theta) + i\mathcal{H}u(\theta), \quad \mathcal{H}u(\theta) := \frac{1}{2\pi} \operatorname{pv} \int_{-\pi}^{\pi} u(\tau) \cot \frac{\theta - \tau}{2} d\tau.$$

Note that

$$u(\theta) = \frac{a_0}{2} + \sum_{k \ge 1} (a_k \cos k\theta + b_k \sin k\theta) \Rightarrow \mathcal{H}u(\theta) = \sum_{k \ge 1} (a_k \sin k\theta - b_k \cos k\theta)$$

Furthermore,

$$f(\theta) = \frac{a_0}{2} + \sum_{k>1} (a_k - ib_k) e^{ik\theta}$$

- For simplicity, we assume that our signals are 2π -periodic in $\theta \in [-\pi,\pi)$.
- Hence, we work on the unit circle and unit disk \mathbb{D} in $\mathbb{C} = \mathbb{R}^2$.
- Note that the signals over $\mathbb{R} = (-\infty, \infty)$ can be treated similarly by considering the real axis and the upper half plane of \mathbb{C} .
- The analytic signal of a given signal $u(\theta) \in \mathbb{R}$ is often and simply obtained via the *Hilbert transform*:

$$f(\theta) = u(\theta) + i\mathcal{H}u(\theta), \quad \mathcal{H}u(\theta) := \frac{1}{2\pi} \operatorname{pv} \int_{-\pi}^{\pi} u(\tau) \cot \frac{\theta - \tau}{2} d\tau.$$

Note that

$$u(\theta) = \frac{a_0}{2} + \sum_{k \ge 1} (a_k \cos k\theta + b_k \sin k\theta) \Rightarrow \mathcal{H}u(\theta) = \sum_{k \ge 1} (a_k \sin k\theta - b_k \cos k\theta)$$

Furthermore,

$$f(\theta) = \frac{a_0}{2} + \sum_{k>1} (a_k - \mathrm{i}b_k) \mathrm{e}^{\mathrm{i}k\theta}.$$

- For simplicity, we assume that our signals are 2π -periodic in $\theta \in [-\pi, \pi)$.
- Hence, we work on the unit circle and unit disk \mathbb{D} in $\mathbb{C} = \mathbb{R}^2$.
- Note that the signals over $\mathbb{R} = (-\infty, \infty)$ can be treated similarly by considering the real axis and the upper half plane of \mathbb{C} .
- The analytic signal of a given signal $u(\theta) \in \mathbb{R}$ is often and simply obtained via the *Hilbert transform*:

$$f(\theta) = u(\theta) + i\mathcal{H}u(\theta), \quad \mathcal{H}u(\theta) := \frac{1}{2\pi} \operatorname{pv} \int_{-\pi}^{\pi} u(\tau) \cot \frac{\theta - \tau}{2} d\tau.$$

Note that

$$u(\theta) = \frac{a_0}{2} + \sum_{k \ge 1} (a_k \cos k\theta + b_k \sin k\theta) \Rightarrow \mathcal{H}u(\theta) = \sum_{k \ge 1} (a_k \sin k\theta - b_k \cos k\theta)$$

• Furthermore,

$$f(\theta) = \frac{a_0}{2} + \sum_{k>1} (a_k - ib_k) e^{ik\theta}.$$

- For simplicity, we assume that our signals are 2π -periodic in $\theta \in [-\pi, \pi)$.
- Hence, we work on the unit circle and unit disk \mathbb{D} in $\mathbb{C} = \mathbb{R}^2$.
- Note that the signals over $\mathbb{R} = (-\infty, \infty)$ can be treated similarly by considering the real axis and the upper half plane of \mathbb{C} .
- The analytic signal of a given signal $u(\theta) \in \mathbb{R}$ is often and simply obtained via the *Hilbert transform*:

$$f(\theta) = u(\theta) + i\mathcal{H}u(\theta), \quad \mathcal{H}u(\theta) := \frac{1}{2\pi} \operatorname{pv} \int_{-\pi}^{\pi} u(\tau) \cot \frac{\theta - \tau}{2} d\tau.$$

Note that

$$u(\theta) = \frac{a_0}{2} + \sum_{k \ge 1} (a_k \cos k\theta + b_k \sin k\theta) \Rightarrow \mathcal{H}u(\theta) = \sum_{k \ge 1} (a_k \sin k\theta - b_k \cos k\theta).$$

Furthermore,

$$f(\theta) = \frac{a_0}{2} + \sum_{k>1} (a_k - ib_k) e^{ik\theta}.$$

- For simplicity, we assume that our signals are 2π -periodic in $\theta \in [-\pi,\pi)$.
- Hence, we work on the unit circle and unit disk \mathbb{D} in $\mathbb{C} = \mathbb{R}^2$.
- Note that the signals over $\mathbb{R} = (-\infty, \infty)$ can be treated similarly by considering the real axis and the upper half plane of \mathbb{C} .
- The analytic signal of a given signal $u(\theta) \in \mathbb{R}$ is often and simply obtained via the *Hilbert transform*:

$$f(\theta) = u(\theta) + i\mathcal{H}u(\theta), \quad \mathcal{H}u(\theta) := \frac{1}{2\pi} \operatorname{pv} \int_{-\pi}^{\pi} u(\tau) \cot \frac{\theta - \tau}{2} d\tau.$$

Note that

$$u(\theta) = \frac{a_0}{2} + \sum_{k \ge 1} (a_k \cos k\theta + b_k \sin k\theta) \Rightarrow \mathcal{H}u(\theta) = \sum_{k \ge 1} (a_k \sin k\theta - b_k \cos k\theta).$$

Furthermore,

$$f(\theta) = \frac{a_0}{2} + \sum_{k>1} (a_k - ib_k) e^{ik\theta}.$$

- For simplicity, we assume that our signals are 2π -periodic in $\theta \in [-\pi,\pi)$.
- Hence, we work on the unit circle and unit disk \mathbb{D} in $\mathbb{C} = \mathbb{R}^2$.
- Note that the signals over $\mathbb{R} = (-\infty, \infty)$ can be treated similarly by considering the real axis and the upper half plane of \mathbb{C} .
- The analytic signal of a given signal $u(\theta) \in \mathbb{R}$ is often and simply obtained via the *Hilbert transform*:

$$f(\theta) = u(\theta) + i\mathcal{H}u(\theta), \quad \mathcal{H}u(\theta) := \frac{1}{2\pi} \operatorname{pv} \int_{-\pi}^{\pi} u(\tau) \cot \frac{\theta - \tau}{2} d\tau.$$

Note that

$$u(\theta) = \frac{a_0}{2} + \sum_{k \ge 1} (a_k \cos k\theta + b_k \sin k\theta) \Rightarrow \mathcal{H}u(\theta) = \sum_{k \ge 1} (a_k \sin k\theta - b_k \cos k\theta).$$

• Furthermore,

$$f(\theta) = \frac{a_0}{2} + \sum_{k>1} (a_k - \mathrm{i}b_k) \mathrm{e}^{\mathrm{i}k\theta}.$$

We can gain a deeper insight by viewing this as the boundary value of an analytic function F(z) where

$$F(z) := U(z) + i\widetilde{U}(z), \quad z \in \mathbb{D},$$

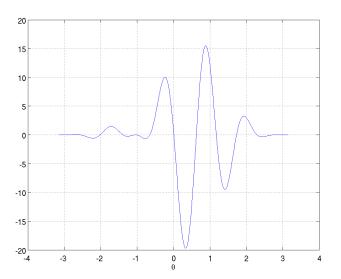
where

$$U(z) = U(re^{i\theta}) = P_r * u(\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1 - r^2}{1 - 2r\cos(\theta - \tau) + r^2} u(\tau) d\tau,$$

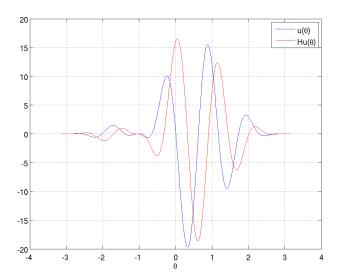
$$\widetilde{U}(z) = \widetilde{U}(re^{i\theta}) = Q_r * u(\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{2r\sin(\theta - \tau)}{1 - 2r\cos(\theta - \tau) + r^2} u(\tau) d\tau.$$

In other words, the original signal $u(\theta) = U(e^{i\theta})$ is the boundary value of the harmonic function U on $\partial \mathbb{D}$, which is constructed by the Poisson integral. \widetilde{U} and $Q_r(\theta)$ are referred to as the conjugate harmonic function and the conjugate Poisson kernel, respectively.

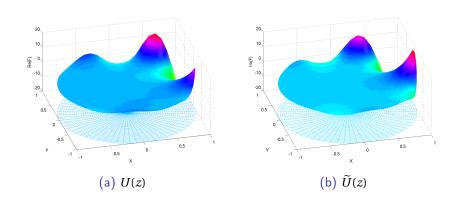
Analytic Signal . . . An Example: $u(\theta)$



Analytic Signal ... An Example: $u(\theta)$ and $\mathcal{H}u(\theta)$

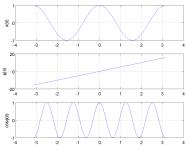


Analytic Signal . . . An Example: U(z) and $\widetilde{U}(z)$



Even if we use the analytic signal, its IAP representation is not unique as shown by Cohen, Loughlin, and Vakman (1999):

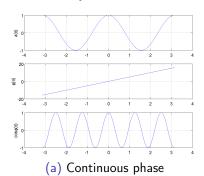
- $f(\theta) = a(\theta)e^{i\phi(\theta)}$, where $a(\theta) = u(\theta)\cos\phi(\theta) + v(\theta)\sin\phi(\theta)$ may be negative though $\phi(\theta)$ is continuous;
- $f(\theta) = |a(\theta)|e^{i(\phi(\theta) + \pi\alpha(\theta))}$, where $\alpha(\theta)$ is an appropriate phase function which may be discontinuous.

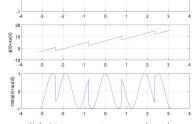


Even if we use the analytic signal, its IAP representation is not unique as shown by Cohen, Loughlin, and Vakman (1999):

- $f(\theta) = a(\theta)e^{i\phi(\theta)}$, where $a(\theta) = u(\theta)\cos\phi(\theta) + v(\theta)\sin\phi(\theta)$ may be negative though $\phi(\theta)$ is continuous;
- $f(\theta) = |a(\theta)| e^{i(\phi(\theta) + \pi \alpha(\theta))}$, where $\alpha(\theta)$ is an appropriate phase function, which may be discontinuous.

@ 0





(b) Nonnegative amplitude