MAT 271: Applied \& Computational Harmonic Analysis

 Supplementary Lecture II: Multiscale Basis Dictionaries on Graphs and NetworksNaoki Saito (with help from Jeff Irion)

Department of Mathematics University of California, Davis

March, 2018
(1) Introductory Remarks
(2) Motivations: Why Graphs?
(3) Background

- Basic Graph Theory Terminology
- Graph Laplacians
- Graph Partitioning via Spectral Clustering

4) Multiscale Basis Dictionaries

- Hierarchical Graph Laplacian Eigen Transform (HGLET)
- Generalized Haar-Walsh Transform (GHWT)
(5) Best-Basis Algorithm for HGLET \& GHWT
(6) Approximation Experiments
(7) Summary and Further Developments
- For much more details of this part of lecture, please check my course website on "Harmonic Analysis on Graphs \& Networks": http://www.math.ucdavis.edu/~saito/courses/HarmGraph/ as well as my articles with Jeff Irion at http://www.math.ucdavis.edu/~saito/publications/.
- We rely on the so-called graph Laplacians to construct our multiscale basis dictionaries. Some good references on graph Laplacian eigenvalues are:
- R. B. Bapat: Graphs and Matrices, 2nd Ed., Springer, 2014.
- A. E. Brouwer \& W. H. Haemers: Spectra of Graphs, Springer, 2012.
- F. R. K. Chung: Spectral Graph Theory, Amer. Math. Soc., 1997.
- D. Cvetković, P. Rowlinson, \& S. Simić: An Introduction to the Theory of Graph Spectra, Cambridge Univ. Press, 2010.
- D. Spielman: "Spectral graph theory," in Combinatorial Scientific Computing (O. Schenk, ed.), Chap. 18, pp. 495-524, CRC Press, 2012.
- As for the graph Laplacian eigenfunctions, there are not too many books (although there may be many papers); one of the good books is
- T. Bıyıkoğlu, J. Leydold, \& P. F. Stadler, Laplacian Eigenvectors of Graphs, Lecture Notes in Mathematics, vol. 1915, Springer, 2007.
(1) Introductory Remarks
(2) Motivations: Why Graphs?
(3) Background
- Basic Graph Theory Terminology
- Graph Laplacians
- Graph Partitioning via Spectral Clustering

4) Multiscale Basis Dictionaries

- Hierarchical Graph Laplacian Eigen Transform (HGLET)
- Generalized Haar-Walsh Transform (GHWT)
(5) Best-Basis Algorithm for HGLET \& GHWT
(3) Approximation Experiments
(7) Summary and Further Developments

Motivations: Why Graphs?

- More and more data are collected in a distributed and irregular manner; they are not organized such as familiar digital signals and images sampled on regular lattices. Examples include:
- Data from sensor networks
- Data from social networks, webpages,
- Data from biological networks
- It is quite important to analyze:

Motivations: Why Graphs?

- More and more data are collected in a distributed and irregular manner; they are not organized such as familiar digital signals and images sampled on regular lattices. Examples include:
- Data from sensor networks
- Data from social networks, webpages,
- Data from biological networks
- It is quite important to analyze:

Motivations: Why Graphs?

- More and more data are collected in a distributed and irregular manner; they are not organized such as familiar digital signals and images sampled on regular lattices. Examples include:
- Data from sensor networks
- Data from social networks, webpages, ...
- It is quite important to analyze:

Motivations: Why Graphs?

- More and more data are collected in a distributed and irregular manner; they are not organized such as familiar digital signals and images sampled on regular lattices. Examples include:
- Data from sensor networks
- Data from social networks, webpages, ...
- Data from biological networks
- It is quite important to analyze:

Motivations: Why Graphs?

- More and more data are collected in a distributed and irregular manner; they are not organized such as familiar digital signals and images sampled on regular lattices. Examples include:
- Data from sensor networks
- Data from social networks, webpages, ...
- Data from biological networks
- It is quite important to analyze:

Motivations: Why Graphs?

- More and more data are collected in a distributed and irregular manner; they are not organized such as familiar digital signals and images sampled on regular lattices. Examples include:
- Data from sensor networks
- Data from social networks, webpages, ...
- Data from biological networks
- It is quite important to analyze:

Motivations: Why Graphs?

- More and more data are collected in a distributed and irregular manner; they are not organized such as familiar digital signals and images sampled on regular lattices. Examples include:
- Data from sensor networks
- Data from social networks, webpages, ...
- Data from biological networks
- ...
- It is quite important to analyze:
- Topology of graphs/networks (e.g., how nodes are connected, etc.)
\qquad

Motivations: Why Graphs?

- More and more data are collected in a distributed and irregular manner; they are not organized such as familiar digital signals and images sampled on regular lattices. Examples include:
- Data from sensor networks
- Data from social networks, webpages, ...
- Data from biological networks
- ...
- It is quite important to analyze:
- Topology of graphs/networks (e.g., how nodes are connected, etc.)
- Data measured on nodes (e.g., a node $=$ a sensor, then what is an edge?)

Motivations: Why Graphs?

- Fourier analysis/synthesis and wavelet analysis/synthesis have been 'crown jewels' for data sampled on the regular lattices.
- Hence, we need to lift such tools for unorganized and irregularly-sampled datasets including those represented by graphs and networks.
- Moreover, constructing a graph from a usual signal or image and analyzing it can also be very useful! E.g., Nonlocal means image denoising of Buades-Coll-Morel.

Motivations: Why Graphs?

- Fourier analysis/synthesis and wavelet analysis/synthesis have been 'crown jewels' for data sampled on the regular lattices.
- Hence, we need to lift such tools for unorganized and irregularly-sampled datasets including those represented by graphs and networks.
- Moreover, constructing a graph from a usual signal or image and analyzing it can also be very useful! E.g., Nonlocal means image denoising of Buades-Coll-Morel.

Motivations: Why Graphs?

- Fourier analysis/synthesis and wavelet analysis/synthesis have been 'crown jewels' for data sampled on the regular lattices.
- Hence, we need to lift such tools for unorganized and irregularly-sampled datasets including those represented by graphs and networks.
- Moreover, constructing a graph from a usual signal or image and analyzing it can also be very useful! E.g., Nonlocal means image denoising of Buades-Coll-Morel.

An Example of Sensor Networks

Figure: Volcano monitoring sensor network architecture of Harvard Sensor Networks Lab

An Example of Social Networks

Figure: Through the courtesy of Prof. Fan Chung, UC San Diego

An Example of Biological Networks

Figure: From E. Bullmore and O. Sporns, Nature Reviews Neuroscience, vol. 10, pp.186-198, Mar. 2009.

Another Biological Example: Retinal Ganglion Cells

Retinal Ganglion Cells (D. Hubel: Eye, Brain, \& Vision, '95)

A Typical Neuron (from Wikipedia)

Structure of a Typical Neuron

Mouse's RGC as a Graph

Clustering using Features Derived by Neurolucida ${ }^{\circledR}$

Representing a Regular Image as a Graph

often turns out to be quite useful for various purposes. In particular, Nonlocal Means Denoising Algorithm of Buades-Coll-Morel is quite impressive.

- Construct a graph each of whose vertices represents $k \times k$ patch of a given image (k may be $3,5, \ldots$, etc.) So each vertex represents a point in $\mathbb{R}^{k^{2}}$.
- Connect every pair of vertices with the weight $W_{i j}=\exp \left(-\|\right.$ patch $_{i}-$ patch $\left._{j} \|^{2} / \epsilon^{2}\right)$ with appropriately chosen scale parameter $\epsilon>0$
- Compute the weighted average of the center pixel of each patch using the normalized weights $W_{i j} / \sum_{\ell} W_{i \ell}$. More precisely, the average of the center of the i th patch, $\bar{c}_{i}=\sum_{j} W_{i j} c_{j} / \sum_{\ell} W_{i \ell}$.
- See also an interesting work by Daitch-Kelner-Spielman: "Fitting a Graph to Vector Data," Proc. 26th Intern. Conf. Machine Learning, 2009

Representing a Regular Image as a Graph

 often turns out to be quite useful for various purposes. In particular, Nonlocal Means Denoising Algorithm of Buades-Coll-Morel is quite impressive.- Construct a graph each of whose vertices represents $k \times k$ patch of a given image (k may be $3,5, \ldots$, etc.) So each vertex represents a point in $\mathbb{R}^{k^{2}}$.
- Connect every pair of vertices with the weight $W_{i j}=\exp \left(-\|\right.$ patch $_{i}-$ patch $\left._{j} \|^{2} / \epsilon^{2}\right)$ with appropriately chosen scale parameter $\epsilon>0$.
- Compute the weighted average of the center pixel of each patch using the normalized weights $W_{i j} / \sum_{\ell} W_{i \ell}$. More precisely, the average of
- See also an interesting work by Daitch-Kelner-Spielman: "Fitting a Graph to Vector Data," Proc. 26th Intern. Conf. Machine Learning, 2009

Representing a Regular Image as a Graph

 often turns out to be quite useful for various purposes. In particular, Nonlocal Means Denoising Algorithm of Buades-Coll-Morel is quite impressive.- Construct a graph each of whose vertices represents $k \times k$ patch of a given image (k may be $3,5, \ldots$, etc.) So each vertex represents a point in $\mathbb{R}^{k^{2}}$.
- Connect every pair of vertices with the weight $W_{i j}=\exp \left(-\|\right.$ patch $_{i}-$ patch $\left._{j} \|^{2} / \epsilon^{2}\right)$ with appropriately chosen scale parameter $\epsilon>0$.
- Compute the weighted average of the center pixel of each patch using the normalized weights $W_{i j} / \sum_{\ell} W_{i \ell}$. More precisely, the average of the center of the i th patch, $\bar{c}_{i}=\sum_{j} W_{i j} c_{j} / \sum_{\ell} W_{i \ell}$.

Graph to Vector Data," Proc. 26th Intern. Conf. Machine Learning, 2009

Representing a Regular Image as a Graph

 often turns out to be quite useful for various purposes. In particular, Nonlocal Means Denoising Algorithm of Buades-Coll-Morel is quite impressive.- Construct a graph each of whose vertices represents $k \times k$ patch of a given image (k may be $3,5, \ldots$, etc.) So each vertex represents a point in $\mathbb{R}^{k^{2}}$.
- Connect every pair of vertices with the weight $W_{i j}=\exp \left(-\|\right.$ patch $_{i}-$ patch $\left._{j} \|^{2} / \epsilon^{2}\right)$ with appropriately chosen scale parameter $\epsilon>0$.
- Compute the weighted average of the center pixel of each patch using the normalized weights $W_{i j} / \sum_{\ell} W_{i \ell}$. More precisely, the average of the center of the i th patch, $\bar{c}_{i}=\sum_{j} W_{i j} c_{j} / \sum_{\ell} W_{i \ell}$.
- See also an interesting work by Daitch-Kelner-Spielman: "Fitting a Graph to Vector Data," Proc. 26th Intern. Conf. Machine Learning, 2009.

From: A. Buades, B. Coll, and J.-M. Morel, SIAM Review, vol. 52, no. 1, pp. 113-147, 2010.

Noisy Image; Total Variation Denoising; Neighborhood Filter

Trans. Inv. Wavelets; Empirical Wiener; Nonlocal Means

Motivations: Multiscale Basis Dictionary on Graphs

Wavelets

- Have been quite successful on regular domains
- Have been extended to irregular domains \Rightarrow " 2 nd Generation Wavelets"

For example:

- Hammond, Vandergheynst, and Gribonval (2011): wavelets via spectral graph theory
- Coifman and Maggioni (2006): diffusion wavelets \Longrightarrow Bremer et al. (2006): diffusion wavelet packets Key difficulty: The notion of frequency is ill-defined on graphs \Longrightarrow The Fourier transform is not properly defined on graphs
Common strategy: Develop wavelet-like multiscale transforms
Key Idea: Use of the graph Laplacian eigenvectors as the substitution of
the Fourier basis

Motivations: Multiscale Basis Dictionary on Graphs

Wavelets

- Have been quite successful on regular domains
- Have been extended to irregular domains \Rightarrow " 2 nd Generation Wavelets"

For example:

- Hammond, Vandergheynst, and Gribonval (2011): wavelets via spectral graph theory
- Coifman and Maggioni (2006): diffusion wavelets \Longrightarrow Bremer et al. (2006): diffusion wavelet packets
\square Fourier transform is not properly defined on graphs Common strategy: Develop wavelet-like multiscale transforms Key Idea: Use of the graph Laplacian eigenvectors as the substitution of the Fourier basis

Motivations: Multiscale Basis Dictionary on Graphs

Wavelets

- Have been quite successful on regular domains
- Have been extended to irregular domains \Rightarrow " 2 nd Generation Wavelets"

For example:

- Hammond, Vandergheynst, and Gribonval (2011): wavelets via spectral graph theory
- Coifman and Maggioni (2006): diffusion wavelets
\Longrightarrow Bremer et al. (2006): diffusion wavelet packets
Key difficulty: The notion of frequency is ill-defined on graphs \Longrightarrow The Fourier transform is not properly defined on graphs
Common strategy: Develop wavelet-like multiscale transforms
Key Idea: Use of the graph Laplacian eigenvectors as the substitution of
the Fourier basis

Motivations: Multiscale Basis Dictionary on Graphs

Wavelets

- Have been quite successful on regular domains
- Have been extended to irregular domains \Rightarrow " 2 nd Generation Wavelets"

For example:

- Hammond, Vandergheynst, and Gribonval (2011): wavelets via spectral graph theory
- Coifman and Maggioni (2006): diffusion wavelets
\Longrightarrow Bremer et al. (2006): diffusion wavelet packets
Key difficulty: The notion of frequency is ill-defined on graphs \Longrightarrow The Fourier transform is not properly defined on graphs
Common strategy: Develop wavelet-like multiscale transforms

Motivations: Multiscale Basis Dictionary on Graphs

Wavelets

- Have been quite successful on regular domains
- Have been extended to irregular domains \Rightarrow " 2 nd Generation Wavelets"

For example:

- Hammond, Vandergheynst, and Gribonval (2011): wavelets via spectral graph theory
- Coifman and Maggioni (2006): diffusion wavelets
\Longrightarrow Bremer et al. (2006): diffusion wavelet packets
Key difficulty: The notion of frequency is ill-defined on graphs \Longrightarrow The Fourier transform is not properly defined on graphs
Common strategy: Develop wavelet-like multiscale transforms
Key Idea: Use of the graph Laplacian eigenvectors as the substitution of the Fourier basis

Goals

- Develop and implement multiscale transforms for data on graphs and networks; in particular, build multiscale basis dictionaries on graphs.
- Investigate their usefulness for a variety of applications including approximation, denoising, classification, and regression on graphs. - In this lecture, we will focus on how to construct such dictionaries on graphs and demonstrate their usefulness for data approximation on graphs.

Goals

- Develop and implement multiscale transforms for data on graphs and networks; in particular, build multiscale basis dictionaries on graphs.
- Investigate their usefulness for a variety of applications including approximation, denoising, classification, and regression on graphs. graphs and demonstrate their usefulness for data approximation on graphs.

Goals

- Develop and implement multiscale transforms for data on graphs and networks; in particular, build multiscale basis dictionaries on graphs.
- Investigate their usefulness for a variety of applications including approximation, denoising, classification, and regression on graphs.
- In this lecture, we will focus on how to construct such dictionaries on graphs and demonstrate their usefulness for data approximation on graphs.
(1) Introductory Remarks
(2) Motivations: Why Graphs?
(3) Background
- Basic Graph Theory Terminology
- Graph Laplacians
- Graph Partitioning via Spectral Clustering
(9) Multiscale Basis Dictionaries
- Hierarchical Graph Laplacian Eigen Transform (HGLET)
- Generalized Haar-Walsh Transform (GHWT)
(3) Best-Basis Algorithm for HGLET \& GHWT
(6) Approximation Experiments
(9) Summary and Further Developments

Definitions and Notation

Let G be a graph.

- $V=V(G)=\left\{v_{1}, \ldots, v_{N}\right\}$ is the set of vertices.
- $E=E(G)=\left\{e_{1}, \ldots, e_{N^{\prime}}\right\}$ is the set of edges, where $e_{k}=\left(v_{i}, v_{j}\right)$ represents an edge (or line segment) connecting between adjacent vertices v_{i}, v_{j} for some $1 \leq i, j \leq N$.
- $W=W(G) \in \mathbb{R}^{N \times N}$ is the weight matrix, where $w_{i j}$ denotes the edge weight between vertices i and j.

Definitions and Notation

Let G be a graph.

- $V=V(G)=\left\{v_{1}, \ldots, v_{N}\right\}$ is the set of vertices.
- $E=E(G)=\left\{e_{1}, \ldots, e_{N^{\prime}}\right\}$ is the set of edges, where $e_{k}=\left(v_{i}, v_{j}\right)$
represents an edge (or line segment) connecting between adjacent
vertices v_{i}, v_{j} for some $1 \leq i, j \leq N$.
- $W=W(G) \in \mathbb{R}^{N \times N}$ is the weight matrix, where $w_{i j}$ denotes the edge weight between vertices i and j

Definitions and Notation

Let G be a graph.

- $V=V(G)=\left\{v_{1}, \ldots, v_{N}\right\}$ is the set of vertices.
- $E=E(G)=\left\{e_{1}, \ldots, e_{N^{\prime}}\right\}$ is the set of edges, where $e_{k}=\left(\nu_{i}, v_{j}\right)$ represents an edge (or line segment) connecting between adjacent vertices v_{i}, v_{j} for some $1 \leq i, j \leq N$. weight between vertices i and j.

Definitions and Notation

Let G be a graph.

- $V=V(G)=\left\{v_{1}, \ldots, v_{N}\right\}$ is the set of vertices.
- $E=E(G)=\left\{e_{1}, \ldots, e_{N^{\prime}}\right\}$ is the set of edges, where $e_{k}=\left(v_{i}, v_{j}\right)$ represents an edge (or line segment) connecting between adjacent vertices v_{i}, v_{j} for some $1 \leq i, j \leq N$.
- $W=W(G) \in \mathbb{R}^{N \times N}$ is the weight matrix, where $w_{i j}$ denotes the edge weight between vertices i and j.

Definitions and Notation

Note that there are many ways to define $w_{i j}$.

For example, for unweighted graphs, we typically use

$$
w_{i j}:= \begin{cases}1 & \text { if } v_{i} \sim v_{j}\left(\text { i.e., } v_{i} \text { and } v_{j}\right. \text { are adjacent); } \\ 0 & \text { otherwise. }\end{cases}
$$

This is often referred to as the adjacency matrix and denoted by $A(G)$.

Definitions and Notation

Note that there are many ways to define $w_{i j}$.

For example, for unweighted graphs, we typically use

$$
w_{i j}:= \begin{cases}1 & \text { if } v_{i} \sim v_{j}\left(\text { i.e., } v_{i} \text { and } v_{j}\right. \text { are adjacent) } \\ 0 & \text { otherwise. }\end{cases}
$$

This is often referred to as the adjacency matrix and denoted by $A(G)$.
For weighted graphs, $w_{i j}$ should reflect the similarity (or affinity) of information at v_{i} and v_{j}, e.g., if $v_{i} \sim v_{j}$, then

$$
w_{i j}:=1 / \operatorname{dist}\left(v_{i}, v_{j}\right) \quad \text { or } \quad \exp \left(-\operatorname{dist}\left(v_{i}, v_{j}\right)^{2} / \epsilon^{2}\right)
$$

where $\operatorname{dist}(\cdot, \cdot)$ is a certain measure of dissimilarity and $\epsilon>0$ is an appropriate scale parameter.

Our Assumptions

In this lecture, we assume that the graph is

- connected. Otherwise, we would simply consider the components separately.
- undirected. Edges do not have direction, which means that $w_{i j}=w_{j i}$ and thus W is symmetric.

The graph may be weighted or unweighted.

Our Assumptions

In this lecture, we assume that the graph is

- connected. Otherwise, we would simply consider the components separately.
- undirected. Edges do not have direction, which means that $w_{i j}=w_{j i}$ and thus W is symmetric.

The graph may be weighted or unweighted.

Our Assumptions

In this lecture, we assume that the graph is

- connected. Otherwise, we would simply consider the components separately.
- undirected. Edges do not have direction, which means that $w_{i j}=w_{j i}$ and thus W is symmetric.

> The graph may be weighted or unweighted.

Our Assumptions

In this lecture, we assume that the graph is

- connected. Otherwise, we would simply consider the components separately.
- undirected. Edges do not have direction, which means that $w_{i j}=w_{j i}$ and thus W is symmetric.

The graph may be weighted or unweighted.
(1) Introductory Remarks
(2) Motivations: Why Graphs?
(3) Background

- Basic Graph Theory Terminology
- Graph Laplacians
- Graph Partitioning via Spectral Clustering

4) Multiscale Basis Dictionaries

- Hierarchical Graph Laplacian Eigen Transform (HGLET)
- Generalized Haar-Walsh Transform (GHWT)
(5) Best-Basis Algorithm for HGLET \& GHWT
(4) Approximation Experiments
(7) Summary and Further Developments

Matrices Associated with a Graph

- Let $D=D(G):=\operatorname{diag}\left(d_{1}, \ldots, d_{N}\right)$ be the degree matrix of G where
$d_{i}:=\sum_{j=1}^{N} w_{i j}$ is the degree of the vertex i.
- We can now define several Laplacian matrices of G :

$$
L(G):=D-W
$$

Random-Walk Normalized
Symmetrically-Normalized

- Graph Laplacians can also be defined for directed graphs; However, there are many different definitions based on the types/classes of directed graphs, and in general, those matrices are nonsymmetric. See, e.g., Fan Chung: "Laplacians and the Cheeger inequality for directed graphs," Ann. Comb., vol. 9, no. 1, pp. 1-19, 2005, for an attempt to symmetrize graph Laplacian matrices for strongly connected digraphs.

Matrices Associated with a Graph

- Let $D=D(G):=\operatorname{diag}\left(d_{1}, \ldots, d_{N}\right)$ be the degree matrix of G where $d_{i}:=\sum_{j=1}^{N} w_{i j}$ is the degree of the vertex i.
- We can now define several Laplacian matrices of G :

$$
\begin{array}{rlrl}
L(G) & :=D-W & \text { Unnormalized } \\
L_{\mathrm{rw}}(G) & :=I_{N}-D^{-1} W=D^{-1} L & & \text { Random-Walk Normalized } \\
L_{\mathrm{sym}}(G) & :=I_{N}-D^{-\frac{1}{2}} W D^{-\frac{1}{2}}=D^{-\frac{1}{2}} L D^{-\frac{1}{2}} & & \text { Symmetrically-Normalized }
\end{array}
$$

- Graph Laplacians can also be defined for directed graphs; However, there are many different definitions based on the types/classes of directed graphs, and in general, those matrices are nonsymmetric. $S \in e$ e.g., Fan Chung: "Laplacians and the Cheeger inequality for directed graphs," Ann. Comb., vol. 9, no. 1, pp. 1-19, 2005, for an attempt to symmetrize graph Laplacian matrices for strongly connected digraphs.

Matrices Associated with a Graph

- Let $D=D(G):=\operatorname{diag}\left(d_{1}, \ldots, d_{N}\right)$ be the degree matrix of G where $d_{i}:=\sum_{j=1}^{N} w_{i j}$ is the degree of the vertex i.
- We can now define several Laplacian matrices of G :

$$
\begin{array}{rlr}
L(G) & :=D-W & \text { Unnormalized } \\
L_{\mathrm{rw}}(G) & :=I_{N}-D^{-1} W=D^{-1} L & \text { Random-Walk Normalized } \\
L_{\mathrm{sym}}(G) & :=I_{N}-D^{-\frac{1}{2}} W D^{-\frac{1}{2}}=D^{-\frac{1}{2}} L D^{-\frac{1}{2}} & \text { Symmetrically-Normalized }
\end{array}
$$

- Graph Laplacians can also be defined for directed graphs; However, there are many different definitions based on the types/classes of directed graphs, and in general, those matrices are nonsymmetric. See, e.g., Fan Chung: "Laplacians and the Cheeger inequality for directed graphs," Ann. Comb., vol. 9, no. 1, pp. 1-19, 2005, for an attempt to symmetrize graph Laplacian matrices for strongly connected digraphs.

Graph Laplacians

- Let $f \in \mathbb{R}^{N}$ be a data vector defined on $V(G)$. Then

$$
L f(i)=d_{i} f(i)-\sum_{j=1}^{N} w_{i j} f(j)=\sum_{j=1}^{N} w_{i j}(f(i)-f(j))
$$

i.e., this is a generalization of the finite difference approximation to the Laplace operator.

- On the other hand,

$$
\begin{gathered}
L_{\mathrm{rw}} f(i)=f(i)-\sum_{j=1}^{N} p_{i j} f(j)=\frac{1}{d_{i}} \sum_{j=1}^{N} w_{i j}(f(i)-f(j)) . \\
L_{\mathrm{sym}} f(i)=f(i)-\frac{1}{\sqrt{d_{i}}} \sum_{j=1}^{N} \frac{w_{i j}}{\sqrt{d_{j}}} f(j)=\frac{1}{\sqrt{d_{i}}} \sum_{j=1}^{N} w_{i j}\left(\frac{f(i)}{\sqrt{d_{i}}}-\frac{f(j)}{\sqrt{d_{j}}}\right) .
\end{gathered}
$$

- Note that these definitions of the graph Laplacian corresponds to $-\Delta$ in \mathbb{R}^{d}, i.e., they are nonnegative operators (a.k.a. positive semi-definite matrices).

Why Graph Laplacian Eigenfunctions?

- The graph Laplacian eigenfunctions form an orthonormal basis on a graph \Longrightarrow
- can expand functions defined on a graph
- can perform spectral analysis/synthesis/filtering of data measured on vertices of a graph
- Can be used for graph partitioning, graph drawing, data analysis, clustering, .. \Longrightarrow Graph Cut, Spectral Clustering
- Less studied than graph Laplacian eigenvalues
- In this lecture, I will use the terms "eigenfunctions" and "eigenvectors" interchangeably.
- Also, an eigenvector/function is denoted by ϕ, and its value at vertex $x \in V$ is denoted by $\phi(x)$.

Why Graph Laplacian Eigenfunctions?

- The graph Laplacian eigenfunctions form an orthonormal basis on a graph \Longrightarrow
- can expand functions defined on a graph
- can perform spectral analysis/synthesis/filtering of data measured on vertices of a graph
- Can be used for graph partitioning, graph drawing, data analysis, clustering, ... \Rightarrow Graph Cut, Spectral Clustering
- Less studied than graph Laplacian eigenvalues
- In this lecture, I will use the terms "eigenfunctions" and "eigenvectors" interchangeably.
- Also, an eigenvector/function is denoted by $\boldsymbol{\phi}$, and its value at vertex $x \in V$ is denoted by $\boldsymbol{\phi}(x)$.

Why Graph Laplacian Eigenfunctions?

- The graph Laplacian eigenfunctions form an orthonormal basis on a graph \Longrightarrow
- can expand functions defined on a graph
- can perform spectral analysis/synthesis/filtering of data measured on vertices of a graph
- Can be used for graph partitioning, graph drawing, data analysis, clustering,
- Less studied than graph Laplacian eigenvalues
- In this lecture, I will use the terms "eigenfunctions" and "eigenvectors" interchangeably.
- Also, an eigenvector/function is denoted by ϕ, and its value at vertex $x \in V$ is denoted by $\phi(x)$.

Why Graph Laplacian Eigenfunctions?

- The graph Laplacian eigenfunctions form an orthonormal basis on a graph \Longrightarrow
- can expand functions defined on a graph
- can perform spectral analysis/synthesis/filtering of data measured on vertices of a graph
- Can be used for graph partitioning, graph drawing, data analysis, clustering, $\ldots \Longrightarrow$ Graph Cut, Spectral Clustering
- Less studied than graph Laplacian eigenvalues
- In this lecture, I will use the terms "eigenfunctions" and "eigenvectors" interchangeably.
- Also, an eigenvector/function is denoted by ϕ, and its value at vertex $x \in V$ is denoted by $\phi(x)$.

Why Graph Laplacian Eigenfunctions?

- The graph Laplacian eigenfunctions form an orthonormal basis on a graph \Longrightarrow
- can expand functions defined on a graph
- can perform spectral analysis/synthesis/filtering of data measured on vertices of a graph
- Can be used for graph partitioning, graph drawing, data analysis, clustering, $\ldots \Longrightarrow$ Graph Cut, Spectral Clustering
- Less studied than graph Laplacian eigenvalues
- In this lecture, I will use the terms "eigenfunctions" and "eigenvectors" interchangeably.
- Also, an eigenvector/function is denoted by ϕ, and its value at vertex $x \in V$ is denoted by $\phi(x)$.

Why Graph Laplacian Eigenfunctions?

- The graph Laplacian eigenfunctions form an orthonormal basis on a graph \Longrightarrow
- can expand functions defined on a graph
- can perform spectral analysis/synthesis/filtering of data measured on vertices of a graph
- Can be used for graph partitioning, graph drawing, data analysis, clustering, $\ldots \Longrightarrow$ Graph Cut, Spectral Clustering
- Less studied than graph Laplacian eigenvalues
- In this lecture, I will use the terms "eigenfunctions" and "eigenvectors" interchangeably.
- Also, an eigenvector/function is denoted by ϕ, and its value at vertex $x \in V$ is denoted by $\phi(x)$.

Why Graph Laplacian Eigenfunctions?

- The graph Laplacian eigenfunctions form an orthonormal basis on a graph \Longrightarrow
- can expand functions defined on a graph
- can perform spectral analysis/synthesis/filtering of data measured on vertices of a graph
- Can be used for graph partitioning, graph drawing, data analysis, clustering, $\ldots \Longrightarrow$ Graph Cut, Spectral Clustering
- Less studied than graph Laplacian eigenvalues
- In this lecture, I will use the terms "eigenfunctions" and "eigenvectors" interchangeably.
- Also, an eigenvector/function is denoted by $\boldsymbol{\phi}$, and its value at vertex $x \in V$ is denoted by $\boldsymbol{\phi}(x)$.

A Simple Yet Important Example: A Path Graph

The eigenvectors of this matrix are exactly the DCT Type // basis vectors (used for the JPEG standard) while those of $L_{\text {sym }}$ are the DCT Type I basis! (See G. Strang, "The discrete cosine transform," SIAM Review, vol. 41, pp. 135-147, 1999)

- $\lambda_{k}=2-2 \cos (\pi k / N)=4 \sin ^{2}(\pi k / 2 N), k=0: N-1$
- $\boldsymbol{\phi},(\ell)=a_{k-N} \cos \left(\pi k\left(\ell+\frac{1}{2}\right) / N\right), k, \ell=0 \cdot N-1 \cdot a_{k-N}$ is a const. s.t. $\left\|\phi_{k}\right\|_{2}=1$
- In this simple case, λ (eigenvalue) is a monotonic function w.r.t. the frequency, which is the eigenvalue index k. For a general graph, however, the notion of frequency is not well defined.

A Simple Yet Important Example: A Path Graph

The eigenvectors of this matrix are exactly the DCT Type // basis vectors (used for the JPEG standard) while those of $L_{\text {sym }}$ are the DCT Type I basis! (See G. Strang, "The discrete cosine transform," SIAM Review, vol. 41, pp. 135-147, 1999).

- $\lambda_{k}=2-2 \cos (\pi k / N)=4 \sin ^{2}(\pi k / 2 N), k=0: N-1$.
- $\boldsymbol{\phi}_{k}(\ell)=a_{k ; N} \cos \left(\pi k\left(\ell+\frac{1}{2}\right) / N\right), k, \ell=0: N-1 ; a_{k ; N}$ is a const. s.t. $\left\|\boldsymbol{\phi}_{k}\right\|_{2}=1$.
- In this simple case, λ (eigenvalue) is a monotonic function w.r.t. the frequency, which is the eigenvalue index k. For a general graph, however, the notion of frequency is not well defined.

A Brief Review of Graph Laplacian Eigenpairs

- In this slide, we only consider the unnormalized Laplacian $L(G)=D(G)-W(G)$. It is a good exercise to see how the statements in this slide change for L_{rw} and L_{sym}.
- $L(G)$ is positive semi-definite. Hence, we can sort the eigenvalues of $L(G)$ as $0=\lambda_{0}(G) \leq \lambda_{1}(G) \leq \cdots \leq \lambda_{N-1}(G)$
- $m_{G}(\lambda):=$ the multiplicity of λ.
- $\operatorname{rank} L(G)=n-m_{G}(0)$ where $m_{G}(0)$ turns out to be the number of connected components of $G . L(G)$ has $m_{G}(0)$ diagonal blocks; the eigenspace corresponding to $\lambda=0$ is spanned by the indicator vectors of each connected component.
- In particular, $\lambda_{1} \neq 0$, i.e., $m_{G}(0)=1$ iff G is connected. Then, the eigenfunction corresponding to $\lambda_{0}=0$ is the constant function $\phi_{0}=1_{N} / \sqrt{N}=(1 / \sqrt{N}, \ldots, 1 / \sqrt{N})^{\top}$
- This led M. Fiedler (1973) to define the algebraic connectivity of G by $a(G):=\lambda_{1}(G)$, viewing it as a quantitative measure of connectivity.

A Brief Review of Graph Laplacian Eigenpairs

- In this slide, we only consider the unnormalized Laplacian $L(G)=D(G)-W(G)$. It is a good exercise to see how the statements in this slide change for L_{rw} and L_{sym}.
- $L(G)$ is positive semi-definite. Hence, we can sort the eigenvalues of $L(G)$ as $0=\lambda_{0}(G) \leq \lambda_{1}(G) \leq \cdots \leq \lambda_{N-1}(G)$.
- $\operatorname{rank} L(G)=n-m_{G}(0)$ where $m_{G}(0)$ turns out to be the number of connected components of $G . L(G)$ has $m_{G}(0)$ diagonal blocks; the eigenspace corresponding to $\lambda=0$ is spanned by the indicator vectors of each connected component.
- In particular, $\lambda_{1} \neq 0$, i.e., $m_{G}(0)=1$ iff G is connected. Then, the eigenfunction corresponding to $\lambda_{0}=0$ is the constant function $a(G):=\lambda_{1}(G)$, viewing it as a quantitative measure of connectivity.

A Brief Review of Graph Laplacian Eigenpairs

- In this slide, we only consider the unnormalized Laplacian $L(G)=D(G)-W(G)$. It is a good exercise to see how the statements in this slide change for L_{rw} and $L_{\text {sym }}$.
- $L(G)$ is positive semi-definite. Hence, we can sort the eigenvalues of $L(G)$ as $0=\lambda_{0}(G) \leq \lambda_{1}(G) \leq \cdots \leq \lambda_{N-1}(G)$.
- $m_{G}(\lambda):=$ the multiplicity of λ.
- $\operatorname{rank} L(G)=n-m_{G}(0)$ where $m_{G}(0)$ turns out to be the number of connected components of $G . L(G)$ has $m_{G}(0)$ diagonal blocks; the eigenspace corresponding to $\lambda=0$ is spanned by the indicator vectors of each connected component. eigenfunction corresponding to $\lambda_{0}=0$ is the constant function - This led M. Fiedler (1973) to define the algebraic connectivity of G by $a(G):=\lambda_{1}(G)$, viewing it as a quantitative measure of connectivity.

A Brief Review of Graph Laplacian Eigenpairs

- In this slide, we only consider the unnormalized Laplacian $L(G)=D(G)-W(G)$. It is a good exercise to see how the statements in this slide change for L_{rw} and L_{sym}.
- $L(G)$ is positive semi-definite. Hence, we can sort the eigenvalues of $L(G)$ as $0=\lambda_{0}(G) \leq \lambda_{1}(G) \leq \cdots \leq \lambda_{N-1}(G)$.
- $m_{G}(\lambda):=$ the multiplicity of λ.
- $\operatorname{rank} L(G)=n-m_{G}(0)$ where $m_{G}(0)$ turns out to be the number of connected components of $G . L(G)$ has $m_{G}(0)$ diagonal blocks; the eigenspace corresponding to $\lambda=0$ is spanned by the indicator vectors of each connected component.
$a(G):=\lambda_{1}(G)$, viewing it as a quantitative measure of connectivity.

A Brief Review of Graph Laplacian Eigenpairs

- In this slide, we only consider the unnormalized Laplacian $L(G)=D(G)-W(G)$. It is a good exercise to see how the statements in this slide change for L_{rw} and L_{sym}.
- $L(G)$ is positive semi-definite. Hence, we can sort the eigenvalues of $L(G)$ as $0=\lambda_{0}(G) \leq \lambda_{1}(G) \leq \cdots \leq \lambda_{N-1}(G)$.
- $m_{G}(\lambda):=$ the multiplicity of λ.
- $\operatorname{rank} L(G)=n-m_{G}(0)$ where $m_{G}(0)$ turns out to be the number of connected components of $G . L(G)$ has $m_{G}(0)$ diagonal blocks; the eigenspace corresponding to $\lambda=0$ is spanned by the indicator vectors of each connected component.
- In particular, $\lambda_{1} \neq 0$, i.e., $m_{G}(0)=1$ iff G is connected. Then, the eigenfunction corresponding to $\lambda_{0}=0$ is the constant function $\boldsymbol{\phi}_{0}=\mathbf{1}_{N} / \sqrt{N}=(1 / \sqrt{N}, \ldots, 1 / \sqrt{N})^{\top}$.
$a(G):=\lambda_{1}(G)$, viewing it as a quantitative measure of connectivity.

A Brief Review of Graph Laplacian Eigenpairs

- In this slide, we only consider the unnormalized Laplacian $L(G)=D(G)-W(G)$. It is a good exercise to see how the statements in this slide change for L_{rw} and L_{sym}.
- $L(G)$ is positive semi-definite. Hence, we can sort the eigenvalues of $L(G)$ as $0=\lambda_{0}(G) \leq \lambda_{1}(G) \leq \cdots \leq \lambda_{N-1}(G)$.
- $m_{G}(\lambda):=$ the multiplicity of λ.
- $\operatorname{rank} L(G)=n-m_{G}(0)$ where $m_{G}(0)$ turns out to be the number of connected components of $G . L(G)$ has $m_{G}(0)$ diagonal blocks; the eigenspace corresponding to $\lambda=0$ is spanned by the indicator vectors of each connected component.
- In particular, $\lambda_{1} \neq 0$, i.e., $m_{G}(0)=1$ iff G is connected. Then, the eigenfunction corresponding to $\lambda_{0}=0$ is the constant function $\boldsymbol{\phi}_{0}=\mathbf{1}_{N} / \sqrt{N}=(1 / \sqrt{N}, \ldots, 1 / \sqrt{N})^{\top}$.
- This led M. Fiedler (1973) to define the algebraic connectivity of G by $a(G):=\lambda_{1}(G)$, viewing it as a quantitative measure of connectivity.
(1) Introductory Remarks
(2) Motivations: Why Graphs?
(3) Background
- Basic Graph Theory Terminology
- Graph Laplacians
- Graph Partitioning via Spectral Clustering
(4) Multiscale Basis Dictionaries
- Hierarchical Graph Laplacian Eigen Transform (HGLET)
- Generalized Haar-Walsh Transform (GHWT)
(5) Best-Basis Algorithm for HGLET \& GHWT
(6) Approximation Experiments
(7) Summary and Further Developments

Goal: split the vertices V into two "good" subsets, X and X^{c}

Plan: use the signs of the entries in ϕ_{1}, which is known as the Fiedler vector

Why? Using ϕ_{1} to generate X and X^{c} yields an approximate minimizer of the RatioCut function ${ }^{1,2}$:

where

- Dividing by the number of nodes ensures that the partitions are of roughly the same size \Rightarrow we do not simply cleave a small number of nodes
${ }^{1}$ L. Hagen and A. B. Kahng: "New spectral methods for ratio cut partitioning and clustering," IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992.
${ }^{2}$ We could also use the signs of ϕ_{1} for L_{rw} (equivalently, L_{sym}), which yield an approximate minimizer of the popular Normalized Cut function: J. Shi \& J. Malik: "Normalized cuts and image segmentation", IEEE Trans. Pattern Anal. Machine Intell. vol. 22, no. 8, pp. 888-905, 2000

Goal: split the vertices V into two "good" subsets, X and X^{c}
Plan: use the signs of the entries in $\boldsymbol{\phi}_{1}$, which is known as the Fiedler vector

Why? Using ϕ_{1} to generate X and X^{c} yields an approximate minimizer of the RatioCut function ${ }^{1,2}$:

where

- Dividing by the number of nodes ensures that the partitions are of roughly

[^0]Goal: split the vertices V into two "good" subsets, X and X^{c}
Plan: use the signs of the entries in $\boldsymbol{\phi}_{1}$, which is known as the Fiedler vector

Why? Using $\boldsymbol{\phi}_{1}$ to generate X and X^{c} yields an approximate minimizer of the RatioCut function ${ }^{1,2}$:

$$
\operatorname{RatioCut}\left(X, X^{c}\right):=\frac{\operatorname{cut}\left(X, X^{c}\right)}{|X|}+\frac{\operatorname{cut}\left(X, X^{c}\right)}{\left|X^{c}\right|},
$$

where

$$
\operatorname{cut}\left(X, X^{c}\right):=\sum_{v_{i} \in X ; v_{j} \in X^{c}} W_{i j}
$$

- Dividing by the number of nodes ensures that the partitions are of roughly

[^1]Goal: split the vertices V into two "good" subsets, X and X^{c}
Plan: use the signs of the entries in $\boldsymbol{\phi}_{1}$, which is known as the Fiedler vector

Why? Using $\boldsymbol{\phi}_{1}$ to generate X and X^{c} yields an approximate minimizer of the RatioCut function ${ }^{1,2}$:

$$
\operatorname{RatioCut}\left(X, X^{c}\right):=\frac{\operatorname{cut}\left(X, X^{c}\right)}{|X|}+\frac{\operatorname{cut}\left(X, X^{c}\right)}{\left|X^{c}\right|},
$$

where

$$
\operatorname{cut}\left(X, X^{c}\right):=\sum_{v_{i} \in X ; v_{j} \in X^{c}} W_{i j}
$$

- Dividing by the number of nodes ensures that the partitions are of roughly the same size \Rightarrow we do not simply cleave a small number of nodes

[^2]
Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.
(1) Define $f \in \mathbb{R}^{N}$ as

(2) The RatioCut problem can be reformulated as
$\min _{X \in V} f^{\top} L f$ subject to f defined as above

Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.
(1) Define $\boldsymbol{f} \in \mathbb{R}^{N}$ as

$$
f_{i}:= \begin{cases}\sqrt{\frac{\left|X^{c}\right|}{|X|}} & \text { if } \nu_{i} \in X \\ -\sqrt{\frac{\left|X^{c}\right|}{\left|X^{c}\right|}} & \text { if } \nu_{i} \in X^{c}\end{cases}
$$

(2) The RatioCut problem can be reformulated as
$\min _{X \subset V} \boldsymbol{f}^{\top} L \boldsymbol{f}$ subject to \boldsymbol{f} defined as above

Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.
(1) Define $\boldsymbol{f} \in \mathbb{R}^{N}$ as

$$
f_{i}:= \begin{cases}\sqrt{\frac{\left|X^{c}\right|}{|X|}} & \text { if } v_{i} \in X \\ -\sqrt{\frac{|X|}{\left|X^{c}\right|}} & \text { if } v_{i} \in X^{c}\end{cases}
$$

(2) The RatioCut problem can be reformulated as

$$
\min _{X \subset V} \boldsymbol{f}^{\top} L \boldsymbol{f} \quad \text { subject to } \boldsymbol{f} \text { defined as above }
$$

$$
\begin{aligned}
\boldsymbol{f}^{\top} L \boldsymbol{f}= & \frac{1}{2} \sum_{i, j=1}^{N} W_{i j}\left(f_{i}-f_{j}\right)^{2} \\
= & \frac{1}{2} \sum_{\substack{v_{i} \in X \\
v_{j} \in X^{c}}} W_{i j}\left(\sqrt{\frac{\left|X^{c}\right|}{|X|}}+\sqrt{\frac{|X|}{\left|X^{c}\right|}}\right)^{2} \\
& +\frac{1}{2} \sum_{v_{i} \in X^{c}} W_{i j}\left(-\sqrt{\frac{\left|X^{c}\right|}{|X|}}-\sqrt{\frac{|X|}{\left|X^{c}\right|}}\right)^{2} \\
= & \operatorname{cut}\left(X, X^{c}\right)\left(\frac{\left|X^{c}\right|}{|X|}+\frac{|X|}{\left|X^{c}\right|}+2\right) \\
= & \operatorname{cut}\left(X, X^{c}\right)\left(\frac{|X|+\left|X^{c}\right|}{|X|}+\frac{|X|+\left|X^{c}\right|}{\left|X^{c}\right|}\right) \\
= & |V| \operatorname{RatioCut}\left(X, X^{c}\right)
\end{aligned}
$$

Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.
(1) Define $\boldsymbol{f} \in \mathbb{R}^{N}$ as

$$
f_{i}:= \begin{cases}\sqrt{\frac{\left|X^{c}\right|}{|X|}} & \text { if } v_{i} \in X \\ -\sqrt{\frac{|X|}{\left|X^{c}\right|}} & \text { if } v_{i} \in X^{c}\end{cases}
$$

(2) The RatioCut problem can be reformulated as

$$
\min _{X \subset V} f^{\top} L \boldsymbol{f} \quad \text { subject to } \boldsymbol{f} \text { defined as above }
$$

Unfortunately, this problem is NP hard...

Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.
(1) Define $\boldsymbol{f} \in \mathbb{R}^{N}$ as

$$
f_{i}:= \begin{cases}\sqrt{\frac{\left|X^{c}\right|}{|X|}} & \text { if } v_{i} \in X \\ -\sqrt{\frac{|X|}{\left|X^{c}\right|}} & \text { if } v_{i} \in X^{c}\end{cases}
$$

(2) The RatioCut problem can be reformulated as

$$
\min _{X \subset V} \boldsymbol{f}^{\top} L \boldsymbol{f} \quad \text { subject to } \boldsymbol{f} \text { defined as above }
$$

Unfortunately, this problem is NP hard... Relax!

Graph Partitioning via Spectral Clustering

A couple things to note about \boldsymbol{f} :

- $\|\boldsymbol{f}\|=\sqrt{N}$

$=|X|+\left|X^{c}\right|=N$

Graph Partitioning via Spectral Clustering

A couple things to note about \boldsymbol{f} :

- $\boldsymbol{f} \perp \mathbf{1} \Leftrightarrow \sum f_{i}=0$

$$
\begin{aligned}
\sum_{i=1}^{N} f_{i} & =\sum_{v_{i} \in X} \sqrt{\frac{\left|X^{c}\right|}{|X|}}-\sum_{v_{i} \in X^{c}} \sqrt{\frac{|X|}{\left|X^{c}\right|}} \\
& =|X| \sqrt{\frac{\left|X^{c}\right|}{|X|}}-\left|X^{c}\right| \sqrt{\frac{|X|}{\left|X^{c}\right|}}=0
\end{aligned}
$$

- $\|\boldsymbol{f}\|=\sqrt{N}$

Graph Partitioning via Spectral Clustering

A couple things to note about \boldsymbol{f} :

- $\boldsymbol{f} \perp \mathbf{1} \Leftrightarrow \sum f_{i}=0$

$$
\begin{aligned}
\sum_{i=1}^{N} f_{i} & =\sum_{v_{i} \in X} \sqrt{\frac{\left|X^{c}\right|}{|X|}}-\sum_{v_{i} \in X^{c}} \sqrt{\frac{|X|}{\left|X^{c}\right|}} \\
& =|X| \sqrt{\frac{\left|X^{c}\right|}{|X|}}-\left|X^{c}\right| \sqrt{\frac{|X|}{\left|X^{c}\right|}}=0
\end{aligned}
$$

- $\|\boldsymbol{f}\|=\sqrt{N}$

$$
\begin{aligned}
\|\boldsymbol{f}\|^{2} & =\sum_{i=1}^{N} f_{i}^{2} \\
& =|X| \frac{\left|X^{c}\right|}{|X|}+\left|X^{c}\right| \frac{|X|}{\left|X^{c}\right|} \\
& =|X|+\left|X^{c}\right|=N
\end{aligned}
$$

Graph Partitioning via Spectral Clustering

- If we relax our previous definition of \boldsymbol{f} and simply require that (i) $\boldsymbol{f} \perp \mathbf{1}$ and (ii) $\|\boldsymbol{f}\|=\sqrt{N}$, then we get the relaxed minimization problem ${ }^{1}$:

$$
\min _{\boldsymbol{f} \in \mathbb{R}^{N}} \boldsymbol{f}^{\top} L \boldsymbol{f} \quad \text { subject to } \boldsymbol{f} \perp \mathbf{1},\|\boldsymbol{f}\|=\sqrt{N}
$$necessary), where $\boldsymbol{\phi}_{1}$ is the eigenvector corresponding to the second smallest eigenvalue of L.

- ϕ_{1} is known as the Fiedler vector and is often used to partition a graph into two subsets.
von Luxburg recommends the use of the random-walk version of the Laplacian matrix, $L_{\mathrm{rw}}:=I-D^{-1} W$, over the usual Laplacian matrix L, which leads to the NCut and the generalized eigenvalue problem $L \phi=\lambda D \phi$.
${ }^{1}$ U. von Luxburg: "A tutorial on spectral clustering," Statistics and Computing, vol. 17, no. 4, pp.395-416, 2007.

Graph Partitioning via Spectral Clustering

- If we relax our previous definition of \boldsymbol{f} and simply require that (i) $\boldsymbol{f} \perp \mathbf{1}$ and (ii) $\|\boldsymbol{f}\|=\sqrt{N}$, then we get the relaxed minimization problem ${ }^{1}$:

$$
\min _{\boldsymbol{f} \in \mathbb{R}^{N}} \boldsymbol{f}^{\top} L \boldsymbol{f} \quad \text { subject to } \boldsymbol{f} \perp \mathbf{1},\|\boldsymbol{f}\|=\sqrt{N}
$$

- By the Rayleigh-Ritz Theorem, the solution is given by $\boldsymbol{\phi}_{1}$ (scaled as necessary), where $\boldsymbol{\phi}_{1}$ is the eigenvector corresponding to the second smallest eigenvalue of L.
graph into two subsets.

Laplacian matrix, $L_{\mathrm{rw}}:=I-D^{-1} W$, over the usual Laplacian matrix L, which leads to the NCut and the generalized eigenvalue problem:

[^3] 17, no. 4, pp.395-416, 2007.

Graph Partitioning via Spectral Clustering

- If we relax our previous definition of \boldsymbol{f} and simply require that (i) $\boldsymbol{f} \perp \mathbf{1}$ and (ii) $\|\boldsymbol{f}\|=\sqrt{N}$, then we get the relaxed minimization problem ${ }^{1}$:

$$
\min _{\boldsymbol{f} \in \mathbb{R}^{N}} \boldsymbol{f}^{\top} L \boldsymbol{f} \quad \text { subject to } \boldsymbol{f} \perp \mathbf{1},\|\boldsymbol{f}\|=\sqrt{N}
$$

- By the Rayleigh-Ritz Theorem, the solution is given by $\boldsymbol{\phi}_{1}$ (scaled as necessary), where $\boldsymbol{\phi}_{1}$ is the eigenvector corresponding to the second smallest eigenvalue of L.
- $\boldsymbol{\phi}_{1}$ is known as the Fiedler vector and is often used to partition a graph into two subsets.
which leads to the NCut and the generalized eigenvalue problem:

[^4]
Graph Partitioning via Spectral Clustering

- If we relax our previous definition of \boldsymbol{f} and simply require that (i) $\boldsymbol{f} \perp \mathbf{1}$ and (ii) $\|\boldsymbol{f}\|=\sqrt{N}$, then we get the relaxed minimization problem ${ }^{1}$:

$$
\min _{\boldsymbol{f} \in \mathbb{R}^{N}} \boldsymbol{f}^{\top} L \boldsymbol{f} \quad \text { subject to } \boldsymbol{f} \perp \mathbf{1},\|\boldsymbol{f}\|=\sqrt{N}
$$

- By the Rayleigh-Ritz Theorem, the solution is given by $\boldsymbol{\phi}_{1}$ (scaled as necessary), where $\boldsymbol{\phi}_{1}$ is the eigenvector corresponding to the second smallest eigenvalue of L.
- $\boldsymbol{\phi}_{1}$ is known as the Fiedler vector and is often used to partition a graph into two subsets.
- von Luxburg recommends the use of the random-walk version of the Laplacian matrix, $L_{\mathrm{rw}}:=I-D^{-1} W$, over the usual Laplacian matrix L, which leads to the NCut and the generalized eigenvalue problem:

$$
L \boldsymbol{\phi}=\lambda D \boldsymbol{\phi} .
$$

[^5] 17, no. 4, pp.395-416, 2007.

Graph Partitioning via Spectral Clustering

The practice of using the Fiedler vector to partition a graph is supported by the following theory.

Graph Partitioning via Spectral Clustering

The practice of using the Fiedler vector to partition a graph is supported by the following theory.

Definition (Weak Nodal Domain)

A positive (or negative) weak nodal domain of f on $V(G)$ is a maximal connected induced subgraph of G on vertices $v \in V$ with $f(\nu) \geq 0$ (or $f(\nu) \leq 0)$ that contains at least one nonzero vertex. The number of weak nodal domains of f is denoted by $\mathfrak{W}(f)$.

Graph Partitioning via Spectral Clustering

The practice of using the Fiedler vector to partition a graph is supported by the following theory.

Definition (Weak Nodal Domain)

A positive (or negative) weak nodal domain of f on $V(G)$ is a maximal connected induced subgraph of G on vertices $\nu \in V$ with $f(\nu) \geq 0$ (or $f(\nu) \leq 0)$ that contains at least one nonzero vertex. The number of weak nodal domains of f is denoted by $\mathfrak{W}(f)$.

Corollary (Fiedler (1975))

If G is connected, then $\mathfrak{W}\left(\phi_{1}\right)=2$.

Example of Graph Partitioning

Figure: The MN road network

Example of Graph Partitioning

Figure: The MN road network partitioned via the Fiedler vector of L_{rw}

One Can Do This Recursively!

The MN road network recursively partitioned via the Fiedler vectors of L_{rw} 's of subgraphs: $j=2$

One Can Do This Recursively!

One Can Do This Recursively!

One Can Do This Recursively!

(1) Introductory Remarks
(2) Motivations: Why Graphs?
(3) Background

- Basic Graph Theory Terminology
- Graph Laplacians
- Graph Partitioning via Spectral Clustering

4 Multiscale Basis Dictionaries

- Hierarchical Graph Laplacian Eigen Transform (HGLET)
- Generalized Haar-Walsh Transform (GHWT)
(3) Best-Basis Algorithm for HGLET \& GHWT
(6) Approximation Experiments
(7) Summary and Further Developments

Our transforms involve 2 main steps:
(1) Recursively partition the graph
\Uparrow These steps can be performed concurrently, or we can fully partition the graph and then generate a set of bases
(2) Using the regions on each level of the graph partitioning, generate a set of orthonormal bases for the graph

Our transforms involve 2 main steps:
(1) Recursively partition the graph
\Uparrow These steps can be performed concurrently, or we can fully partition the graph and then generate a set of bases
(2) Using the regions on each level of the graph partitioning, generate a set of orthonormal bases for the graph
(1) Introductory Remarks
(2) Motivations: Why Graphs?
(3) Background

- Basic Graph Theory Terminology
- Graph Laplacians
- Graph Partitioning via Spectral Clustering
(4) Multiscale Basis Dictionaries
- Hierarchical Graph Laplacian Eigen Transform (HGLET)
- Generalized Haar-Walsh Transform (GHWT)
(5) Best-Basis Algorithm for HGLET \& GHWT
(3) Approximation Experiments
(7) Summary and Further Developments

Hierarchical Graph Laplacian Eigen Transform (HGLET)

Now we present a novel transform that can be viewed as a generalization of the block Discrete Cosine Transform. We refer to this transform as the Hierarchical Graph Laplacian Eigen Transform (HGLET).

The algorithm proceeds as follows...
(1) Generate an orthonormal basis for the entire graph \Rightarrow Laplacian eigenvectors (Notation is $\boldsymbol{\phi}_{k, l}^{j}$ with $j=0$)
(2) Partition the graph using the Fiedler vector $\phi_{k \text {, }}^{j}$Generate an orthonormal basis for each of the partitions \Rightarrow Laplacian eigenvectors

- Repeat...
(- Select an orthonormal basis from this collection of orthonormal bases

$$
\left[\begin{array}{ccccc}
\boldsymbol{\phi}_{0,0}^{0} & \phi_{0,1}^{0} & \phi_{0,2}^{0} & \cdots & \phi_{0, N_{0}^{0}-1}^{0}
\end{array}\right]
$$

(1) Generate an orthonormal basis for the entire graph \Rightarrow Laplacian eigenvectors (Notation is $\boldsymbol{\phi}_{k, l}^{j}$ with $j=0$)
(2) Partition the graph using the Fiedler vector $\boldsymbol{\phi}_{k, 1}^{j}$
(-) Generate an orthonormal basis for each of the partitions \Rightarrow Laplacian
(1) Repeat...
© Select an orthonormal basis from this collection of orthonormal bases

$$
\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{0} & \phi_{0,1}^{0} & \phi_{0,2}^{0} & \cdots & \phi_{0, N_{0}^{0}-1}^{0}
\end{array}\right]
$$

(1) Generate an orthonormal basis for the entire graph \Rightarrow Laplacian eigenvectors (Notation is $\boldsymbol{\phi}_{k, l}^{j}$ with $j=0$)
(2) Partition the graph using the Fiedler vector $\boldsymbol{\phi}_{k, 1}^{j}$
(3) Generate an orthonormal basis for each of the partitions \Rightarrow Laplacian eigenvectors
© Repeat...
(- Select an orthonormal basis from this collection of orthonormal bases

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
\boldsymbol{\phi}_{0,0}^{0} & \phi_{0,1}^{0} & \boldsymbol{\phi}_{0,2}^{0} & \cdots & \phi_{0, N_{0}^{0}-1}^{0}
\end{array}\right]} \\
{\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \phi_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right] \quad\left[\begin{array}{lllll}
\boldsymbol{\phi}_{1,0}^{1} & \phi_{1,1}^{1} & \boldsymbol{\phi}_{1,2}^{1} & \cdots & \boldsymbol{\phi}_{1, N_{1}^{1}-1}^{1}
\end{array}\right]}
\end{gathered}
$$

(1) Generate an orthonormal basis for the entire graph \Rightarrow Laplacian eigenvectors (Notation is $\boldsymbol{\phi}_{k, l}^{j}$ with $j=0$)
(2) Partition the graph using the Fiedler vector $\boldsymbol{\phi}_{k, 1}^{j}$
(3) Generate an orthonormal basis for each of the partitions \Rightarrow Laplacian eigenvectors
(9) Repeat...
© Select an orthonormal basis from this collection of orthonormal bases

$$
\begin{gathered}
{\left[\begin{array}{lllllll}
\boldsymbol{\phi}_{0,0}^{0} & \phi_{0,1}^{0} & \phi_{0,2}^{0} & \cdots & \phi_{0, N_{0}^{0}-1}^{0}
\end{array}\right]} \\
{\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \phi_{0,2}^{1} & \cdots & \phi_{0, N_{0}^{1}-1}^{1}
\end{array}\right] \quad\left[\begin{array}{lllll}
\boldsymbol{\phi}_{1,0}^{1} & \phi_{1,1}^{1} & \boldsymbol{\phi}_{1,2}^{1} & \cdots & \boldsymbol{\phi}_{1, N_{1}^{1}-1}^{1}
\end{array}\right]}
\end{gathered}
$$

(1) Generate an orthonormal basis for the entire graph \Rightarrow Laplacian eigenvectors (Notation is $\boldsymbol{\phi}_{k, l}^{j}$ with $j=0$)
(2) Partition the graph using the Fiedler vector $\boldsymbol{\phi}_{k, 1}^{j}$
(3) Generate an orthonormal basis for each of the partitions \Rightarrow Laplacian eigenvectors
(9) Repeat...
© Select an orthonormal basis from this collection of orthonormal bases

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
\boldsymbol{\phi}_{0,0}^{0} & \phi_{0,1}^{0} & \phi_{0,2}^{0} & \cdots & \phi_{0, N_{0}^{0}-1}^{0}
\end{array}\right]} \\
{\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \phi_{0,1}^{1} & \phi_{0,2}^{1} & \cdots & \phi_{0, N_{0}^{1}-1}^{1}
\end{array}\right] \quad\left[\begin{array}{lllll}
\boldsymbol{\phi}_{1,0}^{1} & \phi_{1,1}^{1} & \boldsymbol{\phi}_{1,2}^{1} & \cdots & \boldsymbol{\phi}_{1, N_{1}^{1}-1}^{1}
\end{array}\right]}
\end{gathered}
$$

(1) Generate an orthonormal basis for the entire graph \Rightarrow Laplacian eigenvectors (Notation is $\boldsymbol{\phi}_{k, l}^{j}$ with $j=0$)
(2) Partition the graph using the Fiedler vector $\boldsymbol{\phi}_{k, 1}^{j}$
(3) Generate an orthonormal basis for each of the partitions \Rightarrow Laplacian eigenvectors
(9) Repeat...
© Select an orthonormal basis from this collection of orthonormal bases

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
\boldsymbol{\phi}_{0,0}^{0} & \phi_{0,1}^{0} & \phi_{0,2}^{0} & \cdots & \phi_{0, N_{0}^{0}-1}^{0}
\end{array}\right]} \\
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right] \quad\left[\begin{array}{lllll}
\boldsymbol{\phi}_{1,0}^{1} & \phi_{1,1}^{1} & \boldsymbol{\phi}_{1,2}^{1} & \cdots & \boldsymbol{\phi}_{1, N_{1}^{1}-1}^{1}
\end{array}\right]} \\
& {\left[\phi_{0,0}^{2} \phi_{0,1}^{2} \cdots \phi_{0, N_{0}^{2}-1}^{2}\right]\left[\phi_{1,0}^{2} \phi_{1,1}^{2} \cdots \phi_{1, N_{1}^{2}-1}^{2}\right]\left[\phi_{2,0}^{2} \phi_{2,1}^{2} \cdots \phi_{2, N_{2}^{2}-1}^{2}\right]\left[\phi_{3,0}^{2} \phi_{3,1}^{2} \cdots \phi_{3, N_{3}^{2}-1}^{2}\right]}
\end{aligned}
$$

(1) Generate an orthonormal basis for the entire graph \Rightarrow Laplacian eigenvectors (Notation is $\boldsymbol{\phi}_{k, l}^{j}$ with $j=0$)
(2) Partition the graph using the Fiedler vector $\boldsymbol{\phi}_{k, 1}^{j}$
(3) Generate an orthonormal basis for each of the partitions \Rightarrow Laplacian eigenvectors
(4) Repeat...
© Select an orthonormal basis from this collection of orthonormal bases

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
\boldsymbol{\phi}_{0,0}^{0} & \phi_{0,1}^{0} & \phi_{0,2}^{0} & \cdots & \phi_{0, N_{0}^{0}-1}^{0}
\end{array}\right]} \\
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right] \quad\left[\begin{array}{lllll}
\boldsymbol{\phi}_{1,0}^{1} & \phi_{1,1}^{1} & \boldsymbol{\phi}_{1,2}^{1} & \cdots & \boldsymbol{\phi}_{1, N_{1}^{1}-1}^{1}
\end{array}\right]} \\
& {\left[\phi_{0,0}^{2} \phi_{0,1}^{2} \cdots \phi_{0, N_{0}^{2}-1}^{2}\right]\left[\phi_{1,0}^{2} \phi_{1,1}^{2} \cdots \phi_{1, N_{1}^{2}-1}^{2}\right]\left[\phi_{2,0}^{2} \phi_{2,1}^{2} \cdots \phi_{2, N_{2}^{2}-1}^{2}\right]\left[\phi_{3,0}^{2} \phi_{3,1}^{2} \cdots \phi_{3, N_{3}^{2}-1}^{2}\right]}
\end{aligned}
$$

(1) Generate an orthonormal basis for the entire graph \Rightarrow Laplacian eigenvectors (Notation is $\boldsymbol{\phi}_{k, l}^{j}$ with $j=0$)
(2) Partition the graph using the Fiedler vector $\boldsymbol{\phi}_{k, 1}^{j}$
(3) Generate an orthonormal basis for each of the partitions \Rightarrow Laplacian eigenvectors
(4) Repeat...
© Select an orthonormal basis from this collection of orthonormal bases

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
\boldsymbol{\phi}_{0,0}^{0} & \phi_{0,1}^{0} & \phi_{0,2}^{0} & \cdots & \phi_{0, N_{0}^{0}-1}^{0}
\end{array}\right]} \\
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \phi_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right] \quad\left[\begin{array}{lllll}
\boldsymbol{\phi}_{1,0}^{1} & \phi_{1,1}^{1} & \boldsymbol{\phi}_{1,2}^{1} & \cdots & \boldsymbol{\phi}_{1, N_{1}^{1}-1}^{1}
\end{array}\right]} \\
& {\left[\phi_{0,0}^{2} \phi_{0,1}^{2} \cdots \phi_{0, N_{0}^{2}-1}^{2}\right]\left[\phi_{1,0}^{2} \phi_{1,1}^{2} \cdots \phi_{1, N_{1}^{2}-1}^{2}\right]\left[\phi_{2,0}^{2} \phi_{2,1}^{2} \cdots \phi_{2, N_{2}^{2}-1}^{2}\right]\left[\phi_{3,0}^{2} \phi_{3,1}^{2} \cdots \phi_{3, N_{3}^{2}-1}^{2}\right]}
\end{aligned}
$$

(1) Generate an orthonormal basis for the entire graph \Rightarrow Laplacian eigenvectors (Notation is $\boldsymbol{\phi}_{k, l}^{j}$ with $j=0$)
(2) Partition the graph using the Fiedler vector $\boldsymbol{\phi}_{k, 1}^{j}$
(3) Generate an orthonormal basis for each of the partitions \Rightarrow Laplacian eigenvectors
(9) Repeat...
(5) Select an orthonormal basis from this collection of orthonormal bases

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
\boldsymbol{\phi}_{0,0}^{0} & \boldsymbol{\phi}_{0,1}^{0} & \boldsymbol{\phi}_{0,2}^{0} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{0}-1}^{0}
\end{array}\right]} \\
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right] \quad\left[\begin{array}{lllll}
\boldsymbol{\phi}_{1,0}^{1} & \boldsymbol{\phi}_{1,1}^{1} & \boldsymbol{\phi}_{1,2}^{1} & \cdots & \boldsymbol{\phi}_{1, N_{1}^{1}-1}^{1}
\end{array}\right]} \\
& {\left[\boldsymbol{\phi}_{0,0}^{2} \phi_{0,1}^{2} \cdots \boldsymbol{\phi}_{0, N_{0}^{2}-1}^{2}\right]\left[\phi_{1,0}^{2} \phi_{1,1}^{2} \cdots \boldsymbol{\phi}_{1, N_{1}^{2}-1}^{2}\right]\left[\phi_{2,0}^{2} \phi_{2,1}^{2} \cdots \boldsymbol{\phi}_{2, N_{2}^{2}-1}^{2}\right]\left[\phi_{3,0}^{2} \phi_{3,1}^{2} \cdots \boldsymbol{\phi}_{3, N_{3}^{2}-1}^{2}\right]}
\end{aligned}
$$

Remarks

- For an unweighted path graph, this yields a dictionary of the block DCT-II
- Similar to wavelet packet or local cosine dictionaries in that it generates an overcomplete basis from which we can select a basis useful for the task at hand \Rightarrow best-basis algorithm, local discriminant basis algorithm,

Remarks

- For an unweighted path graph, this yields a dictionary of the block DCT-II
- Similar to wavelet packet or local cosine dictionaries in that it generates an overcomplete basis from which we can select a basis useful for the task at hand \Rightarrow best-basis algorithm, local discriminant basis algorithm, ...
- A union of bases on disjoint subsets is obviously orthonormal

Remarks

- For an unweighted path graph, this yields a dictionary of the block DCT-II
- Similar to wavelet packet or local cosine dictionaries in that it generates an overcomplete basis from which we can select a basis useful for the task at hand \Rightarrow best-basis algorithm, local discriminant basis algorithm, ...
- A union of bases on disjoint subsets is obviously orthonormal

Remarks

- For an unweighted path graph, this yields a dictionary of the block DCT-II
- Similar to wavelet packet or local cosine dictionaries in that it generates an overcomplete basis from which we can select a basis useful for the task at hand \Rightarrow best-basis algorithm, local discriminant basis algorithm, ...
- A union of bases on disjoint subsets is obviously orthonormal

$$
\begin{aligned}
& \boldsymbol{\phi}_{0,0}^{0} \\
& \boldsymbol{\phi}_{0,1}^{0} \\
& \boldsymbol{\phi}_{0,2}^{0} \\
& \boldsymbol{\phi}_{0, N_{0}^{0}-1}^{0} \\
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right]\left[\begin{array}{lllll}
\boldsymbol{\phi}_{1,0}^{1} & \boldsymbol{\phi}_{1,1}^{1} & \boldsymbol{\phi}_{1,2}^{1} & \cdots & \boldsymbol{\phi}_{1, N_{1}^{1}-1}^{1}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
\phi_{0,0}^{2} & \cdots & \phi_{0, N_{0}^{2}-1}^{2}
\end{array}\right]\left[\begin{array}{lll}
\phi_{1,0}^{2} & \cdots & \phi_{1, N_{1}^{2}-1}^{2}
\end{array}\right]\left[\begin{array}{lll}
\phi_{2,0}^{2} & \cdots & \phi_{2, N_{2}^{2}-1}^{2}
\end{array}\right]\left[\begin{array}{lll}
\phi_{3,0}^{2} & \cdots & \phi_{3, N_{3}^{2}-1}^{2}
\end{array}\right]}
\end{aligned}
$$

Remarks

- For an unweighted path graph, this yields a dictionary of the block DCT-II
- Similar to wavelet packet or local cosine dictionaries in that it generates an overcomplete basis from which we can select a basis useful for the task at hand \Rightarrow best-basis algorithm, local discriminant basis algorithm, ...
- A union of bases on disjoint subsets is obviously orthonormal

$$
\left.\begin{array}{ccccc}
\boldsymbol{\phi}_{0,0}^{0} & \boldsymbol{\phi}_{0,1}^{0} & \boldsymbol{\phi}_{0,2}^{0} & & \cdots \\
{\left[\begin{array}{llll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots
\end{array}\right.} & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right]\left[\begin{array}{llll}
\boldsymbol{\phi}_{1,0}^{1} & \boldsymbol{\phi}_{1,1}^{1} & \boldsymbol{\phi}_{1,2}^{1} & \cdots
\end{array} \boldsymbol{\phi}_{1, N_{1}^{1}-1}^{1}\right] .
$$

Remarks

- For an unweighted path graph, this yields a dictionary of the block DCT-II
- Similar to wavelet packet or local cosine dictionaries in that it generates an overcomplete basis from which we can select a basis useful for the task at hand \Rightarrow best-basis algorithm, local discriminant basis algorithm, ...
- A union of bases on disjoint subsets is obviously orthonormal

$$
\begin{aligned}
& \boldsymbol{\phi}_{0,0}^{0} \\
& \boldsymbol{\phi}_{0,1}^{0} \\
& \boldsymbol{\phi}_{0,2}^{0} \\
& \boldsymbol{\phi}_{0, N_{0}^{0}-1}^{0} \\
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right]\left[\begin{array}{lllll}
\boldsymbol{\phi}_{1,0}^{1} & \boldsymbol{\phi}_{1,1}^{1} & \boldsymbol{\phi}_{1,2}^{1} & \cdots & \boldsymbol{\phi}_{1, N_{1}^{1}-1}^{1}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
\phi_{0,0}^{2} & \cdots & \phi_{0, N_{0}^{2}-1}^{2}
\end{array}\right]\left[\begin{array}{lll}
\phi_{1,0}^{2} & \cdots & \phi_{1, N_{1}^{2}-1}^{2}
\end{array}\right]\left[\begin{array}{lll}
\phi_{2,0}^{2} & \cdots & \phi_{2, N_{2}^{2}-1}^{2}
\end{array}\right]\left[\begin{array}{lll}
\phi_{3,0}^{2} & \cdots & \phi_{3, N_{3}^{2}-1}^{2}
\end{array}\right]}
\end{aligned}
$$

Remarks

- For an unweighted path graph, this yields a dictionary of the block DCT-II
- Similar to wavelet packet or local cosine dictionaries in that it generates an overcomplete basis from which we can select a basis useful for the task at hand \Rightarrow best-basis algorithm, local discriminant basis algorithm, ...
- A union of bases on disjoint subsets is obviously orthonormal

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\boldsymbol{\phi}_{0,0}^{0} & & \boldsymbol{\phi}_{0,1}^{0} & \boldsymbol{\phi}_{0,2}^{0} \\
\cdots & \cdots & & \boldsymbol{\phi}_{0, N_{0}^{0}-1}^{0} \\
{\left[\begin{array}{llll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots
\end{array} \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}\right.}
\end{array}\right]\left[\begin{array}{lllll}
\boldsymbol{\phi}_{1,0}^{1} & \boldsymbol{\phi}_{1,1}^{1} & \boldsymbol{\phi}_{1,2}^{1} & \cdots & \boldsymbol{\phi}_{1, N_{1}^{1}-1}^{1}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
\phi_{0,0}^{2} & \cdots & \phi_{0, N_{0}^{2}-1}^{2}
\end{array}\right]\left[\begin{array}{llll}
\phi_{1,0}^{2} & \cdots & \phi_{1, N_{1}^{2}-1}^{2}
\end{array}\right]\left[\begin{array}{llll}
\phi_{2,0}^{2} & \cdots & \boldsymbol{\phi}_{2, N_{2}^{2}-1}^{2}
\end{array}\right]\left[\begin{array}{llll}
\phi_{3,0}^{2} & \cdots & \phi_{3, N_{3}^{2}-1}^{2}
\end{array}\right]}
\end{aligned}
$$

Remarks

- For an unweighted path graph, this yields a dictionary of the block DCT-II
- Similar to wavelet packet or local cosine dictionaries in that it generates an overcomplete basis from which we can select a basis useful for the task at hand \Rightarrow best-basis algorithm, local discriminant basis algorithm, ...
- A union of bases on disjoint subsets is obviously orthonormal
$\left.\begin{array}{l}{\left[\begin{array}{cccccc}\boldsymbol{\phi}_{0,0}^{0} & & \boldsymbol{\phi}_{0,1}^{0} & \boldsymbol{\phi}_{0,2}^{0} & \cdots & \end{array} \boldsymbol{\phi}_{0, N_{0}^{0}-1}^{0}\right.}\end{array}\right]$

Remarks

- For an unweighted path graph, this yields a dictionary of the block DCT-II
- Similar to wavelet packet or local cosine dictionaries in that it generates an overcomplete basis from which we can select a basis useful for the task at hand \Rightarrow best-basis algorithm, local discriminant basis algorithm, ...
- A union of bases on disjoint subsets is obviously orthonormal

$$
\begin{aligned}
& \boldsymbol{\phi}_{0,0}^{0} \\
& \boldsymbol{\phi}_{0,1}^{0} \\
& \boldsymbol{\phi}_{0,2}^{0} \\
& \boldsymbol{\phi}_{0, N_{0}^{0}-1}^{0} \\
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right]\left[\begin{array}{lllll}
\boldsymbol{\phi}_{1,0}^{1} & \boldsymbol{\phi}_{1,1}^{1} & \boldsymbol{\phi}_{1,2}^{1} & \cdots & \boldsymbol{\phi}_{1, N_{1}^{1}-1}^{1}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
\phi_{0,0}^{2} & \cdots & \phi_{0, N_{0}^{2}-1}^{2}
\end{array}\right]\left[\begin{array}{lll}
\phi_{1,0}^{2} & \cdots & \phi_{1, N_{1}^{2}-1}^{2}
\end{array}\right]\left[\begin{array}{lll}
\phi_{2,0}^{2} & \cdots & \phi_{2, N_{2}^{2}-1}^{2}
\end{array}\right]\left[\begin{array}{lll}
\phi_{3,0}^{2} & \cdots & \phi_{3, N_{3}^{2}-1}^{2}
\end{array}\right]}
\end{aligned}
$$

Related Work

The following work also proposed a similar strategy to construct a multiscale basis dictionary, i.e., local cosine dictionary on a graph:
(1) A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr., "Diffusion-driven multiscale analysis on manifolds and graphs: top-down and bottom-up constructions," in Wavelets XI (M. Papadakis et al. eds.), Proc. SPIE 5914, Paper \# 59141D, 2005.

Related Work

The following work also proposed a similar strategy to construct a multiscale basis dictionary, i.e., local cosine dictionary on a graph:
(1) A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr., "Diffusion-driven multiscale analysis on manifolds and graphs: top-down and bottom-up constructions," in Wavelets XI (M. Papadakis et al. eds.), Proc. SPIE 5914, Paper \# 59141D, 2005.
However, in our opinion, the generalization of the folding/unfolding operations (originally used in the construction of the local cosine transforms on a regular domain) to the graph setting may be harmful. We believe that such operations are not necessary for most tasks in practice. If one needs smoother and overlapping basis vectors, then a better partitioning scheme other than the folding/unfolding operations is called for.

Computational Complexity: HGLET

	Computational Complexity	Run Time for MN
HGLET (redundant)	$O\left(N^{3}\right)$	67 sec

${ }^{1}$ Computations performed on a personal laptop (4.00 GB RAM, 2.26 GHz), $N=2640$ and $n n z(W)=6604$.
(1) Introductory Remarks
(2) Motivations: Why Graphs?
(3) Background

- Basic Graph Theory Terminology
- Graph Laplacians
- Graph Partitioning via Spectral Clustering
(4) Multiscale Basis Dictionaries
- Hierarchical Graph Laplacian Eigen Transform (HGLET)
- Generalized Haar-Walsh Transform (GHWT)
(5) Best-Basis Algorithm for HGLET \& GHWT
(6) Approximation Experiments
(9) Summary and Further Developments

Generalized Haar-Walsh Transform (GHWT)

HGLET is a generalization of the block DCT, and it generates basis vectors that are smooth on their support.

> The Generalized Haar-Walsh Transform (GHWT) is a generalization of the classical Haar and Walsh-Hadamard Transforms, and it generates basis vectors that are piecewise-constant on their support.

The algorithm proceeds as follows

Generalized Haar-Walsh Transform (GHWT)

HGLET is a generalization of the block DCT, and it generates basis vectors that are smooth on their support.

The Generalized Haar-Walsh Transform (GHWT) is a generalization of the classical Haar and Walsh-Hadamard Transforms, and it generates basis vectors that are piecewise-constant on their support.

The algorithm proceeds as follows...
(1) Generate a full recursive partitioning of the graph \Rightarrow Fiedler vectors
(2) Generate an orthonormal basis for level $j_{\max }$ (the finest level) \Rightarrow scaling vectors on the single-node regions

- As with HGLET, the notation is $\psi_{k, l}^{j}$
- Using the basis for level $j_{\text {max }}$, generate an orthonormal basis for level $j_{\text {max }}-1 \Rightarrow$ scaling and Haar-like vectors
(1) Repeat... Using the basis for level j, generate an orthonormal basis for level $j-1 \Rightarrow$ scaling, Haar-like, and Walsh-like vectors
© Select an orthonormal basis from this collection of orthonormal bases
(1) Generate a full recursive partitioning of the graph \Rightarrow Fiedler vectors
(2) Generate an orthonormal basis for level $j_{\max }$ (the finest level) \Rightarrow scaling vectors on the single-node regions
- As with HGLET, the notation is $\boldsymbol{\psi}_{k, l}^{j}$
- Using the basis for level $j_{\text {max }}$, generate an orthonormal basis for level $j_{\text {max }}-1 \Rightarrow$ scaling and Haar-like vectors
(3) Repeat.

Using the basis for level j, generate an orthonormal basis for level $j-1 \Rightarrow$ scaling, Haar-like, and Walsh-like vectors
(3) Select an orthonormal basis from this collection of orthonormal bases

$$
\left[\boldsymbol{\psi}_{0,0}^{j_{\max }}\right]\left[\boldsymbol{\psi}_{1,0}^{j_{\max }}\right]\left[\begin{array}{l}
\left.\boldsymbol{\psi}_{2,0}^{j_{\max }}\right]\left[\boldsymbol{\psi}_{3,0}^{j_{\max }}\right] \cdots\left[\boldsymbol{\psi}_{K_{\max -2,0}}^{j_{\max }}\right] \quad\left[\boldsymbol{\psi}_{K^{j}{ }^{j} \max -1,0}^{j_{\max }}\right.
\end{array}\right]
$$

(1) Generate a full recursive partitioning of the graph \Rightarrow Fiedler vectors
(2) Generate an orthonormal basis for level $j_{\max }$ (the finest level) \Rightarrow scaling vectors on the single-node regions

- As with HGLET, the notation is $\boldsymbol{\psi}_{k, l}^{j}$
(3) Using the basis for level $j_{\text {max }}$, generate an orthonormal basis for level $j_{\text {max }}-1 \Rightarrow$ scaling and Haar-like vectors
(Repeat... Using the basis for level j, generate an orthonormal basis for level $j-1 \Rightarrow$ scaling, Haar-like, and Walsh-like vectors
(6) Select an orthonormal basis from this collection of orthonormal bases

$$
\begin{aligned}
& {\left[\boldsymbol{\psi}_{0,0}^{j_{\max }}\right]\left[\boldsymbol{\psi}_{1,0}^{j_{\max }}\right]\left[\boldsymbol{\psi}_{2,0}^{j_{\max }}\right]\left[\boldsymbol{\psi}_{3,0}^{j_{\max }}\right] \cdots\left[\boldsymbol{\psi}_{K^{j \text { max }-2,0}}^{j_{\max }}\right] \quad\left[\boldsymbol{\psi}_{K^{j \text { max }-1,0}}^{j_{\max }}\right]}
\end{aligned}
$$

(1) Generate a full recursive partitioning of the graph \Rightarrow Fiedler vectors
(2) Generate an orthonormal basis for level $j_{\max }$ (the finest level) \Rightarrow scaling vectors on the single-node regions

- As with HGLET, the notation is $\boldsymbol{\psi}_{k, l}^{j}$
(3) Using the basis for level $j_{\text {max }}$, generate an orthonormal basis for level $j_{\text {max }}-1 \Rightarrow$ scaling and Haar-like vectors
(4) Repeat... Using the basis for level j, generate an orthonormal basis for level $j-1 \Rightarrow$ scaling, Haar-like, and Walsh-like vectors

$$
\begin{aligned}
& {\left[\begin{array}{lllllll}
\boldsymbol{\psi}_{0,0}^{0} & \boldsymbol{\psi}_{0,1}^{0} & \boldsymbol{\psi}_{0,2}^{0} & \boldsymbol{\psi}_{0,3}^{0} & \cdots & \boldsymbol{\psi}_{0, N-2}^{0} & \boldsymbol{\psi}_{0, N-1}^{0}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
\boldsymbol{\psi}_{0,0}^{j_{\max }-1} & \boldsymbol{\psi}_{0,1}^{j_{\max }-1}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{\psi}_{1,0}^{j_{\max }-1} & \boldsymbol{\psi}_{1,1}^{j_{\max }-1}
\end{array}\right] \cdots\left[\begin{array}{ll}
\boldsymbol{\psi}_{K^{j \max -1}-1,0}^{j_{\max -1}} & \boldsymbol{\psi}_{K_{\max -1}{ }^{j} \mathrm{max}^{2}-1}^{j_{\max }}
\end{array}\right]} \\
& {\left[\boldsymbol{\psi}_{0,0}^{j_{\max }}\right]\left[\boldsymbol{\psi}_{1,0}^{j_{\max }}\right]\left[\boldsymbol{\psi}_{2,0}^{j_{\max }}\right]\left[\boldsymbol{\psi}_{3,0}^{j_{\max }}\right] \cdots\left[\boldsymbol{\psi}_{K^{j \max -2,0}}^{j_{\max }}\right] \quad\left[\boldsymbol{\psi}_{K^{j \max -1,0}}^{j_{\max }}\right]}
\end{aligned}
$$

(1) Generate a full recursive partitioning of the graph \Rightarrow Fiedler vectors
(2) Generate an orthonormal basis for level $j_{\max }$ (the finest level) \Rightarrow scaling vectors on the single-node regions

- As with HGLET, the notation is $\boldsymbol{\psi}_{k, l}^{j}$
(3) Using the basis for level $j_{\text {max }}$, generate an orthonormal basis for level $j_{\text {max }}-1 \Rightarrow$ scaling and Haar-like vectors
(4) Repeat... Using the basis for level j, generate an orthonormal basis for level $j-1 \Rightarrow$ scaling, Haar-like, and Walsh-like vectors
(3) Select an orthonormal basis from this collection of orthonormal bases

$$
\begin{aligned}
& {\left[\begin{array}{lllllll}
\boldsymbol{\psi}_{0,0}^{0} & \boldsymbol{\psi}_{0,1}^{0} & \boldsymbol{\psi}_{0,2}^{0} & \boldsymbol{\psi}_{0,3}^{0} & \cdots & \boldsymbol{\psi}_{0, N-2}^{0} & \boldsymbol{\psi}_{0, N-1}^{0}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
\boldsymbol{\psi}_{0,0}^{j_{\max -1}} & \left.\boldsymbol{\psi}_{0,1}^{j_{\max -1}}\right]
\end{array}\left[\begin{array}{llll}
\boldsymbol{\psi}_{1,0}^{j_{\max }-1} & \left.\boldsymbol{\psi}_{1,1}^{j_{\max -1}}\right] & \cdots & {\left[\boldsymbol{\psi}_{K^{j \max -1}-1,0}^{j_{\max -1}}\right.}
\end{array} \boldsymbol{\psi}_{K^{j \max -1,1}}^{j_{\max -1}}\right]\right.}
\end{aligned}
$$

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

GHWT on P_{6}

Remarks

- For an unweighted path graph, this yields a dictionary of Haar-Walsh functions
> - As with the HGLET, we can select an orthonormal basis for the entire graph by taking the union of orthonormal bases on disjoint regions

Remarks

- For an unweighted path graph, this yields a dictionary of Haar-Walsh functions
- As with the HGLET, we can select an orthonormal basis for the entire graph by taking the union of orthonormal bases on disjoint regions

$\psi_{0,0}^{0}$	$\psi_{0,1}^{\mathrm{U}}$	$\psi_{0,2}$	$\psi_{0,3}^{0}$	$\psi_{0,4}^{0}$	$\psi_{0,5}^{0}$
$\psi_{0,0}^{1}$	$\psi_{0,1}^{1}$	$\psi_{0,2}^{\perp}$	$\psi_{1,0}^{1}$	$\psi_{1,1}^{\perp}$	$\psi_{1,2}^{1}$
$\psi_{0,0}^{2}$	$\psi_{0,1}^{2}$	$\psi_{1,0}^{2}$	$\overline{\psi_{2,0}^{2}}$	$\overline{\psi_{2,1}^{2}}$	$\psi_{3,0}^{2}$
$\psi_{0,0}^{3}$	$\psi_{1,0}^{3}$	$\psi_{2,0}^{3}$	$\psi_{3,0}^{3}$	$\psi_{4,0}^{3}$	$\psi_{5,0}^{3}$
$L_{0 e e \bullet}$	t_{0}				-0ee»

Remarks

- We can also reorder and regroup the vectors on each level of the GHWT dictionary according to their type (scaling, Haar-like, or Walsh-like)

Remarks

- We can also reorder and regroup the vectors on each level of the GHWT dictionary according to their type (scaling, Haar-like, or Walsh-like)

Figure: Default dictionary; i.e., coarse-to-fine

Remarks

- We can also reorder and regroup the vectors on each level of the GHWT dictionary according to their type (scaling, Haar-like, or Walsh-like)

Figure: Reordered \& regrouped dictionary; i.e., fine-to-coarse

Remarks

- We can also reorder and regroup the vectors on each level of the GHWT dictionary according to their type (scaling, Haar-like, or Walsh-like)

Figure: Reordered \& regrouped dictionary; i.e., fine-to-coarse

- This reorganization gives us more options for choosing a good basis

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=0, \quad \text { Region } k=0, \quad l=1
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=0, \quad \text { Region } k=0, \quad l=2
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=0, \quad \text { Region } k=0, \quad l=3
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=0, \quad \text { Region } k=0, \quad l=4
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=0, \quad \text { Region } k=0, \quad l=5
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=0, \quad \text { Region } k=0, \quad l=6
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=0, \quad \text { Region } k=0, \quad l=7
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=0, \quad \text { Region } k=0, \quad l=8
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=0, \quad \text { Region } k=0, \quad l=9
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=1, \quad \text { Region } k=0, \quad l=1
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=1, \quad \text { Region } k=0, \quad l=2
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=1, \quad \text { Region } k=0, \quad l=3
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=2, \quad \text { Region } k=0, \quad l=1
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=2, \quad \text { Region } k=0, \quad l=2
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=2, \quad \text { Region } k=1, \quad l=1
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=2, \quad \text { Region } k=1, \quad l=2
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=3, \quad \text { Region } k=0, \quad l=1
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=3, \quad \text { Region } k=0, \quad l=2
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=3, \quad \text { Region } k=2, \quad l=1
$$

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and GHWT (right) schemes on the MN road network. (Note: $j=0$ is the coarsest scale, $j=14$ is the finest.)

$$
\text { Level } j=3, \quad \text { Region } k=2, \quad l=2
$$

Computational Complexity: GHWT

	Computational Complexity	Run Time for MN
HGLET (redundant)	$O\left(N^{3}\right)$	67 sec
GHWT (redundant)	$O\left(N^{2}\right)$	10 sec

${ }^{1}$ Computations performed on a personal laptop (4.00 GB RAM, 2.26 GHz), $N=2640$ and $n n z(W)=6604$.

Related Work

The following articles also discussed the Haar-like transform on graphs and trees, but not the Walsh-Hadamard transform on them:
(1) A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr., "Diffusion-driven multiscale analysis on manifolds and graphs: top-down and bottom-up constructions," in Wavelets XI (M. Papadakis et al. eds.), Proc. SPIE 5914, Paper \# 59141D, 2005.
(2) F. Murtagh, "The Haar wavelet transform of a dendrogram," J. Classification, vol. 24, pp. 3-32, 2007.
(3) A. Lee, B. Nadler, and L. Wasserman, "Treelets-an adaptive multi-scale basis for sparse unordered data," Ann. Appl. Stat., vol. 2, pp. 435-471, 2008.
(9) M. Gavish, B. Nadler, and R. Coifman, "Multiscale wavelets on trees, graphs and high dimensional data: Theory and applications to semi supervised learning," in Proc. 27th Intern. Conf. Machine Learning (J. Fürnkranz et al. eds.), pp. 367-374, Omnipress, Haifa, 2010.
(1) Introductory Remarks
(2) Motivations: Why Graphs?
(3) Background

- Basic Graph Theory Terminology
- Graph Laplacians
- Graph Partitioning via Spectral Clustering
(4) Multiscale Basis Dictionaries
- Hierarchical Graph Laplacian Eigen Transform (HGLET)
- Generalized Haar-Walsh Transform (GHWT)
(5) Best-Basis Algorithm for HGLET \& GHWT
(6) Approximation Experiments
(7) Summary and Further Developments

Coifman and Wickerhauser (1992) developed the best-basis algorithm as a means of selecting the basis from a dictionary of wavelet packets that is "best" for approximation/compression.

As before, we require a cost functional \mathscr{J}. For example:

- For our approximation experiments in the following pages, we used $p=0.1$.

Coifman and Wickerhauser (1992) developed the best-basis algorithm as a means of selecting the basis from a dictionary of wavelet packets that is "best" for approximation/compression.

We generalize this approach, developing and implementing an algorithm for selecting the basis from the dictionary of HGLET / GHWT bases that is "best" for approximation.

As before, we require a cost functional \mathscr{J}. For example:

- For our approximation experiments in the following pages, we used

Coifman and Wickerhauser (1992) developed the best-basis algorithm as a means of selecting the basis from a dictionary of wavelet packets that is "best" for approximation/compression.

We generalize this approach, developing and implementing an algorithm for selecting the basis from the dictionary of HGLET / GHWT bases that is "best" for approximation.

As before, we require a cost functional \mathscr{J}. For example:

$$
\mathscr{J}(\boldsymbol{x})=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}=\operatorname{norm}(\mathrm{x}, \mathrm{p}) \quad 0<p \leq 1
$$

- For our approximation experiments in the following pages, we used $p=0.1$.

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{0} & \boldsymbol{\phi}_{0,1}^{0} & \boldsymbol{\phi}_{0,2}^{0} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{0}-1}^{0}
\end{array}\right]} \\
& \begin{array}{ccccc}
d_{0,0}^{0} & d_{0,1}^{0} & d_{0,2}^{0} & \cdots & d_{0, N_{0}^{0}-1}^{0}
\end{array} \\
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right] \quad\left[\begin{array}{lllll}
\boldsymbol{\phi}_{1,0}^{1} & \boldsymbol{\phi}_{1,1}^{1} & \boldsymbol{\phi}_{1,2}^{1} & \cdots & \boldsymbol{\phi}_{1, N_{1}^{1}-1}^{1}
\end{array}\right]} \\
& \begin{array}{llllllllll}
d_{0,0}^{1} & d_{0,1}^{1} & d_{0,2}^{1} & \cdots & d_{0, N_{0}^{1}-1}^{1} & d_{1,0}^{1} & d_{1,1}^{1} & d_{1,2}^{1} & \cdots & d_{1, N_{1}^{1}-1}^{1}
\end{array} \\
& {\left[\boldsymbol{\phi}_{0,0}^{2} \boldsymbol{\phi}_{0,1}^{2} \cdots \boldsymbol{\phi}_{0, N_{0}^{2}-1}^{2}\right]\left[\boldsymbol{\phi}_{1,0}^{2} \boldsymbol{\phi}_{1,1}^{2} \cdots \boldsymbol{\phi}_{1, N_{1}^{2}-1}^{2}\right]\left[\boldsymbol{\phi}_{2,0}^{2} \boldsymbol{\phi}_{2,1}^{2} \cdots \boldsymbol{\phi}_{2, N_{2}^{2}-1}^{2}\right]\left[\boldsymbol{\phi}_{3,0}^{2} \boldsymbol{\phi}_{3,1}^{2} \cdots \boldsymbol{\phi}_{3, N_{3}^{2}-1}^{2}\right]} \\
& d_{0,0}^{2} d_{0,1}^{2} \cdots d_{0, N_{0}^{2}-1}^{2} \quad d_{1,0}^{2} d_{1,1}^{2} \cdots d_{1, N_{1}^{2}-1}^{2} \quad d_{2,0}^{2} d_{2,1}^{2} \cdots d_{2, N_{2}^{2}-1}^{2} \quad d_{3,0}^{2} d_{3,1}^{2} \cdots d_{3, N_{3}^{2}-1}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{0} & \boldsymbol{\phi}_{0,1}^{0} & \boldsymbol{\phi}_{0,2}^{0} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{0}-1}^{0}
\end{array}\right]} \\
& \begin{array}{ccccc}
d_{0,0}^{0} & d_{0,1}^{0} & d_{0,2}^{0} & \cdots & d_{0, N_{0}^{0}-1}^{0}
\end{array} \\
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right] \quad\left[\begin{array}{lllll}
\boldsymbol{\phi}_{1,0}^{1} & \boldsymbol{\phi}_{1,1}^{1} & \boldsymbol{\phi}_{1,2}^{1} & \cdots & \boldsymbol{\phi}_{1, N_{1}^{1}-1}^{1}
\end{array}\right]} \\
& \begin{array}{llllllllll}
d_{0,0}^{1} & d_{0,1}^{1} & d_{0,2}^{1} & \cdots & d_{0, N_{0}^{1}-1}^{1} & d_{1,0}^{1} & d_{1,1}^{1} & d_{1,2}^{1} & \cdots & d_{1, N_{1}^{1}-1}^{1}
\end{array} \\
& {\left[\boldsymbol{\phi}_{0,0}^{2} \boldsymbol{\phi}_{0,1}^{2} \cdots \boldsymbol{\phi}_{0, N_{0}^{2}-1}^{2}\right]\left[\boldsymbol{\phi}_{1,0}^{2} \boldsymbol{\phi}_{1,1}^{2} \cdots \boldsymbol{\phi}_{1, N_{1}^{2}-1}^{2}\right]\left[\boldsymbol{\phi}_{2,0}^{2} \boldsymbol{\phi}_{2,1}^{2} \cdots \boldsymbol{\phi}_{2, N_{2}^{2}-1}^{2}\right]\left[\boldsymbol{\phi}_{3,0}^{2} \boldsymbol{\phi}_{3,1}^{2} \cdots \boldsymbol{\phi}_{3, N_{3}^{2}-1}^{2}\right]} \\
& d_{0,0}^{2} d_{0,1}^{2} \cdots d_{0, N_{0}^{2}-1}^{2} \quad d_{1,0}^{2} d_{1,1}^{2} \cdots d_{1, N_{1}^{2}-1}^{2} \quad d_{2,0}^{2} d_{2,1}^{2} \cdots d_{2, N_{2}^{2}-1}^{2} \quad d_{3,0}^{2} d_{3,1}^{2} \cdots d_{3, N_{3}^{2}-1}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{0} & \boldsymbol{\phi}_{0,1}^{0} & \boldsymbol{\phi}_{0,2}^{0} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{0}-1}^{0}
\end{array}\right]} \\
& \begin{array}{ccccc}
d_{0,0}^{0} & d_{0,1}^{0} & d_{0,2}^{0} & \cdots & d_{0, N_{0}^{0}-1}^{0}
\end{array} \\
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right] \quad\left[\begin{array}{lllll}
\boldsymbol{\phi}_{1,0}^{1} & \boldsymbol{\phi}_{1,1}^{1} & \boldsymbol{\phi}_{1,2}^{1} & \cdots & \boldsymbol{\phi}_{1, N_{1}^{1}-1}^{1}
\end{array}\right]} \\
& \begin{array}{llllllllll}
d_{0,0}^{1} & d_{0,1}^{1} & d_{0,2}^{1} & \cdots & d_{0, N_{0}^{1}-1}^{1} & d_{1,0}^{1} & d_{1,1}^{1} & d_{1,2}^{1} & \cdots & d_{1, N_{1}^{1}-1}^{1}
\end{array} \\
& {\left[\boldsymbol{\phi}_{0,0}^{2} \boldsymbol{\phi}_{0,1}^{2} \cdots \boldsymbol{\phi}_{0, N_{0}^{2}-1}^{2}\right]\left[\boldsymbol{\phi}_{1,0}^{2} \boldsymbol{\phi}_{1,1}^{2} \cdots \boldsymbol{\phi}_{1, N_{1}^{2}-1}^{2}\right]\left[\boldsymbol{\phi}_{2,0}^{2} \boldsymbol{\phi}_{2,1}^{2} \cdots \boldsymbol{\phi}_{2, N_{2}^{2}-1}^{2}\right]\left[\boldsymbol{\phi}_{3,0}^{2} \boldsymbol{\phi}_{3,1}^{2} \cdots \boldsymbol{\phi}_{3, N_{3}^{2}-1}^{2}\right]} \\
& d_{0,0}^{2} d_{0,1}^{2} \cdots d_{0, N_{0}^{2}-1}^{2} \quad d_{1,0}^{2} d_{1,1}^{2} \cdots d_{1, N_{1}^{2}-1}^{2} \quad d_{2,0}^{2} d_{2,1}^{2} \cdots d_{2, N_{2}^{2}-1}^{2} \quad d_{3,0}^{2} d_{3,1}^{2} \cdots d_{3, N_{3}^{2}-1}^{2}
\end{aligned}
$$

$$
\left.\begin{array}{cccccc}
{\left[\begin{array}{ccccc}
\boldsymbol{\phi}_{0,0}^{0} & \boldsymbol{\phi}_{0,1}^{0} & \boldsymbol{\phi}_{0,2}^{0} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{0}-1}^{0}
\end{array}\right]} \\
& d_{0,0}^{0} & d_{0,1}^{0} & d_{0,2}^{0} & \cdots & d_{0, N_{0}^{0}-1}^{0}
\end{array}\right]
$$

$$
\left.\begin{array}{ccccccc}
{\left[\begin{array}{ccccc}
\boldsymbol{\phi}_{0,0}^{0} & \boldsymbol{\phi}_{0,1}^{0} & \boldsymbol{\phi}_{0,2}^{0} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{0}-1}^{0}
\end{array}\right]} \\
& d_{0,0}^{0} & d_{0,1}^{0} & d_{0,2}^{0} & \cdots & d_{0, N_{0}^{0}-1}^{0}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{0} & \boldsymbol{\phi}_{0,1}^{0} & \boldsymbol{\phi}_{0,2}^{0} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{0}-1}^{0}
\end{array}\right]} \\
& \begin{array}{cccc}
d_{0,0}^{0} & d_{0,1}^{0} & d_{0,2}^{0} & \cdots
\end{array} d_{0, N_{0}^{0}-1}^{0} \\
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right]} \\
& d_{0,0}^{1} \quad d_{0,1}^{1} \quad d_{0,2}^{1} \quad \cdots \quad d_{0, N_{0}^{1}-1}^{1} \\
& {\left[\boldsymbol{\phi}_{2,0}^{2} \boldsymbol{\phi}_{2,1}^{2} \cdots \boldsymbol{\phi}_{2, N_{2}^{2}-1}^{2}\right]\left[\boldsymbol{\phi}_{3,0}^{2} \boldsymbol{\phi}_{3,1}^{2} \cdots \boldsymbol{\phi}_{3, N_{3}^{2}-1}^{2}\right]} \\
& d_{2,0}^{2} d_{2,1}^{2} \cdots d_{2, N_{2}^{2}-1}^{2} \quad d_{3,0}^{2} d_{3,1}^{2} \cdots d_{3, N_{3}^{2}-1}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{0} & \boldsymbol{\phi}_{0,1}^{0} & \boldsymbol{\phi}_{0,2}^{0} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{0}-1}^{0}
\end{array}\right]} \\
& d_{0,0}^{0} \quad d_{0,1}^{0} \quad d_{0,2}^{0} \quad \cdots \quad d_{0, N_{0}^{0}-1}^{0} \\
& {\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right]} \\
& d_{0,0}^{1} \quad d_{0,1}^{1} \quad d_{0,2}^{1} \quad \cdots \quad d_{0, N_{0}^{1}-1}^{1} \\
& {\left[\boldsymbol{\phi}_{2,0}^{2} \boldsymbol{\phi}_{2,1}^{2} \cdots \boldsymbol{\phi}_{2, N_{2}^{2}-1}^{2}\right]\left[\boldsymbol{\phi}_{3,0}^{2} \boldsymbol{\phi}_{3,1}^{2} \cdots \boldsymbol{\phi}_{3, N_{3}^{2}-1}^{2}\right]} \\
& d_{2,0}^{2} d_{2,1}^{2} \cdots d_{2, N_{2}^{2}-1}^{2} \quad d_{3,0}^{2} d_{3,1}^{2} \cdots d_{3, N_{3}^{2}-1}^{2}
\end{aligned}
$$

$$
\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right]
$$

$$
\begin{array}{cc}
{\left[\boldsymbol{\phi}_{2,0}^{2} \boldsymbol{\phi}_{2,1}^{2} \cdots \boldsymbol{\phi}_{2, N_{2}^{2}-1}^{2}\right]} & {\left[\boldsymbol{\phi}_{3,0}^{2} \boldsymbol{\phi}_{3,1}^{2} \cdots \boldsymbol{\phi}_{3, N_{3}^{2}-1}^{2}\right]} \\
d_{2,0}^{2} d_{2,1}^{2} \cdots d_{2, N_{2}^{2}-1}^{2} & d_{3,0}^{2} d_{3,1}^{2} \cdots d_{3, N_{3}^{2}-1}^{2}
\end{array}
$$

$$
\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right]
$$

$$
\begin{array}{cc}
{\left[\boldsymbol{\phi}_{2,0}^{2} \boldsymbol{\phi}_{2,1}^{2} \cdots \boldsymbol{\phi}_{2, N_{2}^{2}-1}^{2}\right]} & {\left[\boldsymbol{\phi}_{3,0}^{2} \boldsymbol{\phi}_{3,1}^{2} \cdots \boldsymbol{\phi}_{3, N_{3}^{2}-1}^{2}\right]} \\
d_{2,0}^{2} d_{2,1}^{2} \cdots d_{2, N_{2}^{2}-1}^{2} & d_{3,0}^{2} d_{3,1}^{2} \cdots d_{3, N_{3}^{2}-1}^{2}
\end{array}
$$

According to cost functional \mathscr{J}, this is the best basis for approximation.

$$
\left[\begin{array}{lllll}
\boldsymbol{\phi}_{0,0}^{1} & \boldsymbol{\phi}_{0,1}^{1} & \boldsymbol{\phi}_{0,2}^{1} & \cdots & \boldsymbol{\phi}_{0, N_{0}^{1}-1}^{1}
\end{array}\right]
$$

$$
\begin{array}{cc}
{\left[\boldsymbol{\phi}_{2,0}^{2} \boldsymbol{\phi}_{2,1}^{2} \cdots \boldsymbol{\phi}_{2, N_{2}^{2}-1}^{2}\right]} & {\left[\boldsymbol{\phi}_{3,0}^{2} \boldsymbol{\phi}_{3,1}^{2} \cdots \boldsymbol{\phi}_{3, N_{3}^{2}-1}^{2}\right]} \\
d_{2,0}^{2} d_{2,1}^{2} \cdots d_{2, N_{2}^{2}-1}^{2} & d_{3,0}^{2} d_{3,1}^{2} \cdots d_{3, N_{3}^{2}-1}^{2}
\end{array}
$$

According to cost functional \mathscr{J}, this is the best basis for approximation.

- With the GHWT bases, we run the best-basis algorithm on both the default (coarse-to-fine) dictionary and the reorganized (fine-to-coarse) dictionary and then compare the cost of the 2 bases to determine the best-basis.
(1) Introductory Remarks
(2) Motivations: Why Graphs?
(3) Background
- Basic Graph Theory Terminology
- Graph Laplacians
- Graph Partitioning via Spectral Clustering
(7) Multiscale Basis Dictionaries
- Hierarchical Graph Laplacian Eigen Transform (HGLET)
- Generalized Haar-Walsh Transform (GHWT)
(3) Best-Basis Algorithm for HGLET \& GHWT

6 Approximation Experiments
(7) Summary and Further Developments

(a) Thickness data on a dendritic tree

(b) A mutilated Gaussian on the MN road network

(a) Thickness data on a dendritic tree

(b) A mutilated Gaussian on the MN road network

HGLET on Dendrite (weights $=$ inv. Euclidean dist.)

HGLET on MN Mutilated Gaussian (weights = inv.

 Euclidean dist.)

GHWT vs. HGLET on Dendrite

GHWT vs. HGLET on MN Mutilated Gaussian

Discussion of Approximation Results

- From the HGLET plots, we see that HGLET best-basis > HGLET Level $5>$ HGLET Level $3>$ Laplacian eigenvectors (HGLET Level 0)
- The HGLET best-basis performs the best on the MN Mutilated Gaussian dataset while the GHWT best-basis outperformed the others on the Dendrite dataset
- These performances make a strong case for using localized basis vectors on multiple scales
- Also, these indicate that the smoothness of the basis vectors matters depending on the smoothness inherent in data

Discussion of Approximation Results

- From the HGLET plots, we see that HGLET best-basis > HGLET Level $5>$ HGLET Level $3>$ Laplacian eigenvectors (HGLET Level 0)
- The HGLET best-basis performs the best on the MN Mutilated Gaussian dataset while the GHWT best-basis outperformed the others on the Dendrite dataset
- These performances make a strong case for using localized basis vectors on multiple scales
- Also, these indicate that the smoothness of the basis vectors matters depending on the smoothness inherent in data

Discussion of Approximation Results

- From the HGLET plots, we see that HGLET best-basis > HGLET Level $5>$ HGLET Level $3>$ Laplacian eigenvectors (HGLET Level 0)
- The HGLET best-basis performs the best on the MN Mutilated Gaussian dataset while the GHWT best-basis outperformed the others on the Dendrite dataset
- These performances make a strong case for using localized basis vectors on multiple scales
- Also, these indicate that the smoothness of the basis vectors matters depending on the smoothness inherent in data

Discussion of Approximation Results

- From the HGLET plots, we see that HGLET best-basis > HGLET Level $5>$ HGLET Level $3>$ Laplacian eigenvectors (HGLET Level 0)
- The HGLET best-basis performs the best on the MN Mutilated Gaussian dataset while the GHWT best-basis outperformed the others on the Dendrite dataset
- These performances make a strong case for using localized basis vectors on multiple scales
- Also, these indicate that the smoothness of the basis vectors matters depending on the smoothness inherent in data
(1) Introductory Remarks
(2) Motivations: Why Graphs?
(3) Background
- Basic Graph Theory Terminology
- Graph Laplacians
- Graph Partitioning via Spectral Clustering
(9) Multiscale Basis Dictionaries
- Hierarchical Graph Laplacian Eigen Transform (HGLET)
- Generalized Haar-Walsh Transform (GHWT)
(3) Best-Basis Algorithm for HGLET \& GHWT
(6) Approximation Experiments
(7) Summary and Further Developments

Summary

- We developed multiscale basis dictionaries on graphs and networks: HGLET and GHWT. We also developed a corresponding best-basis algorithm.
- The HGLET is a direct generalization of Hierarchical Block Discrete Cosine Transforms originally developed for regularly-sampled signals and images
- The GHWT is a generalization of the Haar Transform and the Walsh-Hadamard Transform.
- Both of these transforms allow us to choose an orthonormal basis most suitable for the task at hand, e.g., approximation, classification, regression,
- They may also be useful for regularly-sampled signals, e.g., can deal with signals of non-dyadic length; adaptive segmentation,
- Developing a true generalization of smoother wavelet and wavelet packet transforms is more challenging due to the difficulty of the notion of the frequency domain of a given graph

Summary

- We developed multiscale basis dictionaries on graphs and networks: HGLET and GHWT. We also developed a corresponding best-basis algorithm.
- The HGLET is a direct generalization of Hierarchical Block Discrete Cosine Transforms originally developed for regularly-sampled signals and images.

Summary

- We developed multiscale basis dictionaries on graphs and networks: HGLET and GHWT. We also developed a corresponding best-basis algorithm.
- The HGLET is a direct generalization of Hierarchical Block Discrete Cosine Transforms originally developed for regularly-sampled signals and images.
- The GHWT is a generalization of the Haar Transform and the Walsh-Hadamard Transform.
- Both of these transforms allow us to choose an orthonormal basis most suitable for the task at hand, e.g., approximation, classification regression
- They may also be useful for regularly-sampled signals, e.g., can deal with signals of non-dyadic length; adaptive segmentation,
- Developing a true generalization of smoother wavelet and wavelet packet transforms is more challenging due to the difficulty of the notion of the frequency domain of a given graph.

Summary

- We developed multiscale basis dictionaries on graphs and networks: HGLET and GHWT. We also developed a corresponding best-basis algorithm.
- The HGLET is a direct generalization of Hierarchical Block Discrete Cosine Transforms originally developed for regularly-sampled signals and images.
- The GHWT is a generalization of the Haar Transform and the Walsh-Hadamard Transform.
- Both of these transforms allow us to choose an orthonormal basis most suitable for the task at hand, e.g., approximation, classification, regression, ...
- They may also be useful for regularly-sampled signals, e.g., can deal with signals of non-dyadic length; adaptive segmentation,
- Developing a true generalization of smoother wavelet and wavelet packet transforms is more challenging due to the difficulty of the notion of the frequency domain of a given graph.

Summary

- We developed multiscale basis dictionaries on graphs and networks: HGLET and GHWT. We also developed a corresponding best-basis algorithm.
- The HGLET is a direct generalization of Hierarchical Block Discrete Cosine Transforms originally developed for regularly-sampled signals and images.
- The GHWT is a generalization of the Haar Transform and the Walsh-Hadamard Transform.
- Both of these transforms allow us to choose an orthonormal basis most suitable for the task at hand, e.g., approximation, classification, regression, . .
- They may also be useful for regularly-sampled signals, e.g., can deal with signals of non-dyadic length; adaptive segmentation, ...
packet transforms is more challenging due to the difficulty of the notion of the frequency domain of a given graph.

Summary

- We developed multiscale basis dictionaries on graphs and networks: HGLET and GHWT. We also developed a corresponding best-basis algorithm.
- The HGLET is a direct generalization of Hierarchical Block Discrete Cosine Transforms originally developed for regularly-sampled signals and images.
- The GHWT is a generalization of the Haar Transform and the Walsh-Hadamard Transform.
- Both of these transforms allow us to choose an orthonormal basis most suitable for the task at hand, e.g., approximation, classification, regression, . .
- They may also be useful for regularly-sampled signals, e.g., can deal with signals of non-dyadic length; adaptive segmentation, ...
- Developing a true generalization of smoother wavelet and wavelet packet transforms is more challenging due to the difficulty of the notion of the frequency domain of a given graph.

Further Developments

- A good signal segmentation algorithm based on HGLET
- Matrix data analysis (e.g., term-document matrices) using the GHWT best basis
- Gencralizations of adapted time-frequency tilings to the graph setting
- A new method to sort and organize graph Laplacian eigenvectors not by the eigenvalue size but by computing natural distances among them based on the theory of Ramified Optimal Transport
- For the details of above projects, please check our papers at my website!

Further Developments

- A good signal segmentation algorithm based on HGLET
- Matrix data analysis (e.g., term-document matrices) using the GHWT best basis
- Generalizations of adapted time-frequency tilings to the graph setting
- A new method to sort and organize graph Laplacian eigenvectors not by the eigenvalue size but by computing natural distances among them based on the theory of Ramified Optimal Transport
- For the details of above projects, please check our papers at my website!

Further Developments

- A good signal segmentation algorithm based on HGLET
- Matrix data analysis (e.g., term-document matrices) using the GHWT best basis
- Generalizations of adapted time-frequency tilings to the graph setting
- A new method to sort and organize graph Laplacian eigenvectors not by the eigenvalue size but by computing natural distances among them based on the theory of Ramified Optimal Transport
- For the details of above projects, please check our papers at my website!

Further Developments

- A good signal segmentation algorithm based on HGLET
- Matrix data analysis (e.g., term-document matrices) using the GHWT best basis
- Generalizations of adapted time-frequency tilings to the graph setting
- A new method to sort and organize graph Laplacian eigenvectors not by the eigenvalue size but by computing natural distances among them based on the theory of Ramified Optimal Transport
- For the details of above projects, please check our papers at my website!

Further Developments

- A good signal segmentation algorithm based on HGLET
- Matrix data analysis (e.g., term-document matrices) using the GHWT best basis
- Generalizations of adapted time-frequency tilings to the graph setting
- A new method to sort and organize graph Laplacian eigenvectors not by the eigenvalue size but by computing natural distances among them based on the theory of Ramified Optimal Transport
- For the details of above projects, please check our papers at my website!

References

- http://www.math.ucdavis.edu/~saito/courses/HarmGraph/ contains my course slides and useful information on "Harmonic Analysis on Graphs and Networks"
- Also visit http://www.math.ucdavis.edu/~saito/publications/ for various related publications including:
- J. Irion \& N. Saito: "Hierarchical graph Laplacian eigen transforms," JSIAM Letters, vol. 6, pp. 21-24, 2014.
- J. Irion \& N. Saito: "The generalized Haar-Walsh transform," Proc. 2014 IEEE Workshop on Statistical Signal Processing, pp. 488-491, 2014.
- J. Irion \& N. Saito: "Applied and computational harmonic analysis on graphs and networks," in Wavelets and Sparsity XVI, Proc. SPIE 9597, Paper \# 95971F, 2015.
- J. Irion \& N. Saito: "Efficient approximation and denoising of graph signals using the multiscale basis dictionaries," IEEE Trans. Signal and Inform. Process. Netw., vol. 3, no. 3, pp. 607-616, 2017.
- J. Irion \& N. Saito: "Learning sparsity and structure of matrices with multiscale graph basis dictionaries," in Proc. the 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1-6, 2016.
- N. Saito: "How can we naturally order and organize graph Laplacian eigenvectors?" arXiv:1801.06782 [math.SP], 2018.

Acknowledgment

- Support from Office of Naval Research grants: ONR N00014-12-1-0177; N00014-16-1-2255
- Support from National Science Foundation grant: DMS-1418779
- Support for Jeff Irion from National Defense Science and Engineering Graduate Fellowship, 32 CFR 168a via AFOSR FA9550-11-C-0028

[^0]: ${ }^{1}$ L. Hagen and A. B. Kahng: "New spectral methods for ratio cut partitioning and clustering," IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992. ${ }^{2}$ We could also use the signs of ϕ_{1} for L_{rw} (equivalently, L_{Svm}), which yield an approximate minimizer of the popular Normalized Cut function: J. Shi \& J. Malik:
 "Normalized cuts and image segmentation", IEEE Trans. Pattern Anal. Machine Intell. vol. 22, no. 8, pp. 888-905, 2000.

[^1]: ${ }^{1}$ L. Hagen and A. B. Kahng: "New spectral methods for ratio cut partitioning and clustering," IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992.
 ${ }^{2}$ We could also use the signs of $\boldsymbol{\phi}_{1}$ for L_{rw} (equivalently, L_{sym}), which yield an approximate minimizer of the popular Normalized Cut function: J. Shi \& J. Malik: "Normalized cuts and image segmentation", IEEE Trans. Pattern Anal. Machine Intell., vol. 22, no. 8, pp. 888-905, 2000.

[^2]: ${ }^{1}$ L. Hagen and A. B. Kahng: "New spectral methods for ratio cut partitioning and clustering," IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992.
 ${ }^{2}$ We could also use the signs of $\boldsymbol{\phi}_{1}$ for L_{rw} (equivalently, L_{sym}), which yield an approximate minimizer of the popular Normalized Cut function: J. Shi \& J. Malik: "Normalized cuts and image segmentation", IEEE Trans. Pattern Anal. Machine Intell., vol. 22, no. 8, pp. 888-905, 2000.

[^3]: ${ }^{1}$ U. von Luxburg: "A tutorial on spectral clustering," Statistics and Computing, vol.

[^4]: ${ }^{1}$ U. von Luxburg: "A tutorial on spectral clustering," Statistics and Computing, vol. 17, no. 4, pp.395-416, 2007.

[^5]: ${ }^{1}$ U. von Luxburg: "A tutorial on spectral clustering," Statistics and Computing, vol.

