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Introduction

Introductory Comments
Hajime Urakawa (Emeritus Prof., Tohoku Univ.) said in 1999:

A long time ago, when I was a college student, I was told: “There
is good mathematics around Laplacians.” I engaged in mathematical
research and education for a long time, but after all, I was just walking
around “Laplacians,” which appear in all sorts of places under different
guises. When I reflect on the above proverb, however, I feel keenly that
it represents an aspect of the important truth. I was ignorant at that
time, but it turned out that “Laplacians” are one of the keywords to
understand the vast field of modern mathematics.

I second Prof. Urakawa’s opinion, and want to add: “There are good
applications around Laplacians too.”
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Motivations

Motivations
Consider a bounded domain of general shape Ω⊂Rd .
Want to analyze the spatial frequency information inside of the object
defined in Ω =⇒ need to avoid the Gibbs phenomenon due to ∂Ω.
Want to represent the object information efficiently for analysis,
interpretation, discrimination, etc. =⇒ need fast decaying expansion
coefficients relative to a meaningful basis.
Want to extract and analyze geometric information about the domain
Ω =⇒ M. Kac: “Can one hear the shape of a drum?” (1966); spectral
geometry; shape clustering/classification.

(a) Ω⊂Rd (b) M. Kac (1914–1984)
saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions 10/01/19 6 / 51



Motivations

Object-Oriented Image Analysis

(a) Original (b) Background

(c) Object (d) Anomalies
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Motivations

Data Analysis on a Complicated Domain
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Motivations

3D Hippocampus Shape Analysis (Courtesy: F. Beg)
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Motivations

Climate Data Analysis: Continent (Courtesy: T. DelSole)
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FIG. 5. The first three Laplacian eigenfunctions over land on a 5◦×5◦ regular grid. The patterns are orthogonal

with respect to an area weighted inner product and normalized such that the area averaged square equals one.
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Motivations

Climate Data Analysis: Ocean (Courtesy: T. DelSole)
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FIG. 9. The first three Laplacian eigenfunctions over the ocean on a 5◦× 5◦ regular grid. The patterns are

orthogonal with respect to an area weighted inner product and normalized such that the area averaged square

equals one.
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Laplacian Eigenfunctions

Enter Laplacian Eigenfunctions!
On either irregular Euclidean domains or graphs, appropriately defined
Laplacian eigenfunctions play an important role for data analysis.
Let us first consider an irregular (i.e., general shape) Euclidean domain
Ω⊂Rd .

Let L := −∆=−
(
∂2

∂x1
2 +·· ·+ ∂2

∂xd
2

)
.

The Laplacian eigenvalue problem is defined as:

L u =−∆u =λu in Ω,

together with some appropriate boundary condition (BC).
Most common (homogeneous) BCs are:

Dirichlet: u = 0 on ∂Ω;

Neumann:
∂u

∂ν
= 0 on ∂Ω;

Robin (or impedance): au +b
∂u

∂ν
= 0 on ∂Ω, a 6= 0 6= b.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions 10/01/19 13 / 51



Laplacian Eigenfunctions

Laplacian Eigenfunctions . . .Why?

Why not analyze (and synthesize) an object of interest defined or measured
on an irregular domain Ω using genuine basis functions tailored to the
domain instead of the basis functions developed for rectangles, tori, balls,
etc.?

After all, sines (and cosines) are the eigenfunctions of the Laplacian on a
rectangular domain (e.g., an interval in 1D) with Dirichlet (and Neumann)
boundary condition.

Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave
Functions, are part of the eigenfunctions of the Laplacian (via separation of
variables) for the spherical, cylindrical, and spheroidal domains, respectively.

Laplacian eigenfunctions (LEs) allow us to perform spectral analysis of data
measured at more general domains or even on graphs and networks =⇒
Generalization of Fourier analysis!

The above statement needs to be interpreted very carefully due to the
domain properties; e.g., quantum scars, LE localizations, . . .
=⇒ We will discuss more when we cover wavelets on graphs.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions 10/01/19 14 / 51



Laplacian Eigenfunctions

Laplacian Eigenfunctions . . . Some Facts & Difficulties

Analysis of L is difficult due to its unboundedness (because it is a
differential operator dealing with local information).
Much better to analyze its inverse, i.e., the Green’s operator , because
it is an integral operator dealing with global information, i.e., it’s
compact and self-adjoint.
Thus L −1 has discrete spectra (i.e., a countable number of
eigenvalues with finite multiplicity) except 0 spectrum.
L has a complete orthonormal basis of L2(Ω), and this allows us to do
eigenfunction expansion in L2(Ω).
The key difficulty is to compute such eigenfunctions; directly solving
the Helmholtz equation (or eigenvalue problem) on a general domain
is tough.
Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann,
Robin) is also very difficult.
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Integral Operators Commuting with Laplacians

Integral Operators Commuting with Laplacian

The key idea to avoid difficulties associated with the Laplacian L is to
find an integral operator K commuting with L without imposing the
strict boundary condition a priori.
Then, we know that the eigenfunctions of L is the same as those of
K , which is easier to deal with, due to the following

Theorem (G. Frobenius 1896?; B. Friedman 1956)

Suppose K and L commute and one of them has an eigenvalue with finite
multiplicity. Then, K and L share the same eigenfunction corresponding
to that eigenvalue. That is, Lϕ=λϕ and K ϕ=µϕ.

(a) G. Frobenius (1849–1917) (b) B. Friedman (1915–1966)
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Integral Operators Commuting with Laplacians

The inverse of L with some specific boundary condition (e.g.,
Dirichlet/Neumann/Robin) is also an integral operator whose kernel is
called the Green’s function G(x , y).
Since it is not easy to obtain G(x , y) in general, let’s replace G(x , y) by
the fundamental solution of the Laplacian:

K (x , y) =


−1

2 |x − y | if d = 1,
− 1

2π log |x − y | if d = 2,
|x−y |2−d

(d−2)ωd
if d > 2,

where ωd := 2πd/2

Γ(d/2) is the surface area of the unit ball in Rd , and | · | is
the standard Euclidean norm.
The price we pay is to have rather implicit, non-local boundary
condition although we do not have to deal with this condition directly.
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Integral Operators Commuting with Laplacians

Let K be the integral operator with its kernel K (x , y):

K f (x) :=
∫
Ω

K (x , y) f (y)dy , f ∈ L2(Ω).

Theorem (NS 2005, 2008)

The integral operator K commutes with the Laplacian L =−∆ with the
following non-local boundary condition:∫
∂Ω

K (x , y)
∂ϕ

∂νy
(y)ds(y) =−1

2
ϕ(x) + pv

∫
∂Ω

∂K (x , y)

∂νy
ϕ(y)ds(y), ∀x ∈ ∂Ω,

where ϕ is an eigenfunction common for both operators, and pv indicates
the Cauchy principal value.
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Integral Operators Commuting with Laplacians

Corollary (NS 2009)

The eigenfunction ϕ(x) of the integral operator K in the previous theorem
can be extended outside the domain Ω and satisfies the following equation:

−∆ϕ=
{
λϕ if x ∈Ω;

0 if x ∈Rd \Ω,

with the boundary condition that ϕ and
∂ϕ

∂ν
are continuous across the

boundary ∂Ω. Moreover, as |x |→∞, ϕ(x) must be of the following form:

ϕ(x) =
{

const · |x |2−d +O
(|x |1−d

)
if d 6= 2;

const · ln |x |+O
(|x |−1

)
if d = 2.
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Integral Operators Commuting with Laplacians

Corollary (NS 2005, 2008)

The integral operator K is compact and self-adjoint on L2(Ω). Thus, the
kernel K (x , y) has the following eigenfunction expansion (in the sense of
mean convergence):

K (x , y) ∼
∞∑

j=1
µ jϕ j (x)ϕ j (y),

and {ϕ j } j forms an orthonormal basis of L2(Ω).
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Some Examples

1D Example

Consider the unit interval Ω= (0,1).
Then, our integral operator K with the kernel K (x, y) =−|x − y |/2
gives rise to the following eigenvalue problem:

−ϕ′′ =λϕ, x ∈ (0,1);

ϕ(0)+ϕ(1) =−ϕ′(0) =ϕ′(1).

The kernel K (x , y) is of Toeplitz form =⇒ Eigenvectors must have
even and odd symmetry (Cantoni-Butler ’76).
In this case, we have the following explicit solution.
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Some Examples

λ0 ≈−5.756915, which is a solution of tanh
p

−λ0

2 = 2p
−λ0

,

ϕ0(x) = A0 cosh
√
−λ0

(
x − 1

2

)
;

λ2m−1 = (2m −1)2π2, m = 1,2, . . .,

ϕ2m−1(x) =p
2cos(2m −1)πx;

λ2m , m = 1,2, . . ., which are solutions of tan
p
λ2m

2 =− 2p
λ2m

,

ϕ2m(x) = A2m cos
√
λ2m

(
x − 1

2

)
,

where Ak , k = 0,1, . . . are normalization constants.
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Some Examples

First 5 Basis Functions
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Some Examples

1D Example: Comparison

The Laplacian eigenfunctions with the Dirichlet boundary condition:
−ϕ′′ =λϕ, ϕ(0) =ϕ(1) = 0, are sines. The Green’s function in this case
is:

GD (x, y) = min(x, y)−x y.

Those with the Neumann boundary condition, i.e., ϕ′(0) =ϕ′(1) = 0,
are cosines. The Green’s function is:

GN (x, y) =−max(x, y)+ 1

2
(x2 + y2)+ 1

3
.

Remark: Gridpoint ⇔ DST-I/DCT-I;
Midpoint⇔ DST-II/DCT-II.
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Some Examples

2D Example

Consider the unit disk Ω. Then, our integral operator K with the
kernel K (x , y) =− 1

2π log |x − y | gives rise to:

−∆ϕ=λϕ, in Ω;

∂ϕ

∂ν

∣∣∣
∂Ω

= ∂ϕ

∂r

∣∣∣
∂Ω

=−∂Hϕ

∂θ

∣∣∣
∂Ω

,

where H is the Hilbert transform for the circle, i.e.,

H f (θ) := 1

2π
pv

∫ π

−π
f (η)cot

(
θ−η

2

)
dη θ ∈ [−π,π].

Let jk,` is the `th zero of the Bessel function of order k, Jk ( jk,`) = 0.
Then,

ϕm,n(r,θ) =
{

Jm( jm−1,n r )
(cos

sin

)
(mθ) if m = 1,2, . . . , n = 1,2, . . .,

J0( j0,n r ) if m = 0, n = 1,2, . . .,

λm,n =
{

j 2
m−1,n , if m = 1, . . . , n = 1,2, . . .,

j 2
0,n if m = 0, n = 1,2, . . ..
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Some Examples

First 25 Basis Functions

(a) Our Basis (b) Dirichlet-Laplace
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Some Examples

3D Example

Consider the unit ball Ω in R3. Then, our integral operator K with
the kernel K (x , y) = 1

4π|x−y | .
Top 9 eigenfunctions cut at the equator viewed from the south:
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Discretization of the Problem
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Discretization of the Problem

Discretization of the Problem

Assume that the whole dataset consists of a collection of data sampled
on a regular grid, and that each sampling cell is a box of size

∏d
i=1∆xi .

Assume that an object of our interest Ω consists of a subset of these
boxes whose centers are {x i }N

i=1.
Under these assumptions, we can approximate the integral eigenvalue
problem K ϕ=µϕ with a simple quadrature rule with node-weight
pairs (x j , w j ) as follows.

N∑
j=1

w j K (x i , x j )ϕ(x j ) =µϕ(x i ), i = 1, . . . , N , w j =
d∏

i=1
∆xi .

Let Ki , j := w j K (x i , x j ), ϕi := ϕ(x i ), and ϕ := (ϕ1, . . . ,ϕN )T ∈RN .
Then, the above equation can be written in a matrix-vector format as:
Kϕ=µϕ, where K = (Ki j ) ∈RN×N . Under our assumptions, the
weight w j does not depend on j , which makes K symmetric .
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Fast Algorithms for Computing Eigenfunctions
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Fast Algorithms for Computing Eigenfunctions

A Possible Fast Algorithm for Computing ϕ j ’s

Observation: our kernel function K (x , y) is of special form, i.e., the
fundamental solution of Laplacian used in potential theory .
Idea: Accelerate the matrix-vector product Kϕ using the Fast
Multipole Method (FMM).
Convert the kernel matrix to the tree-structured matrix via the FMM
whose submatrices are nicely organized in terms of their ranks.
(Computational cost: our current implementation costs O(N 2), but
can achieve O(N log N ) via the randomized SVD algorithm of
Woolfe-Liberty-Rokhlin-Tygert (2008)).
Construct O(N ) matrix-vector product module fully utilizing rank
information (See also the work of Bremer (2007) and the “HSS”
algorithm of Chandrasekaran et al. (2006)).
Embed that matrix-vector product module in the Krylov subspace
method, e.g., Lanczos iteration.
(Computational cost: O(N ) for each eigenvalue/eigenvector).
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Fast Algorithms for Computing Eigenfunctions

Tree-Structured Matrix via FMM

(a) Hierarchical indexing scheme (b) Tree-Structured Matrix
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Fast Algorithms for Computing Eigenfunctions

A Real Challenge: Kernel matrix is of 387924×387924.
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Fast Algorithms for Computing Eigenfunctions

First 25 Basis Functions via the FMM-based algorithm
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Applications

General Comments on Applications

Laplacian eigenfunctions on an irregular domain should be useful for:
Interactive image analysis, discrimination, interpretation:

Medical image analysis: e.g., hippocampal shape analysis for early
Alzheimer’s
Biometry: e.g., identification and characterization of eyes, faces, etc.

Geophysical data assimilation:
Incorporating ocean current data measured by high frequency radar
into a numerical model;
Interpolation, extrapolation, prediction of vector-valued meteorology
data (temperature, pressure, wind speed, etc.) measured at the
weather station in the 3D terrain.

. . .
Due to the time constraint, I will only talk about one application.
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Applications

Statistical Image Analysis; Comparison with PCA

Consider a stochastic process living on a domain Ω.
PCA/Karhunen-Loève Transform is often used.
PCA/KLT implicitly incorporate geometric information of the
measurement (or pixel) location through data correlation.
Our Laplacian eigenfunctions use explicit geometric information
through the harmonic kernel K (x , y).
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Applications

Comparison with PCA: Example

“Rogue’s Gallery” dataset from Larry Sirovich
Contains 143 faces
Extracted left & right eye regions
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Applications

Comparison with PCA: Basis Vectors

(a) KLB/PCA 1:9

(b) Laplacian Eigenfunctions 1:9
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Applications

Comparison with PCA: Basis Vectors . . .

(a) KLB/PCA 10:18 (b) Laplacian Eigenfunctions 10:18
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Applications

Comparison with PCA: Energy Distribution over Coordinates

(a) KLB/PCA (b) Laplacian Eigenfunctions
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Applications

Comparison with PCA: Basis Vector #7 . . .

c7:large c7:large

ϕ7

c7:small c7:small
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Applications

Comparison with PCA: Basis Vector #13 . . .

c13:large c13:large

ϕ13

c13:small c13:small
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Applications

Asymmetry Detector

Eyes #80 Eyes #22 Eyes #52

Asymmetry detector

Eyes #5 Eyes #84 Eyes #59
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Summary

Summary

Our approach using the commuting integral operators
Allows object-oriented signal/image analysis & synthesis
Can get fast-decaying expansion coefficients (less Gibbs effect)
Can naturally extend the basis functions outside of the initial domain
Can extract geometric information of a domain through eigenvalues
Can decouple geometry/domain information and statistics of data
Is closely related to the von Neumann-Krĕın Laplacian, yet is distinct
Can use Fast Multipole Methods to speed up the computation, which
is the key for higher dimensions/large domains
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Summary

Future Plan (i.e., PhD Research Topics)

∃ many things to do:
Examine further our boundary conditions for specific geometry in
higher dimensions; e.g., analysis on S2 leads to Clifford Analysis
Examine the relationship with the von Neuman-Krĕın Laplacian and
Volterra operators in Rd , d ≥ 2 (Lidskĭı; Gohberg-Krĕın)
Examine integral operators commuting with polyharmonic operators
(−∆)p , p ≥ 2

Extend integral operators to the manifold setting (e.g., on curved
surfaces) =⇒ Need to consider geodesic distance between a pair of
points
Extend integral operators to the graph setting =⇒ Need to consider
shortest distance between a pair of nodes and a function of the
distance matrix instead of graph Laplacian
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My Heroes

(a) George Green
(1793–1841)

(b) Lord Rayleigh
(1842–1919)

(c) H.K.H. Weyl
(1885–1955)

(d) J. von Neumann
(1903–1957)

(e) Mark G. Krĕın
(1907–1989)

(f) M. Kac
(1914–1984)

(g) V. Lidskĭı
(1924–2008)

(h) I. Gohberg
(1928–2009)

(i) V. Rokhlin
(1952–)

(j) L. Greengard
(1958–)
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