# MAT 280: Harmonic Analysis on Graphs & Networks Lecture 2: Prelude to Harmonic Analysis on Graphs — Laplacian Eigenfunctions on General Shape Domains

#### Naoki Saito

Department of Mathematics University of California, Davis

October 1, 2019

# Outline

#### Introduction

#### Motivations

- 3 Laplacian Eigenfunctions
  - Integral Operators Commuting with Laplacians
- 5 Some Examples
- Oiscretization of the Problem
  - Fast Algorithms for Computing Eigenfunctions
  - 8 Applications
  - Summary

# Outline

#### Introduction

#### Motivations

- 3 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacians
- 5 Some Examples
- 6 Discretization of the Problem
- 7 Fast Algorithms for Computing Eigenfunctions
- 8 Applications
- 9 Summary

#### Introductory Comments

Hajime Urakawa (Emeritus Prof., Tohoku Univ.) said in 1999:

A long time ago, when I was a college student, I was told: "There is good mathematics around Laplacians." I engaged in mathematical research and education for a long time, but after all, I was just walking around "Laplacians," which appear in all sorts of places under different guises. When I reflect on the above proverb, however, I feel keenly that it represents an aspect of the important truth. I was ignorant at that time, but it turned out that "Laplacians" are one of the keywords to understand the vast field of modern mathematics.



#### Introductory Comments

Hajime Urakawa (Emeritus Prof., Tohoku Univ.) said in 1999:

A long time ago, when I was a college student, I was told: "There is good mathematics around Laplacians." I engaged in mathematical research and education for a long time, but after all, I was just walking around "Laplacians," which appear in all sorts of places under different guises. When I reflect on the above proverb, however, I feel keenly that it represents an aspect of the important truth. I was ignorant at that time, but it turned out that "Laplacians" are one of the keywords to understand the vast field of modern mathematics.



I second Prof. Urakawa's opinion, and want to add: *"There are good applications around Laplacians too."* 

## Outline





- 3 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacians
- 5 Some Examples
- 6 Discretization of the Problem
- 7 Fast Algorithms for Computing Eigenfunctions
- 8 Applications
- 9 Summary

#### Motivations

- Consider a bounded domain of general shape  $\Omega \subset \mathbb{R}^d$ .
- Want to analyze the spatial frequency information *inside* of the object defined in  $\Omega \implies$  need to avoid *the Gibbs phenomenon* due to  $\partial\Omega$ .
- Want to *represent* the object information efficiently for analysis, interpretation, discrimination, etc. ⇒ need *fast decaying* expansion coefficients relative to a *meaningful* basis.
- Want to extract and analyze geometric information about the domain Ω ⇒ M. Kac: "Can one hear the shape of a drum?" (1966); spectral geometry; shape clustering/classification.





(a)  $\Omega \subset \mathbb{R}^d$ saito@math.ucdavis.edu (UC Davis)

# **Object-Oriented Image Analysis**



saito@math.ucdavis.edu (UC Davis)

# Data Analysis on a Complicated Domain



# 3D Hippocampus Shape Analysis (Courtesy: F. Beg)



saito@math.ucdavis.edu (UC Davis)

# Climate Data Analysis: Continent (Courtesy: T. DelSole)









# Climate Data Analysis: Ocean (Courtesy: T. DelSole)









# Outline

#### Introduction

#### 2 Motivations

#### 3 Laplacian Eigenfunctions

- Integral Operators Commuting with Laplacians
- 5 Some Examples
- 6 Discretization of the Problem
- 7 Fast Algorithms for Computing Eigenfunctions
- 8 Applications
- 9 Summary

# Enter Laplacian Eigenfunctions!

- On either irregular Euclidean domains or graphs, appropriately defined *Laplacian eigenfunctions* play an important role for data analysis.
- Let us first consider an irregular (i.e., general shape) Euclidean domain  $\Omega \subset \mathbb{R}^d$ .
- Let  $\mathscr{L} := -\Delta = -\left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_d^2}\right).$
- The Laplacian eigenvalue problem is defined as:

$$\mathscr{L}u = -\Delta u = \lambda u$$
 in  $\Omega$ ,

together with some appropriate boundary condition (BC).

- Most common (homogeneous) BCs are:
  - *Dirichlet*: u = 0 on  $\partial \Omega$ ;
  - Neumann:  $\frac{\partial u}{\partial v} = 0$  on  $\partial \Omega$ ;
  - Robin (or impedance):  $au + b\frac{\partial u}{\partial v} = 0$  on  $\partial\Omega$ ,  $a \neq 0 \neq b$ .

### Laplacian Eigenfunctions ... Why?

- Why not analyze (and synthesize) an object of interest defined or measured on an irregular domain Ω using *genuine basis functions tailored to the domain* instead of the basis functions developed for rectangles, tori, balls, etc.?
- After all, *sines* (and *cosines*) are the eigenfunctions of the Laplacian on a *rectangular* domain (e.g., an interval in 1D) with Dirichlet (and Neumann) boundary condition.
- Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave Functions, are part of the eigenfunctions of the Laplacian (via separation of variables) for the spherical, cylindrical, and spheroidal domains, respectively.
- Laplacian eigenfunctions (LEs) allow us to perform *spectral analysis* of data measured at more general domains or even on *graphs* and *networks* ⇒ *Generalization of Fourier analysis!*
- The above statement needs to be interpreted very carefully due to the domain properties; e.g., quantum scars, LE localizations, ...
  ⇒ We will discuss more when we cover *wavelets on graphs*.

### Laplacian Eigenfunctions ... Some Facts & Difficulties

- Analysis of  $\mathscr{L}$  is difficult due to its *unboundedness* (because it is a *differential operator* dealing with *local* information).
- Much better to analyze its inverse, i.e., the *Green's operator*, because it is an *integral operator* dealing with *global* information, i.e., it's *compact* and *self-adjoint*.
- Thus  $\mathscr{L}^{-1}$  has discrete spectra (i.e., a countable number of eigenvalues with finite multiplicity) except 0 spectrum.
- $\mathscr{L}$  has a complete orthonormal basis of  $L^2(\Omega)$ , and this allows us to do *eigenfunction expansion* in  $L^2(\Omega)$ .
- The key difficulty is to compute such eigenfunctions; directly solving the Helmholtz equation (or eigenvalue problem) on a general domain is tough.
- Unfortunately, computing the Green's function for a general  $\Omega$  satisfying the usual boundary condition (i.e., Dirichlet, Neumann, Robin) is also very difficult.

### Laplacian Eigenfunctions ... Some Facts & Difficulties

- Analysis of  $\mathscr{L}$  is difficult due to its *unboundedness* (because it is a *differential operator* dealing with *local* information).
- Much better to analyze its inverse, i.e., the *Green's operator*, because it is an *integral operator* dealing with *global* information, i.e., it's *compact* and *self-adjoint*.
- Thus  $\mathscr{L}^{-1}$  has discrete spectra (i.e., a countable number of eigenvalues with finite multiplicity) except 0 spectrum.
- $\mathscr{L}$  has a complete orthonormal basis of  $L^2(\Omega)$ , and this allows us to do *eigenfunction expansion* in  $L^2(\Omega)$ .
- The key difficulty is to compute such eigenfunctions; directly solving the Helmholtz equation (or eigenvalue problem) on a general domain is tough.
- Unfortunately, computing the Green's function for a general  $\Omega$  satisfying the usual boundary condition (i.e., Dirichlet, Neumann, Robin) is also very difficult.

saito@math.ucdavis.edu (UC Davis)

# Outline

Introduction

#### Motivations

3 Laplacian Eigenfunctions

#### Integral Operators Commuting with Laplacians

- 5 Some Examples
- Oiscretization of the Problem
- 7 Fast Algorithms for Computing Eigenfunctions
- 8 Applications
- 9 Summary

### Integral Operators Commuting with Laplacian

- The key idea to avoid difficulties associated with the Laplacian  $\mathscr{L}$  is to find an integral operator  $\mathscr{K}$  commuting with  $\mathscr{L}$  without imposing the strict boundary condition a priori.
- Then, we know that the eigenfunctions of  $\mathscr L$  is the same as those of  $\mathscr K$ , which is easier to deal with, due to the following

### Integral Operators Commuting with Laplacian

- The key idea to avoid difficulties associated with the Laplacian  $\mathscr{L}$  is to find an integral operator  $\mathscr{K}$  commuting with  $\mathscr{L}$  without imposing the strict boundary condition a priori.
- Then, we know that the eigenfunctions of  $\mathscr L$  is the same as those of  $\mathscr K$ , which is easier to deal with, due to the following

#### Theorem (G. Frobenius 1896?; B. Friedman 1956)

Suppose  $\mathcal{K}$  and  $\mathcal{L}$  commute and one of them has an eigenvalue with finite multiplicity. Then,  $\mathcal{K}$  and  $\mathcal{L}$  share the same eigenfunction corresponding to that eigenvalue. That is,  $\mathcal{L}\varphi = \lambda\varphi$  and  $\mathcal{K}\varphi = \mu\varphi$ .



(a) G. Frobenius (1849-1917)



(b) B. Friedman (1915-1966)

- The inverse of  $\mathscr{L}$  with some specific boundary condition (e.g., Dirichlet/Neumann/Robin) is also an integral operator whose kernel is called the *Green's function* G(x, y).
- Since it is not easy to obtain G(x, y) in general, let's replace G(x, y) by the *fundamental solution of the Laplacian*:

$$K(\mathbf{x}, \mathbf{y}) = \begin{cases} -\frac{1}{2} |\mathbf{x} - \mathbf{y}| & \text{if } d = 1, \\ -\frac{1}{2\pi} \log |\mathbf{x} - \mathbf{y}| & \text{if } d = 2, \\ \frac{|\mathbf{x} - \mathbf{y}|^{2-d}}{(d-2)\omega_d} & \text{if } d > 2, \end{cases}$$

where  $\omega_d := \frac{2\pi^{d/2}}{\Gamma(d/2)}$  is the surface area of the unit ball in  $\mathbb{R}^d$ , and  $|\cdot|$  is the standard Euclidean norm.

• The price we pay is to have rather implicit, *non-local* boundary condition although we do not have to deal with this condition directly.

• Let  $\mathcal{K}$  be the integral operator with its kernel  $K(\mathbf{x}, \mathbf{y})$ :

$$\mathscr{K}f(\mathbf{x}) := \int_{\Omega} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) \,\mathrm{d}\mathbf{y}, \quad f \in L^2(\Omega).$$

#### Theorem (NS 2005, 2008)

The integral operator  $\mathcal{K}$  commutes with the Laplacian  $\mathcal{L} = -\Delta$  with the following non-local boundary condition:

$$\int_{\partial\Omega} K(\boldsymbol{x},\boldsymbol{y}) \frac{\partial \varphi}{\partial v_{\boldsymbol{y}}}(\boldsymbol{y}) \, \mathrm{d} \boldsymbol{s}(\boldsymbol{y}) = -\frac{1}{2} \varphi(\boldsymbol{x}) + \operatorname{pv} \int_{\partial\Omega} \frac{\partial K(\boldsymbol{x},\boldsymbol{y})}{\partial v_{\boldsymbol{y}}} \varphi(\boldsymbol{y}) \, \mathrm{d} \boldsymbol{s}(\boldsymbol{y}), \quad \forall \boldsymbol{x} \in \partial\Omega,$$

where  $\varphi$  is an eigenfunction common for both operators, and pv indicates the Cauchy principal value.

• Let  $\mathcal{K}$  be the integral operator with its kernel  $K(\mathbf{x}, \mathbf{y})$ :

$$\mathcal{K}f(\mathbf{x}) := \int_{\Omega} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) \,\mathrm{d}\mathbf{y}, \quad f \in L^2(\Omega).$$

#### Theorem (NS 2005, 2008)

The integral operator  $\mathcal{K}$  commutes with the Laplacian  $\mathcal{L} = -\Delta$  with the following non-local boundary condition:

$$\int_{\partial\Omega} K(\boldsymbol{x},\boldsymbol{y}) \frac{\partial \varphi}{\partial v_{\boldsymbol{y}}}(\boldsymbol{y}) \, \mathrm{d} \boldsymbol{s}(\boldsymbol{y}) = -\frac{1}{2} \varphi(\boldsymbol{x}) + \operatorname{pv} \int_{\partial\Omega} \frac{\partial K(\boldsymbol{x},\boldsymbol{y})}{\partial v_{\boldsymbol{y}}} \varphi(\boldsymbol{y}) \, \mathrm{d} \boldsymbol{s}(\boldsymbol{y}), \quad \forall \boldsymbol{x} \in \partial\Omega,$$

where  $\varphi$  is an eigenfunction common for both operators, and pv indicates the Cauchy principal value.

saito@math.ucdavis.edu (UC Davis)

#### Corollary (NS 2009)

The eigenfunction  $\varphi(\mathbf{x})$  of the integral operator  $\mathcal{K}$  in the previous theorem can be extended outside the domain  $\Omega$  and satisfies the following equation:

$$-\Delta \varphi = \begin{cases} \lambda \varphi & \text{if } \mathbf{x} \in \Omega; \\ 0 & \text{if } \mathbf{x} \in \mathbb{R}^d \setminus \overline{\Omega}, \end{cases}$$

with the boundary condition that  $\varphi$  and  $\frac{\partial \varphi}{\partial v}$  are continuous across the boundary  $\partial \Omega$ . Moreover, as  $|\mathbf{x}| \to \infty$ ,  $\varphi(\mathbf{x})$  must be of the following form:

$$\varphi(\mathbf{x}) = \begin{cases} \operatorname{const} \cdot |\mathbf{x}|^{2-d} + O(|\mathbf{x}|^{1-d}) & \text{if } d \neq 2; \\ \operatorname{const} \cdot \ln |\mathbf{x}| + O(|\mathbf{x}|^{-1}) & \text{if } d = 2. \end{cases}$$

saito@math.ucdavis.edu (UC Davis)

#### Corollary (NS 2005, 2008)

The integral operator  $\mathcal{K}$  is compact and self-adjoint on  $L^2(\Omega)$ . Thus, the kernel  $K(\mathbf{x}, \mathbf{y})$  has the following eigenfunction expansion (in the sense of mean convergence):

$$K(\mathbf{x}, \mathbf{y}) \sim \sum_{j=1}^{\infty} \mu_j \varphi_j(\mathbf{x}) \overline{\varphi_j(\mathbf{y})},$$

and  $\{\varphi_i\}_i$  forms an orthonormal basis of  $L^2(\Omega)$ .

## Outline

Introduction

#### Motivations

- 3 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacians
- 5 Some Examples
  - 6 Discretization of the Problem
  - 7 Fast Algorithms for Computing Eigenfunctions
  - 8 Applications
  - Summary

#### • Consider the unit interval $\Omega = (0, 1)$ .

• Then, our integral operator  $\mathcal{K}$  with the kernel K(x, y) = -|x - y|/2 gives rise to the following eigenvalue problem:

$$-\varphi'' = \lambda \varphi, \quad x \in (0,1);$$

$$\varphi(0) + \varphi(1) = -\varphi'(0) = \varphi'(1).$$

- The kernel  $K(\mathbf{x}, \mathbf{y})$  is of *Toeplitz* form  $\implies$  Eigenvectors must have even and odd symmetry (Cantoni-Butler '76).
- In this case, we have the following explicit solution.

- Consider the unit interval  $\Omega = (0, 1)$ .
- Then, our integral operator  $\mathcal{K}$  with the kernel K(x, y) = -|x y|/2 gives rise to the following eigenvalue problem:

$$-\varphi'' = \lambda \varphi, \quad x \in (0,1);$$

$$\varphi(0) + \varphi(1) = -\varphi'(0) = \varphi'(1).$$

- The kernel  $K(\mathbf{x}, \mathbf{y})$  is of *Toeplitz* form  $\implies$  Eigenvectors must have even and odd symmetry (Cantoni-Butler '76).
- In this case, we have the following explicit solution.

- Consider the unit interval  $\Omega = (0, 1)$ .
- Then, our integral operator  $\mathcal{K}$  with the kernel K(x, y) = -|x y|/2 gives rise to the following eigenvalue problem:

$$-\varphi'' = \lambda \varphi, \quad x \in (0,1);$$

$$\varphi(0) + \varphi(1) = -\varphi'(0) = \varphi'(1).$$

• The kernel K(x, y) is of *Toeplitz* form  $\implies$  Eigenvectors must have even and odd symmetry (Cantoni-Butler '76).

• In this case, we have the following explicit solution.

- Consider the unit interval  $\Omega = (0, 1)$ .
- Then, our integral operator  $\mathcal{K}$  with the kernel K(x, y) = -|x y|/2 gives rise to the following eigenvalue problem:

$$-\varphi'' = \lambda \varphi, \quad x \in (0,1);$$

$$\varphi(0) + \varphi(1) = -\varphi'(0) = \varphi'(1).$$

- The kernel  $K(\mathbf{x}, \mathbf{y})$  is of *Toeplitz* form  $\implies$  Eigenvectors must have even and odd symmetry (Cantoni-Butler '76).
- In this case, we have the following explicit solution.

• 
$$\lambda_0 \approx -5.756915$$
, which is a solution of  $\tanh \frac{\sqrt{-\lambda_0}}{2} = \frac{2}{\sqrt{-\lambda_0}}$ ,

$$\varphi_0(x) = A_0 \cosh \sqrt{-\lambda_0} \left( x - \frac{1}{2} \right);$$

•  $\lambda_{2m-1} = (2m-1)^2 \pi^2$ , m = 1, 2, ...,

$$\varphi_{2m-1}(x) = \sqrt{2}\cos(2m-1)\pi x;$$

•  $\lambda_{2m}$ , m = 1, 2, ..., which are solutions of  $\tan \frac{\sqrt{\lambda_{2m}}}{2} = -\frac{2}{\sqrt{\lambda_{2m}}}$ ,

$$\varphi_{2m}(x) = A_{2m} \cos \sqrt{\lambda_{2m}} \left( x - \frac{1}{2} \right),$$

where  $A_k$ , k = 0, 1, ... are normalization constants.

### First 5 Basis Functions



saito@math.ucdavis.edu (UC Davis)

## 1D Example: Comparison

• The Laplacian eigenfunctions with the Dirichlet boundary condition:  $-\varphi'' = \lambda \varphi$ ,  $\varphi(0) = \varphi(1) = 0$ , are *sines*. The Green's function in this case is:

#### $G_D(x, y) = \min(x, y) - xy.$

• Those with the Neumann boundary condition, i.e.,  $\varphi'(0) = \varphi'(1) = 0$ , are *cosines*. The Green's function is:

$$G_N(x, y) = -\max(x, y) + \frac{1}{2}(x^2 + y^2) + \frac{1}{3}$$

 Remark: Gridpoint ⇔ DST-I/DCT-I; Midpoint⇔ DST-II/DCT-II.

## 1D Example: Comparison

• The Laplacian eigenfunctions with the Dirichlet boundary condition:  $-\varphi'' = \lambda \varphi$ ,  $\varphi(0) = \varphi(1) = 0$ , are *sines*. The Green's function in this case is:

$$G_D(x, y) = \min(x, y) - xy.$$

• Those with the Neumann boundary condition, i.e.,  $\varphi'(0) = \varphi'(1) = 0$ , are *cosines*. The Green's function is:

$$G_N(x, y) = -\max(x, y) + \frac{1}{2}(x^2 + y^2) + \frac{1}{3}.$$

 Remark: Gridpoint ⇔ DST-I/DCT-I; Midpoint⇔ DST-II/DCT-II.

## 1D Example: Comparison

• The Laplacian eigenfunctions with the Dirichlet boundary condition:  $-\varphi'' = \lambda \varphi$ ,  $\varphi(0) = \varphi(1) = 0$ , are *sines*. The Green's function in this case is:

$$G_D(x, y) = \min(x, y) - xy.$$

• Those with the Neumann boundary condition, i.e.,  $\varphi'(0) = \varphi'(1) = 0$ , are *cosines*. The Green's function is:

$$G_N(x, y) = -\max(x, y) + \frac{1}{2}(x^2 + y^2) + \frac{1}{3}.$$

 Remark: Gridpoint ⇔ DST-I/DCT-I; Midpoint⇔ DST-II/DCT-II.

• Consider the unit disk  $\Omega$ . Then, our integral operator  $\mathcal{K}$  with the kernel  $K(\mathbf{x}, \mathbf{y}) = -\frac{1}{2\pi} \log |\mathbf{x} - \mathbf{y}|$  gives rise to:

$$\begin{split} -\Delta \varphi &= \lambda \varphi, \quad \text{in } \Omega; \\ \frac{\partial \varphi}{\partial \nu}\Big|_{\partial \Omega} &= \frac{\partial \varphi}{\partial r}\Big|_{\partial \Omega} = -\frac{\partial \mathscr{H} \varphi}{\partial \theta}\Big|_{\partial \Omega}, \\ \text{where } \mathscr{H} \text{ is the } \textit{Hilbert transform for the circle, i.e.,} \\ \mathscr{H} f(\theta) &:= \frac{1}{2\pi} \operatorname{pv} \int_{-\pi}^{\pi} f(\eta) \cot\left(\frac{\theta - \eta}{2}\right) \mathrm{d} \eta \quad \theta \in [-\pi, \pi]. \end{split}$$

• Let  $j_{k,\ell}$  is the  $\ell$ th zero of the Bessel function of order k,  $J_k(j_{k,\ell}) = 0$ . Then,

$$\varphi_{m,n}(r,\theta) = \begin{cases} J_m(j_{m-1,n} r) {\cos \choose \sin} (m\theta) & \text{if } m = 1, 2, \dots, n = 1, 2, \dots, \\ J_0(j_{0,n} r) & \text{if } m = 0, n = 1, 2, \dots, \end{cases}$$

$$\lambda_{m,n} = \begin{cases} j_{m-1,n}^2, & \text{if } m = 1, \dots, n = 1, 2, .\\ j_{0,n}^2, & \text{if } m = 0, n = 1, 2, \dots \end{cases}$$

• Consider the unit disk  $\Omega$ . Then, our integral operator  $\mathcal{K}$  with the kernel  $K(\mathbf{x}, \mathbf{y}) = -\frac{1}{2\pi} \log |\mathbf{x} - \mathbf{y}|$  gives rise to:

$$-\Delta \varphi = \lambda \varphi, \quad \text{in } \Omega;$$
$$\frac{\partial \varphi}{\partial v}\Big|_{\partial \Omega} = \frac{\partial \varphi}{\partial r}\Big|_{\partial \Omega} = -\frac{\partial \mathscr{H} \varphi}{\partial \theta}\Big|_{\partial \Omega},$$

where  $\mathcal{H}$  is the *Hilbert transform* for the circle, i.e.,

$$\mathscr{H}f(\theta) := \frac{1}{2\pi} \operatorname{pv} \int_{-\pi}^{\pi} f(\eta) \cot\left(\frac{\theta - \eta}{2}\right) \mathrm{d}\eta \quad \theta \in [-\pi, \pi].$$

• Let  $j_{k,\ell}$  is the  $\ell$ th zero of the Bessel function of order k,  $J_k(j_{k,\ell}) = 0$ . Then,

$$\varphi_{m,n}(r,\theta) = \begin{cases} J_m(j_{m-1,n}r) {cos \choose sin}(m\theta) & \text{if } m = 1, 2, \dots, n = 1, 2, \dots, \\ J_0(j_{0,n}r) & \text{if } m = 0, n = 1, 2, \dots, \end{cases}$$

$$\lambda_{m,n} = \begin{cases} j_{m-1,n}^2, & \text{if } m = 1, \dots, n = 1, 2, \dots, \\ j_{0,n}^2 & \text{if } m = 0, n = 1, 2, \dots. \end{cases}$$

### First 25 Basis Functions



- Consider the unit ball  $\Omega$  in  $\mathbb{R}^3$ . Then, our integral operator  $\mathcal{K}$  with the kernel  $K(\mathbf{x}, \mathbf{y}) = \frac{1}{4\pi |\mathbf{x} \mathbf{y}|}$ .
- Top 9 eigenfunctions cut at the equator viewed from the south:



# Outline

Introduction

#### Motivations

- 3 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacians
- 5 Some Examples
- **o** Discretization of the Problem
  - 7 Fast Algorithms for Computing Eigenfunctions
  - 8 Applications
  - 9 Summary

### Discretization of the Problem

- Assume that the whole dataset consists of a collection of data sampled on a regular grid, and that each sampling cell is a box of size Π<sup>d</sup><sub>i=1</sub> Δx<sub>i</sub>.
- Assume that an object of our interest Ω consists of a subset of these boxes whose centers are {x<sub>i</sub>}<sup>N</sup><sub>i=1</sub>.
- Under these assumptions, we can approximate the integral eigenvalue problem  $\mathcal{K}\varphi = \mu\varphi$  with a simple quadrature rule with node-weight pairs  $(\mathbf{x}_j, w_j)$  as follows.

$$\sum_{j=1}^N w_j K(\boldsymbol{x}_i, \boldsymbol{x}_j) \varphi(\boldsymbol{x}_j) = \mu \varphi(\boldsymbol{x}_i), \quad i = 1, \dots, N, \quad w_j = \prod_{i=1}^d \Delta x_i.$$

• Let  $K_{i,j} := w_j K(\mathbf{x}_i, \mathbf{x}_j)$ ,  $\varphi_i := \varphi(\mathbf{x}_i)$ , and  $\boldsymbol{\varphi} := (\varphi_1, \dots, \varphi_N)^\top \in \mathbb{R}^N$ . Then, the above equation can be written in a matrix-vector format as:  $K \boldsymbol{\varphi} = \mu \boldsymbol{\varphi}$ , where  $K = (K_{ij}) \in \mathbb{R}^{N \times N}$ . Under our assumptions, the weight  $w_j$  does not depend on j, which makes K symmetric.

## Outline

Introduction

#### Motivations

- 3 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacians
- 5 Some Examples
- 6 Discretization of the Problem



#### Fast Algorithms for Computing Eigenfunctions

#### 3 Applications

Summary

# A Possible Fast Algorithm for Computing $\varphi_j$ 's

- Observation: our kernel function K(x, y) is of special form, i.e., the fundamental solution of Laplacian used in *potential theory*.
- Idea: Accelerate the matrix-vector product Kφ using the Fast Multipole Method (FMM).
- Convert the kernel matrix to the tree-structured matrix via the FMM whose submatrices are nicely organized in terms of their *ranks*. (Computational cost: our current implementation costs O(N<sup>2</sup>), but can achieve O(Nlog N) via the randomized SVD algorithm of Woolfe-Liberty-Rokhlin-Tygert (2008)).
- Construct O(N) matrix-vector product module fully utilizing rank information (See also the work of Bremer (2007) and the "HSS" algorithm of Chandrasekaran et al. (2006)).
- Embed that matrix-vector product module in the Krylov subspace method, e.g., Lanczos iteration.

(Computational cost: O(N) for each eigenvalue/eigenvector).

### Tree-Structured Matrix via FMM



(a) Hierarchical indexing scheme

(b) Tree-Structured Matrix

## A Real Challenge: Kernel matrix is of 387924 × 387924.



### First 25 Basis Functions via the FMM-based algorithm



## Outline

Introduction

#### Motivations

- 3 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacians
- 5 Some Examples
- 6 Discretization of the Problem
- Fast Algorithms for Computing Eigenfunctions

#### 3 Applications

Summary

# General Comments on Applications

Laplacian eigenfunctions on an irregular domain should be useful for:

- Interactive image analysis, discrimination, interpretation:
  - Medical image analysis: e.g., hippocampal shape analysis for early Alzheimer's
  - Biometry: e.g., identification and characterization of eyes, faces, etc.
- Geophysical data assimilation:
  - Incorporating ocean current data measured by high frequency radar into a numerical model;
  - Interpolation, extrapolation, prediction of vector-valued meteorology data (temperature, pressure, wind speed, etc.) measured at the weather station in the 3D terrain.

• . . .

Due to the time constraint, I will only talk about one application.

# General Comments on Applications

Laplacian eigenfunctions on an irregular domain should be useful for:

- Interactive image analysis, discrimination, interpretation:
  - Medical image analysis: e.g., hippocampal shape analysis for early Alzheimer's
  - Biometry: e.g., identification and characterization of eyes, faces, etc.
- Geophysical data assimilation:
  - Incorporating ocean current data measured by high frequency radar into a numerical model;
  - Interpolation, extrapolation, prediction of vector-valued meteorology data (temperature, pressure, wind speed, etc.) measured at the weather station in the 3D terrain.

• . . .

Due to the time constraint, I will only talk about one application.

# Statistical Image Analysis; Comparison with PCA

- Consider a stochastic process living on a domain  $\Omega$ .
- PCA/Karhunen-Loève Transform is often used.
- PCA/KLT *implicitly* incorporate geometric information of the measurement (or pixel) location through *data correlation*.
- Our Laplacian eigenfunctions use *explicit* geometric information through the harmonic kernel K(x, y).

## Comparison with PCA: Example

- "Rogue's Gallery" dataset from Larry Sirovich
- Contains 143 faces
- Extracted left & right eye regions







### Comparison with PCA: Basis Vectors



(a) KLB/PCA 1:9

### Comparison with PCA: Basis Vectors



#### Comparison with PCA: Basis Vectors ....



Applications

# Comparison with PCA: Energy Distribution over Coordinates



Applications

## Comparison with PCA: Basis Vector #7 ...



Applications

## Comparison with PCA: Basis Vector #13 ...



 $c_{13}$ :large



 $c_{13}$ :large



 $\varphi_{13}$ 



 $c_{13}$ :small





#### Asymmetry Detector



## Outline

Introduction

#### Motivations

- 3 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacians
- 5 Some Examples
- 6 Discretization of the Problem
- 7 Fast Algorithms for Computing Eigenfunctions
- 8 Applications



## Summary

Our approach using the commuting integral operators

- Allows *object-oriented* signal/image analysis & synthesis
- Can get fast-decaying expansion coefficients (less Gibbs effect)
- Can naturally extend the basis functions outside of the initial domain
- Can extract geometric information of a domain through eigenvalues
- Can *decouple* geometry/domain information and statistics of data
- Is closely related to the von Neumann-Krein Laplacian, yet is distinct
- Can use *Fast Multipole Methods* to speed up the computation, which is the key for higher dimensions/large domains

# Future Plan (i.e., PhD Research Topics)

 $\exists$  many things to do:

- Examine further our boundary conditions for specific geometry in higher dimensions; e.g., analysis on S<sup>2</sup> leads to *Clifford Analysis*
- Examine the relationship with the *von Neuman-Kreĭn Laplacian* and *Volterra operators* in  $\mathbb{R}^d$ ,  $d \ge 2$  (Lidskiĭ; Gohberg-Kreĭn)
- Examine integral operators commuting with *polyharmonic* operators  $(-\Delta)^p$ ,  $p \ge 2$
- Extend integral operators to the *manifold* setting (e.g., on *curved* surfaces) ⇒ Need to consider *geodesic distance between a pair of points*
- Extend integral operators to the graph setting ⇒ Need to consider shortest distance between a pair of nodes and a function of the distance matrix instead of graph Laplacian

### My Heroes



# References

- Laplacian Eigenfunction Resource Page http://www.math.ucdavis.edu/~saito/lapeig/:
  - My Course Note (elementary) on "Laplacian Eigenfunctions: Theory, Applications, and Computations"
  - All the talk slides of the minisymposia on Laplacian Eigenfunctions at: ICIAM 2007, Zürich; SIAM Imaging Science Conference 2008, San Diego; IPAM 2009; SIAM Annual Meeting 2013, San Diego; and the other related recent minisymposia.
- The following articles are available at http://www.math.ucdavis.edu/~saito/publications/:
  - N. Saito: "Data analysis and representation using eigenfunctions of Laplacian on a general domain," *Applied & Computational Harmonic Analysis*, vol. 25, no. 1, pp. 68–97, 2008.
  - L. Hermi & N. Saito: "On Rayleigh-type formulas for a non-local boundary value problem associated with an integral operator commuting with the Laplacian," *Applied & Computational Harmonic Analysis*, vol. 45, no. 1, pp. 59–83. 2018.