MAT 280: Harmonic Analysis on Graphs \& Networks Lecture 3: Baiscs of Graph Theory: Graph Laplacians

Naoki Saito
Department of Mathematics
University of California, Davis

October 3, 2019

Outline

(1) Basic Definitions in Graph Theory
(2) Matrices Associated with a Graph
(3) Why Graph Laplacians?

Outline

(1) Basic Definitions in Graph Theory

(2) Matrices Associated with a Graph

(3) Why Graph Laplacians?

Basic Definitions

- A graph G consists of a set of vertices (or nodes) V and a set of edges E connecting some pairs of vertices in V. We write $G=(V, E)$.
- In this class, we shall only deal with simple graphs. So, when we say a

Basic Definitions

- A graph G consists of a set of vertices (or nodes) V and a set of edges E connecting some pairs of vertices in V. We write $G=(V, E)$.
- An edge connecting a vertex $x \in V$ and itself is called a loop.
- In this class, we shall only deal with simple graphs. So, when we say a

Basic Definitions

- A graph G consists of a set of vertices (or nodes) V and a set of edges E connecting some pairs of vertices in V. We write $G=(V, E)$.
- An edge connecting a vertex $x \in V$ and itself is called a loop.
- For $x, y \in V$, if \exists more than one edge connecting x and y, they are called multiple edges.

Basic Definitions

- A graph G consists of a set of vertices (or nodes) V and a set of edges E connecting some pairs of vertices in V. We write $G=(V, E)$.
- An edge connecting a vertex $x \in V$ and itself is called a loop.
- For $x, y \in V$, if \exists more than one edge connecting x and y, they are called multiple edges.
- A graph having loops or multiple edges is called a multiple graph (or multigraph); otherwise it is called a simple graph.

A multiple graph

A simple graph

Basic Definitions

- A graph G consists of a set of vertices (or nodes) V and a set of edges E connecting some pairs of vertices in V. We write $G=(V, E)$.
- An edge connecting a vertex $x \in V$ and itself is called a loop.
- For $x, y \in V$, if \exists more than one edge connecting x and y, they are called multiple edges.
- A graph having loops or multiple edges is called a multiple graph (or multigraph); otherwise it is called a simple graph.

A multiple graph

A simple graph

- In this class, we shall only deal with simple graphs. So, when we say a graph, we mean a simple graph.

Basic Definitions ...

- If two distinct vertices $x, y \in V$ are connected by an edge e, then x, y are called the endpoints (or ends) of e, and x, y are said to be adjacent, and we write $x \sim y$. We also say an edge e is incident with x and y, and e joins x and y.

Basic Definitions ...

- If two distinct vertices $x, y \in V$ are connected by an edge e, then x, y are called the endpoints (or ends) of e, and x, y are said to be adjacent, and we write $x \sim y$. We also say an edge e is incident with x and y, and e joins x and y.
- The number of edges that are incident with x (i.e., have x as their endpoint) $=$ the degree (or valency) of x and write $d(x)$ or d_{x}.

Basic Definitions ...

- If two distinct vertices $x, y \in V$ are connected by an edge e, then x, y are called the endpoints (or ends) of e, and x, y are said to be adjacent, and we write $x \sim y$. We also say an edge e is incident with x and y, and e joins x and y.
- The number of edges that are incident with x (i.e., have x as their endpoint) $=$ the degree (or valency) of x and write $d(x)$ or d_{x}.
- If the number of vertices $|V|<\infty$, then G is called a finite graph; otherwise an infinite graph.

Basic Definitions ...

- If two distinct vertices $x, y \in V$ are connected by an edge e, then x, y are called the endpoints (or ends) of e, and x, y are said to be adjacent, and we write $x \sim y$. We also say an edge e is incident with x and y, and e joins x and y.
- The number of edges that are incident with x (i.e., have x as their endpoint) $=$ the degree (or valency) of x and write $d(x)$ or d_{x}.
- If the number of vertices $|V|<\infty$, then G is called a finite graph; otherwise an infinite graph.
- If each edge in E has a direction, G is called a directed graph or digraph, and such E is written as \boldsymbol{E}.

$$
e=[x, y] \quad \bar{e}=[y, x]
$$

Basic Definitions ...

- If two distinct vertices $x, y \in V$ are connected by an edge e, then x, y are called the endpoints (or ends) of e, and x, y are said to be adjacent, and we write $x \sim y$. We also say an edge e is incident with x and y, and e joins x and y.
- The number of edges that are incident with x (i.e., have x as their endpoint) $=$ the degree (or valency) of x and write $d(x)$ or d_{x}.
- If the number of vertices $|V|<\infty$, then G is called a finite graph; otherwise an infinite graph.
- If each edge in E has a direction, G is called a directed graph or digraph, and such E is written as \boldsymbol{E}.

$e=[x, y]$
$\bar{e}=[y, x]$
- If $e=[x, y]$, then x and y are called a tail and a head, respectively.

Basic Definitions ...

- If an edge e does not have a direction, we write $e=(x, y)$.

Basic Definitions ...

- If an edge e does not have a direction, we write $e=(x, y)$.
- If each edge $e=(x, y)$ of G has a weight (normally positive), written as $w_{e}=w_{x y}$, then G is called a weighted graph. G is said to be unweighted if $w_{e}=$ const. for each $e \in E$, and normally w_{e} is set to 1 .

Basic Definitions ...

- If an edge e does not have a direction, we write $e=(x, y)$.
- If each edge $e=(x, y)$ of G has a weight (normally positive), written as $w_{e}=w_{x y}$, then G is called a weighted graph. G is said to be unweighted if $w_{e}=$ const. for each $e \in E$, and normally w_{e} is set to 1 .
- For a given $x, y \in V$, a sequence of vertices in $V, c=\left(v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right)$, is called a path connecting x and y if $\nu_{1}=x, v_{k+1}=y$, and $\nu_{1} \sim v_{2} \sim \cdots \sim v_{k} \sim v_{k+1}$. We say the length (or cost) $\ell(c)$ of a path c is the sum of its corresponding edge weights, i.e., $\ell(c):=\sum_{j=1}^{k} w_{v_{j}, v_{j+1}}$. Let $\mathscr{P}(x, y) \subset G$ be a set of all possible paths connecting x and y.

Basic Definitions ...

- If an edge e does not have a direction, we write $e=(x, y)$.
- If each edge $e=(x, y)$ of G has a weight (normally positive), written as $w_{e}=w_{x y}$, then G is called a weighted graph. G is said to be unweighted if $w_{e}=$ const. for each $e \in E$, and normally w_{e} is set to 1 .
- For a given $x, y \in V$, a sequence of vertices in $V, c=\left(v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right)$, is called a path connecting x and y if $v_{1}=x, v_{k+1}=y$, and $v_{1} \sim v_{2} \sim \cdots \sim v_{k} \sim v_{k+1}$. We say the length (or cost) $\ell(c)$ of a path c is the sum of its corresponding edge weights, i.e., $\ell(c):=\sum_{j=1}^{k} w_{v_{j}, v_{j+1}}$. Let $\mathscr{P}(x, y) \subset G$ be a set of all possible paths connecting x and y.
- For any two vertices in V, if \exists a path connecting them, then such a graph G is said to be connected. In the case of a digraph, it is said to be strongly connected.

Basic Definitions ...

- If an edge e does not have a direction, we write $e=(x, y)$.
- If each edge $e=(x, y)$ of G has a weight (normally positive), written as $w_{e}=w_{x y}$, then G is called a weighted graph. G is said to be unweighted if $w_{e}=$ const. for each $e \in E$, and normally w_{e} is set to 1 .
- For a given $x, y \in V$, a sequence of vertices in $V, c=\left(v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right)$, is called a path connecting x and y if $v_{1}=x, v_{k+1}=y$, and $v_{1} \sim v_{2} \sim \cdots \sim v_{k} \sim v_{k+1}$. We say the length (or cost) $\ell(c)$ of a path c is the sum of its corresponding edge weights, i.e., $\ell(c):=\sum_{j=1}^{k} w_{v_{j}, v_{j+1}}$. Let $\mathscr{P}(x, y) \subset G$ be a set of all possible paths connecting x and y.
- For any two vertices in V, if \exists a path connecting them, then such a graph G is said to be connected. In the case of a digraph, it is said to be strongly connected.
- $d(x, y):=\inf _{c \in \mathscr{P}(x, y)} \ell(c)$ is called the graph distance between x and y.

Basic Definitions ...

- If an edge e does not have a direction, we write $e=(x, y)$.
- If each edge $e=(x, y)$ of G has a weight (normally positive), written as $w_{e}=w_{x y}$, then G is called a weighted graph. G is said to be unweighted if $w_{e}=$ const. for each $e \in E$, and normally w_{e} is set to 1 .
- For a given $x, y \in V$, a sequence of vertices in $V, c=\left(v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right)$, is called a path connecting x and y if $\nu_{1}=x, v_{k+1}=y$, and $\nu_{1} \sim v_{2} \sim \cdots \sim v_{k} \sim v_{k+1}$. We say the length (or cost) $\ell(c)$ of a path c is the sum of its corresponding edge weights, i.e., $\ell(c):=\sum_{j=1}^{k} w_{v_{j}, v_{j+1}}$. Let $\mathscr{P}(x, y) \subset G$ be a set of all possible paths connecting x and y.
- For any two vertices in V, if \exists a path connecting them, then such a graph G is said to be connected. In the case of a digraph, it is said to be strongly connected.
- $d(x, y):=\inf _{c \in \mathscr{P}(x, y)} \ell(c)$ is called the graph distance between x and y.
- $\operatorname{diam}(G):=\sup _{x, y \in V} d(x, y)$ is called the diameter of G. Note that $\operatorname{diam}(G)<\infty \Longleftrightarrow G$ is finite.

Basic Definitions ...

- We say two graphs are isomorphic if \exists a one-to-one correspondence between the vertex sets such that if two vertices are joined by an edge in one graph, the corresponding vertices are also joined by an edge in the other graph.

Basic Definitions ...

- The complete graph K_{n} on n vertices is a simple graph that has all possible $\binom{n}{2}$ edges.

If all the vertices of a graph has the same degree, the graph is called

Basic Definitions ...

- The complete graph K_{n} on n vertices is a simple graph that has all possible $\binom{n}{2}$ edges.

- If all the vertices of a graph has the same degree, the graph is called regular. Hence, K_{n} is regular.

Basic Definitions ...

- A polygon is a finite connected graph that is regular of degree 2. $P_{n}=$ a polygon with n vertices.

$P_{3}=K_{3}$

P_{4}

P_{5}

Basic Definitions ...

- A polygon is a finite connected graph that is regular of degree 2. $P_{n}=$ a polygon with n vertices.

$P_{3}=K_{3}$

P_{4}

P_{5}
- The complete bipartite graph $K_{n, m}$ has $n+m$ vertices a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}, and all $n m$ pairs $\left(a_{i}, b_{j}\right)$ as edges. An example: $K_{2,3}$:

Outline

(1) Basic Definitions in Graph Theory

(2) Matrices Associated with a Graph

(3) Why Graph Laplacians?

Matrices Associated with a Graph

- The adjacency matrix $A=A(G)=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}, n=|V|$, for an unweighted graph G consists of the following entries:

$$
a_{i j}:=\left\{\begin{array}{lc}
1 & \text { if } v_{i} \sim v_{j} ; \\
0 & \text { otherwise } .
\end{array}\right.
$$

Matrices Associated with a Graph

- The adjacency matrix $A=A(G)=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}, n=|V|$, for an unweighted graph G consists of the following entries:

$$
a_{i j}:= \begin{cases}1 & \text { if } v_{i} \sim v_{j} \\ 0 & \text { otherwise }\end{cases}
$$

- Another typical way to define its entries is based on the similarity of information at v_{i} and v_{j} :

$$
a_{i j}:=\exp \left(-\operatorname{dist}\left(v_{i}, v_{j}\right)^{2} / \epsilon^{2}\right)
$$

where dist is an appropriate distance measure (i.e., metric) defined in V, and $\epsilon>0$ is an appropriate scale parameter. This leads to a weighted graph. We will discuss later more about the weighted graphs, how to determine weights, and how to construct a graph from given datasets in general.

Matrices Associated with a Graph ...

- The degree matrix $D=D(G)=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{R}^{n \times n}$ is a diagonal matrix whose entries are:

$$
d_{i}:=d\left(\nu_{i}\right)=d_{\nu_{i}}=\sum_{j=1}^{n} a_{i j}
$$

Note that the above definition works for both unweighted and weighted graphs.

Matrices Associated with a Graph ...

- The degree matrix $D=D(G)=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{R}^{n \times n}$ is a diagonal matrix whose entries are:

$$
d_{i}:=d\left(\nu_{i}\right)=d_{\nu_{i}}=\sum_{j=1}^{n} a_{i j}
$$

Note that the above definition works for both unweighted and weighted graphs.

- The transition matrix $P=P(G)=\left(p_{i j}\right) \in \mathbb{R}^{n \times n}$ consists of the following entries:

$$
p_{i j}:=a_{i j} / d_{i} \quad \text { if } d_{i} \neq 0
$$

Matrices Associated with a Graph ...

- The degree matrix $D=D(G)=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{R}^{n \times n}$ is a diagonal matrix whose entries are:

$$
d_{i}:=d\left(\nu_{i}\right)=d_{\nu_{i}}=\sum_{j=1}^{n} a_{i j}
$$

Note that the above definition works for both unweighted and weighted graphs.

- The transition matrix $P=P(G)=\left(p_{i j}\right) \in \mathbb{R}^{n \times n}$ consists of the following entries:

$$
p_{i j}:=a_{i j} / d_{i} \quad \text { if } d_{i} \neq 0
$$

- $p_{i j}$ represents the probability of a random walk from v_{i} to v_{j} in one step: $\sum_{j} p_{i j}=1$, i.e., P is row stochastic.

Matrices Associated with a Graph ...

- The degree matrix $D=D(G)=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{R}^{n \times n}$ is a diagonal matrix whose entries are:

$$
d_{i}:=d\left(\nu_{i}\right)=d_{\nu_{i}}=\sum_{j=1}^{n} a_{i j}
$$

Note that the above definition works for both unweighted and weighted graphs.

- The transition matrix $P=P(G)=\left(p_{i j}\right) \in \mathbb{R}^{n \times n}$ consists of the following entries:

$$
p_{i j}:=a_{i j} / d_{i} \quad \text { if } d_{i} \neq 0 .
$$

- $p_{i j}$ represents the probability of a random walk from v_{i} to v_{j} in one step: $\sum_{j} p_{i j}=1$, i.e., P is row stochastic.
- $A^{\top}=A, P^{\top} \neq P, P=D^{-1} A$.

Matrices Associated with a Graph ...

- Let G be an undirected graph. Then, we can define several Laplacian matrices of G :

$$
\begin{array}{rlr}
L(G) & :=D-A & \text { Unnormalized } \\
L_{\mathrm{rw}}(G) & :=I_{n}-D^{-1} A=I_{n}-P=D^{-1} L & \text { Normalized } \\
L_{\mathrm{sym}}(G) & :=I_{n}-D^{-\frac{1}{2}} A D^{-\frac{1}{2}}=D^{-\frac{1}{2}} L D^{-\frac{1}{2}} & \text { Symmetrically-Normalized }
\end{array}
$$

Matrices Associated with a Graph ...

- Let G be an undirected graph. Then, we can define several Laplacian matrices of G :

$$
\begin{array}{rlr}
L(G) & :=D-A & \text { Unnormalized } \\
L_{\mathrm{rw}}(G) & :=I_{n}-D^{-1} A=I_{n}-P=D^{-1} L & \text { Normalized } \\
L_{\mathrm{sym}}(G) & :=I_{n}-D^{-\frac{1}{2}} A D^{-\frac{1}{2}}=D^{-\frac{1}{2}} L D^{-\frac{1}{2}} & \text { Symmetrically-Normalized }
\end{array}
$$

- The signless Laplacian is defined as follows, but we will not deal with this in this course: $Q(G):=D+A$.

Matrices Associated with a Graph ...

- Let G be an undirected graph. Then, we can define several Laplacian matrices of G :

$$
\begin{array}{rlr}
L(G) & :=D-A & \text { Unnormalized } \\
L_{\mathrm{rw}}(G) & :=I_{n}-D^{-1} A=I_{n}-P=D^{-1} L & \text { Normalized } \\
L_{\mathrm{sym}}(G) & :=I_{n}-D^{-\frac{1}{2}} A D^{-\frac{1}{2}}=D^{-\frac{1}{2}} L D^{-\frac{1}{2}} & \text { Symmetrically-Normalized }
\end{array}
$$

- The signless Laplacian is defined as follows, but we will not deal with this in this course: $Q(G):=D+A$.
- Graph Laplacians can also be defined for directed graphs, which I want to cover later in this course.

Functions Defined on a Graph

$$
\begin{aligned}
C(V) & :=\{\text { all functions defined on } V\} \\
C_{0}(V) & :=\{f \in C(V) \mid \operatorname{supp} f \text { is a finite subset of } V\} \\
\operatorname{supp} f & :=\{u \in V \mid f(u) \neq 0\} \\
\mathscr{L}^{2}(V) & :=\{f \in C(V) \mid\|f\|:=\sqrt{\langle f, f\rangle}<\infty\} \\
\langle f, g\rangle & :=\sum_{u \in V} d(u) f(u) g(u) .
\end{aligned}
$$

Lemma

$$
\begin{gathered}
\langle P f, g\rangle=\langle f, P g\rangle \quad \forall f, g \in \mathscr{L}^{2}(V) ; \\
\|P f\| \leq\|f\| \quad \forall f \in \mathscr{L}^{2}(V) .
\end{gathered}
$$

Functions Defined on a Graph ...

- Let $f \in \mathscr{L}^{2}(V)$. Then

$$
L f\left(v_{i}\right)=d_{i} f\left(v_{i}\right)-\sum_{j=1}^{n} a_{i j} f\left(v_{j}\right)=\sum_{j=1}^{n} a_{i j}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right) .
$$

i.e., this is a generalization of the finite difference approximation to the Laplace operator.

Functions Defined on a Graph ...

- Let $f \in \mathscr{L}^{2}(V)$. Then

$$
L f\left(\nu_{i}\right)=d_{i} f\left(\nu_{i}\right)-\sum_{j=1}^{n} a_{i j} f\left(v_{j}\right)=\sum_{j=1}^{n} a_{i j}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right) .
$$

i.e., this is a generalization of the finite difference approximation to the Laplace operator.

- On the other hand,

$$
\begin{gathered}
L_{\mathrm{rw}} f\left(\nu_{i}\right)=f\left(v_{i}\right)-\sum_{j=1}^{n} p_{i j} f\left(v_{j}\right)=\frac{1}{d_{i}} \sum_{j=1}^{n} a_{i j}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right) . \\
L_{\mathrm{sym}} f\left(\nu_{i}\right)=f\left(\nu_{i}\right)-\frac{1}{\sqrt{d_{i}}} \sum_{j=1}^{n} \frac{a_{i j}}{\sqrt{d_{j}}} f\left(v_{j}\right)=\frac{1}{\sqrt{d_{i}}} \sum_{j=1}^{n} a_{i j}\left(\frac{f\left(v_{i}\right)}{\sqrt{d_{i}}}-\frac{f\left(v_{j}\right)}{\sqrt{d_{j}}}\right) .
\end{gathered}
$$

Functions Defined on a Graph ...

- Let $f \in \mathscr{L}^{2}(V)$. Then

$$
L f\left(v_{i}\right)=d_{i} f\left(v_{i}\right)-\sum_{j=1}^{n} a_{i j} f\left(v_{j}\right)=\sum_{j=1}^{n} a_{i j}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right) .
$$

i.e., this is a generalization of the finite difference approximation to the Laplace operator.

- On the other hand,

$$
\begin{gathered}
L_{\mathrm{rw}} f\left(v_{i}\right)=f\left(v_{i}\right)-\sum_{j=1}^{n} p_{i j} f\left(v_{j}\right)=\frac{1}{d_{i}} \sum_{j=1}^{n} a_{i j}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right) . \\
L_{\mathrm{sym}} f\left(v_{i}\right)=f\left(v_{i}\right)-\frac{1}{\sqrt{d_{i}}} \sum_{j=1}^{n} \frac{a_{i j}}{\sqrt{d_{j}}} f\left(v_{j}\right)=\frac{1}{\sqrt{d_{i}}} \sum_{j=1}^{n} a_{i j}\left(\frac{f\left(v_{i}\right)}{\sqrt{d_{i}}}-\frac{f\left(v_{j}\right)}{\sqrt{d_{j}}}\right) .
\end{gathered}
$$

- Note that these definitions of the graph Laplacian corresponds to $-\Delta$ in \mathbb{R}^{d}, i.e., they are nonnegative operators (or positive semi-definite matrices).

Functions Defined on a Graph...

- A function $f \in C(V)$ is called harmonic if

$$
L f=0, L_{\mathrm{rw}} f=0, \text { or } L_{\mathrm{sym}} f=0 .
$$

- These corresponds to:

Functions Defined on a Graph ...

- A function $f \in C(V)$ is called harmonic if

$$
L f=0, L_{\mathrm{rw}} f=0, \text { or } L_{\mathrm{sym}} f=0 .
$$

- A function $f \in C(V)$ is called superharmonic at $x \in V$ if

$$
L f(x) \geq 0, L_{\mathrm{rw}} f(x) \geq 0, \text { or } L_{\mathrm{sym}} f(x) \geq 0 .
$$

Functions Defined on a Graph ...

- A function $f \in C(V)$ is called harmonic if

$$
L f=0, L_{\mathrm{rw}} f=0, \text { or } L_{\mathrm{sym}} f=0 .
$$

- A function $f \in C(V)$ is called superharmonic at $x \in V$ if

$$
L f(x) \geq 0, L_{\mathrm{rw}} f(x) \geq 0, \text { or } L_{\mathrm{sym}} f(x) \geq 0 .
$$

- These corresponds to:

$$
f\left(\nu_{i}\right) \geq \frac{1}{d_{i}} \sum_{j=1}^{n} a_{i j} f\left(v_{j}\right), f\left(v_{i}\right) \geq \sum_{j=1}^{n} p_{i j} f\left(v_{j}\right), \text { or } f\left(v_{i}\right) \geq \sum_{j=1}^{n} \frac{a_{i j}}{\sqrt{d_{i}} \sqrt{d_{j}}} f\left(v_{j}\right) .
$$

Functions Defined on a Graph

- A function $f \in C(V)$ is called harmonic if

$$
L f=0, L_{\mathrm{rw}} f=0, \text { or } L_{\mathrm{sym}} f=0 .
$$

- A function $f \in C(V)$ is called superharmonic at $x \in V$ if

$$
L f(x) \geq 0, L_{\mathrm{rw}} f(x) \geq 0, \text { or } L_{\mathrm{sym}} f(x) \geq 0 .
$$

- These corresponds to:

$$
f\left(v_{i}\right) \geq \frac{1}{d_{i}} \sum_{j=1}^{n} a_{i j} f\left(v_{j}\right), f\left(v_{i}\right) \geq \sum_{j=1}^{n} p_{i j} f\left(v_{j}\right), \text { or } f\left(v_{i}\right) \geq \sum_{j=1}^{n} \frac{a_{i j}}{\sqrt{d_{i}} \sqrt{d_{j}}} f\left(v_{j}\right)
$$

- One can also generalize various analytic concepts such as Green's functions, Green's identity, analytic functions, Cauchy-Riemann equations, ..., to the graph setting!

Derivatives and Green's Identity

Let $C(\boldsymbol{E}):=\{\varphi$ defined on $\boldsymbol{E} \mid \varphi(\bar{e})=-\varphi(e), e \in \boldsymbol{E}\}$. For $f \in C(V)$, define the derivative $d f \in C(\boldsymbol{E})$ of f as

$$
d f(e)=d f([x, y]):=f(y)-f(x) .
$$

Derivatives and Green's Identity

Let $C(\boldsymbol{E}):=\{\varphi$ defined on $\boldsymbol{E} \mid \varphi(\bar{e})=-\varphi(e), e \in \boldsymbol{E}\}$. For $f \in C(V)$, define the derivative $d f \in C(\boldsymbol{E})$ of f as

$$
d f(e)=d f([x, y]):=f(y)-f(x)
$$

Theorem (The discrete version of Green's first identity, Dodziuk 1984)

$$
\forall f_{1}, f_{2} \in C_{0}(V),\left\langle d f_{1}, d f_{2}\right\rangle=\left\langle L_{\mathrm{rw}} f_{1}, f_{2}\right\rangle=\sum_{u \in V} L f_{1}(u) f_{2}(u) .
$$

Derivatives and Green's Identity

Let $C(\boldsymbol{E}):=\{\varphi$ defined on $\boldsymbol{E} \mid \varphi(\bar{e})=-\varphi(e), e \in \boldsymbol{E}\}$. For $f \in C(V)$, define the derivative $d f \in C(\boldsymbol{E})$ of f as

$$
d f(e)=d f([x, y]):=f(y)-f(x) .
$$

Theorem (The discrete version of Green's first identity, Dodziuk 1984)

$$
\forall f_{1}, f_{2} \in C_{0}(V),\left\langle d f_{1}, d f_{2}\right\rangle=\left\langle L_{\mathrm{rw}} f_{1}, f_{2}\right\rangle=\sum_{u \in V} L f_{1}(u) f_{2}(u) .
$$

Corollary

L, L_{rw}, and L_{sym} are nonnegative operators, e.g.,

$$
\left\langle L_{\mathrm{rw}} f, f\right\rangle=\sum_{u \in V} L f(u) f(u)=\langle d f, d f\rangle \geq 0 .
$$

The Minimum Principle

Theorem (The discrete version of the minimum principle)
Let $f \in C(V)$ be superharmonic at $x \in V$. If $f(x) \leq \min _{y \sim x} f(y)$, then $f(z)=f(x), \forall z \sim x$.

The Minimum Principle

Theorem (The discrete version of the minimum principle)
Let $f \in C(V)$ be superharmonic at $x \in V$. If $f(x) \leq \min _{y \sim x} f(y)$, then $f(z)=f(x), \forall z \sim x$.

Proof. From the superharmonicity of f at $x \in V$, we have

$$
\frac{1}{d_{x}} \sum_{y \sim x} a_{x y} f(y) \leq f(x)
$$

On the other hand, from the condition of this theorem, we have

$$
\frac{1}{d_{x}} \sum_{y \sim x} a_{x y} f(y) \geq \frac{1}{d_{x}} \sum_{y \sim x} a_{x y} f(x)=f(x) .
$$

Hence, we must have $\frac{1}{d_{x}} \sum_{y \sim x} a_{x y} f(y)=f(x)$. But this can happen only if $f(z)=f(x), \forall z \sim x$.

Outline

(1) Basic Definitions in Graph Theory

(2) Matrices Associated with a Graph
(3) Why Graph Laplacians?

Why Graph Laplacians?

- After all, sines (cosines) are the eigenfunctions of the Laplacian on the rectangular domain with Dirichlet (Neumann) boundary condition.

Why Graph Laplacians?

- After all, sines (cosines) are the eigenfunctions of the Laplacian on the rectangular domain with Dirichlet (Neumann) boundary condition.
- Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave Functions, are part of the eigenfunctions of the Laplacian for the spherical, cylindrical, and spheroidal domains, respectively.

Why Graph Laplacians?

- After all, sines (cosines) are the eigenfunctions of the Laplacian on the rectangular domain with Dirichlet (Neumann) boundary condition.
- Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave Functions, are part of the eigenfunctions of the Laplacian for the spherical, cylindrical, and spheroidal domains, respectively.
- Hence, the eigenfunction expansion of data measured at the vertices using the eigenfunctions (in fact, eigenvectors) of a graph Laplacian corresponds to Fourier (or spectral) analysis of the data on that graph.

Why Graph Laplacians?

- After all, sines (cosines) are the eigenfunctions of the Laplacian on the rectangular domain with Dirichlet (Neumann) boundary condition.
- Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave Functions, are part of the eigenfunctions of the Laplacian for the spherical, cylindrical, and spheroidal domains, respectively.
- Hence, the eigenfunction expansion of data measured at the vertices using the eigenfunctions (in fact, eigenvectors) of a graph Laplacian corresponds to Fourier (or spectral) analysis of the data on that graph.
- They also play a useful role to understand a graph (e.g., the discrete nodal domain theorem useful for grouping vertices; see Bıyıkoğlu, Leydold, \& Stadler, LNM, Springer, 2007)

Why Graph Laplacians?

- Furthermore, the eigenvalues of $L(G)$ reflect various intrinsic geometric and topological information about the graph including
- diameter (the maximum distance over all pairs of vertices) - mean distance.
- Fan Chung: Spectral Graph Theory, AMS, 1997

Why Graph Laplacians?

- Furthermore, the eigenvalues of $L(G)$ reflect various intrinsic geometric and topological information about the graph including
- connectivity or the number of separated components
- mean distance,
- Fan Chung: SDec rar Graph Theory, ANS, 1997

Why Graph Laplacians?

- Furthermore, the eigenvalues of $L(G)$ reflect various intrinsic geometric and topological information about the graph including
- connectivity or the number of separated components
- diameter (the maximum distance over all pairs of vertices)
- Fan Chung: Spectral Graph Theory, AMS, 1997

Why Graph Laplacians?

- Furthermore, the eigenvalues of $L(G)$ reflect various intrinsic geometric and topological information about the graph including
- connectivity or the number of separated components
- diameter (the maximum distance over all pairs of vertices)
- mean distance, ...

Why Graph Laplacians?

- Furthermore, the eigenvalues of $L(G)$ reflect various intrinsic geometric and topological information about the graph including
- connectivity or the number of separated components
- diameter (the maximum distance over all pairs of vertices)
- mean distance, ...
- Fan Chung: Spectral Graph Theory, AMS, 1997

Why Graph Laplacians?

- Furthermore, the eigenvalues of $L(G)$ reflect various intrinsic geometric and topological information about the graph including
- connectivity or the number of separated components
- diameter (the maximum distance over all pairs of vertices)
- mean distance, ...
- Fan Chung: Spectral Graph Theory, AMS, 1997
"This monograph is an intertwined tale of eigenvalues and their use in unlocking a thousand secrets about graphs."

A Simple Yet Important Example: A Path Graph

The eigenvectors of this matrix are exactly the DCT Type // basis vectors (used for the JPEG standard) while those of the symmetrically-normalized Graph Laplacian matrix $L_{\text {sym }}=D^{-\frac{1}{2}} L D^{-\frac{1}{2}}$ are the DCT Type I basis! (See G. Strang: "The discrete cosine transform," SIAM Review, vol. 41, pp. 135-147, 1999).

- $\lambda_{k}=2-2 \cos (\pi k / n)=4 \sin ^{2}(\pi k / 2 n), k=0: n-1$.
- $\boldsymbol{\phi}_{k}(\ell)=a_{k ; n} \cos \left(\pi k\left(\ell+\frac{1}{2}\right) / n\right), k, \ell=0: n-1 ; a_{k ; n}$ is a const. s.t. $\left\|\boldsymbol{\phi}_{k}\right\|_{2}=1$.
- In this simple case, λ (eigenvalue) is a monotonic function w.r.t. the frequency, which is the eigenvalue index k. For a general graph, however, the notion of frequency is not well defined.

