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Basic Definitions in Graph Theory

Basic Definitions

A graph G consists of a set of vertices (or nodes) V and a set of edges
E connecting some pairs of vertices in V . We write G = (V ,E).
An edge connecting a vertex x ∈V and itself is called a loop.
For x, y ∈V , if ∃ more than one edge connecting x and y , they are
called multiple edges.
A graph having loops or multiple edges is called a multiple graph (or
multigraph); otherwise it is called a simple graph.

A multiple graph A simple graph

In this class, we shall only deal with simple graphs. So, when we say a
graph, we mean a simple graph.
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Basic Definitions in Graph Theory

Basic Definitions . . .
If two distinct vertices x, y ∈V are connected by an edge e, then x, y
are called the endpoints (or ends) of e, and x, y are said to be
adjacent, and we write x ∼ y . We also say an edge e is incident with x
and y , and e joins x and y .
The number of edges that are incident with x (i.e., have x as their
endpoint) = the degree (or valency) of x and write d(x) or dx .
If the number of vertices |V | <∞, then G is called a finite graph;
otherwise an infinite graph.
If each edge in E has a direction, G is called a directed graph or
digraph, and such E is written as E .

x

y

e

e = [x , y ]

x

y

ē

ē = [y , x ]

If e = [x, y], then x and y are called a tail and a head, respectively.
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Basic Definitions in Graph Theory

Basic Definitions . . .
If an edge e does not have a direction, we write e = (x, y).

If each edge e = (x, y) of G has a weight (normally positive), written as
we = wx y , then G is called a weighted graph. G is said to be unweighted if
we = const. for each e ∈ E , and normally we is set to 1.

For a given x, y ∈V , a sequence of vertices in V , c = (v1, v2, . . . , vk , vk+1), is
called a path connecting x and y if v1 = x, vk+1 = y , and
v1 ∼ v2 ∼ ·· · ∼ vk ∼ vk+1. We say the length (or cost) `(c) of a path c is the
sum of its corresponding edge weights, i.e., `(c) := ∑k

j=1 wv j ,v j+1 . Let
P (x, y) ⊂G be a set of all possible paths connecting x and y .

For any two vertices in V , if ∃ a path connecting them, then such a graph G
is said to be connected. In the case of a digraph, it is said to be strongly
connected.

d(x, y) := inf
c∈P (x,y)

`(c) is called the graph distance between x and y .

diam(G) := sup
x,y∈V

d(x, y) is called the diameter of G. Note that

diam(G) <∞⇐⇒ G is finite.
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Basic Definitions in Graph Theory

Basic Definitions . . .

We say two graphs are isomorphic if ∃ a one-to-one correspondence
between the vertex sets such that if two vertices are joined by an edge
in one graph, the corresponding vertices are also joined by an edge in
the other graph.

isomorphic≈
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Basic Definitions in Graph Theory

Basic Definitions . . .

The complete graph Kn on n vertices is a simple graph that has all
possible

(n
2

)
edges.

K3 K4 K5

If all the vertices of a graph has the same degree, the graph is called
regular. Hence, Kn is regular.
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Basic Definitions in Graph Theory

Basic Definitions . . .
A polygon is a finite connected graph that is regular of degree 2. Pn =
a polygon with n vertices.

P3 = K3 P4 P5

The complete bipartite graph Kn,m has n +m vertices a1, . . . , an ,
b1, . . . ,bm , and all nm pairs (ai ,b j ) as edges. An example: K2,3:

a1

a2

b1

b2

b3
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Matrices Associated with a Graph

Matrices Associated with a Graph

The adjacency matrix A = A(G) = (ai j ) ∈Rn×n , n = |V |, for an
unweighted graph G consists of the following entries:

ai j :=
{

1 if vi ∼ v j ;

0 otherwise.

Another typical way to define its entries is based on the similarity of
information at vi and v j :

ai j := exp(−dist(vi , v j )2/ε2)

where dist is an appropriate distance measure (i.e., metric) defined in
V , and ε> 0 is an appropriate scale parameter. This leads to a
weighted graph. We will discuss later more about the weighted
graphs, how to determine weights, and how to construct a graph from
given datasets in general.
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Matrices Associated with a Graph

Matrices Associated with a Graph . . .

The degree matrix D = D(G) = diag(d1, . . . ,dn) ∈Rn×n is a diagonal
matrix whose entries are:

di := d(vi ) = dvi =
n∑

j=1
ai j .

Note that the above definition works for both unweighted and
weighted graphs.
The transition matrix P = P (G) = (pi j ) ∈Rn×n consists of the following
entries:

pi j := ai j /di if di 6= 0.

pi j represents the probability of a random walk from vi to v j in one
step:

∑
j pi j = 1, i.e., P is row stochastic.

AT = A, PT 6= P , P = D−1 A .
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Matrices Associated with a Graph

Matrices Associated with a Graph . . .

Let G be an undirected graph. Then, we can define several Laplacian
matrices of G:

L(G) := D − A Unnormalized

Lrw(G) := In −D−1 A = In −P = D−1L Normalized

Lsym(G) := In −D− 1
2 AD− 1

2 = D− 1
2 LD− 1

2 Symmetrically-Normalized

The signless Laplacian is defined as follows, but we will not deal with
this in this course: Q(G) := D + A.
Graph Laplacians can also be defined for directed graphs, which I want
to cover later in this course.
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Matrices Associated with a Graph

Functions Defined on a Graph

C (V ) := {all functions defined on V }

C0(V ) := { f ∈C (V ) |supp f is a finite subset of V }

supp f := {u ∈V | f (u) 6= 0}

L 2(V ) := { f ∈C (V ) |‖ f ‖ :=
√〈

f , f
〉<∞}〈

f , g
〉

:= ∑
u∈V

d(u) f (u)g (u).

Lemma 〈
P f , g

〉= 〈
f ,P g

〉 ∀ f , g ∈L 2(V );

‖P f ‖ ≤ ‖ f ‖ ∀ f ∈L 2(V ).
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Matrices Associated with a Graph

Functions Defined on a Graph . . .

Let f ∈L 2(V ). Then

L f (vi ) = di f (vi )−
n∑

j=1
ai j f (v j ) =

n∑
j=1

ai j
(

f (vi )− f (v j )
)

.

i.e., this is a generalization of the finite difference approximation to
the Laplace operator.
On the other hand,

Lrw f (vi ) = f (vi )−
n∑

j=1
pi j f (v j ) = 1

di

n∑
j=1

ai j
(

f (vi )− f (v j )
)

.

Lsym f (vi ) = f (vi )− 1√
di

n∑
j=1

ai j√
d j

f (v j ) = 1√
di

n∑
j=1

ai j

 f (vi )√
di

− f (v j )√
d j

 .

Note that these definitions of the graph Laplacian corresponds to −∆
in Rd , i.e., they are nonnegative operators (or positive semi-definite
matrices).
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Matrices Associated with a Graph

Functions Defined on a Graph . . .

A function f ∈C (V ) is called harmonic if

L f = 0, Lrw f = 0, or Lsym f = 0.

A function f ∈C (V ) is called superharmonic at x ∈V if

L f (x) ≥ 0, Lrw f (x) ≥ 0, or Lsym f (x) ≥ 0.

These corresponds to:

f (vi ) ≥ 1

di

n∑
j=1

ai j f (v j ), f (vi ) ≥
n∑

j=1
pi j f (v j ), or f (vi ) ≥

n∑
j=1

ai j√
di

√
d j

f (v j ).

One can also generalize various analytic concepts such as Green’s
functions, Green’s identity, analytic functions, Cauchy-Riemann
equations, . . . , to the graph setting!
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Matrices Associated with a Graph

Derivatives and Green’s Identity

Let C (E ) := {ϕ defined on E |ϕ(ē) =−ϕ(e),e ∈ E }. For f ∈C (V ), define the
derivative d f ∈C (E ) of f as

d f (e) = d f ([x, y]) := f (y)− f (x).

Theorem (The discrete version of Green’s first identity, Dodziuk 1984)

∀ f1, f2 ∈C0(V ),
〈

d f1,d f2
〉= 〈

Lrw f1, f2
〉= ∑

u∈V
L f1(u) f2(u).

Corollary
L, Lrw, and Lsym are nonnegative operators, e.g.,〈

Lrw f , f
〉= ∑

u∈V
L f (u) f (u) = 〈

d f ,d f
〉≥ 0.
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Matrices Associated with a Graph

The Minimum Principle

Theorem (The discrete version of the minimum principle)

Let f ∈C (V ) be superharmonic at x ∈V . If f (x) ≤ miny∼x f (y), then
f (z) = f (x), ∀z ∼ x.

Proof. From the superharmonicity of f at x ∈V , we have

1

dx

∑
y∼x

ax y f (y) ≤ f (x).

On the other hand, from the condition of this theorem, we have

1

dx

∑
y∼x

ax y f (y) ≥ 1

dx

∑
y∼x

ax y f (x) = f (x).

Hence, we must have
1

dx

∑
y∼x

ax y f (y) = f (x). But this can happen only if

f (z) = f (x), ∀z ∼ x. ä
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Why Graph Laplacians?
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Why Graph Laplacians?

Why Graph Laplacians?

After all, sines (cosines) are the eigenfunctions of the Laplacian on the
rectangular domain with Dirichlet (Neumann) boundary condition.
Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave
Functions, are part of the eigenfunctions of the Laplacian for the
spherical, cylindrical, and spheroidal domains, respectively.
Hence, the eigenfunction expansion of data measured at the vertices
using the eigenfunctions (in fact, eigenvectors) of a graph Laplacian
corresponds to Fourier (or spectral) analysis of the data on that graph.
They also play a useful role to understand a graph (e.g., the discrete
nodal domain theorem useful for grouping vertices; see Bıyıkoğlu,
Leydold, & Stadler, LNM, Springer, 2007)
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Why Graph Laplacians?

Why Graph Laplacians? . . .

Furthermore, the eigenvalues of L(G) reflect various intrinsic geometric
and topological information about the graph including

connectivity or the number of separated components
diameter (the maximum distance over all pairs of vertices)
mean distance, . . .
Fan Chung: Spectral Graph Theory, AMS, 1997

“This monograph is an intertwined tale of eigenvalues and
their use in unlocking a thousand secrets about graphs.”
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Why Graph Laplacians?

A Simple Yet Important Example: A Path Graph



1 −1
−1 2 −1

−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 1


︸ ︷︷ ︸

L(G)

=



1
2

2

. . .
2

1


︸ ︷︷ ︸

D(G)

−



0 1
1 0 1

1 0 1

. . .
. . .

. . .
1 0 1

1 0


︸ ︷︷ ︸

A(G)

The eigenvectors of this matrix are exactly the DCT Type II basis vectors (used for the
JPEG standard) while those of the symmetrically-normalized Graph Laplacian matrix
Lsym = D− 1

2 LD− 1
2 are the DCT Type I basis! (See G. Strang: “The discrete cosine

transform,” SIAM Review, vol. 41, pp. 135–147, 1999).
λk = 2−2cos(πk/n) = 4sin2(πk/2n), k = 0 : n −1.

φk (`) = ak;n cos
(
πk

(
`+ 1

2

)
/n

)
, k,`= 0 : n −1; ak;n is a const. s.t. ‖φk‖2 = 1.

In this simple case, λ (eigenvalue) is a monotonic function w.r.t. the frequency,
which is the eigenvalue index k. For a general graph, however, the notion of
frequency is not well defined.
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