MAT 280: Harmonic Analysis on Graphs \& Networks

 Lecture 4: Graph Laplacian EigenvaluesNaoki Saito
Department of Mathematics
University of California, Davis

October 8, 2019

Outline

(1) Properties of Graph Laplacian Eigenvalues

(2) Algebraic Connectivity $a(G):=\lambda_{1}(G)$
(3) Wiener Index

Outline

(1) Properties of Graph Laplacian Eigenvalues

(2) Algebraic Connectivity $a(G):=\lambda_{1}(G)$

Notations and Definitions

- In this lecture, we only consider undirected and unweighted graphs and their unnormalized Laplacians $L(G)=D(G)-A(G)$.
or symmetrically-normalized graph Laplacians.
orientation to turn G into a directed graph temporarily. Then let us define the directed incidence matrix $R=R(G)=\left(r_{i j}\right) \in \mathbb{R}^{n \times m}$ of G by

Notations and Definitions

- In this lecture, we only consider undirected and unweighted graphs and their unnormalized Laplacians $L(G)=D(G)-A(G)$.
- It is your exercise to see how the statements change for the normalized or symmetrically-normalized graph Laplacians.

Notations and Definitions

- In this lecture, we only consider undirected and unweighted graphs and their unnormalized Laplacians $L(G)=D(G)-A(G)$.
- It is your exercise to see how the statements change for the normalized or symmetrically-normalized graph Laplacians.
- Let $|V(G)|=n,|E(G)|=m$, and assign each edge an arbitrary orientation to turn G into a directed graph temporarily. Then let us define the directed incidence matrix $R=R(G)=\left(r_{i j}\right) \in \mathbb{R}^{n \times m}$ of G by

$$
r_{i j}= \begin{cases}1 & \text { if } e_{j}=\left[v_{i^{\prime}}, v_{i}\right] \text { for some } i^{\prime} ; \\ -1 & \text { if } e_{j}=\left[\nu_{i}, v_{i^{\prime}}\right] \text { for some } i^{\prime} ; \\ 0 & \text { otherwise. }\end{cases}
$$

Notations and Definitions

- In this lecture, we only consider undirected and unweighted graphs and their unnormalized Laplacians $L(G)=D(G)-A(G)$.
- It is your exercise to see how the statements change for the normalized or symmetrically-normalized graph Laplacians.
- Let $|V(G)|=n,|E(G)|=m$, and assign each edge an arbitrary orientation to turn G into a directed graph temporarily. Then let us define the directed incidence matrix $R=R(G)=\left(r_{i j}\right) \in \mathbb{R}^{n \times m}$ of G by

$$
r_{i j}= \begin{cases}1 & \text { if } e_{j}=\left[v_{i^{\prime}}, v_{i}\right] \text { for some } i^{\prime} ; \\ -1 & \text { if } e_{j}=\left[\nu_{i}, v_{i^{\prime}}\right] \text { for some } i^{\prime} ; \\ 0 & \text { otherwise } .\end{cases}
$$

- Then, we can show that $L(G)=R(G) R(G)^{\mathrm{T}}$; hence it is positive semi-definite. Note that $L(G)$ is orientation independent.

Notations and Definitions ...

- Hence, we can sort the eigenvalues of $L(G)$ as
$0=\lambda_{0}(G) \leq \lambda_{1}(G) \leq \cdots \leq \lambda_{n-1}(G)$ and denote the set of these eigenvalues by $\Lambda(G)$.

Notations and Definitions ...

- Hence, we can sort the eigenvalues of $L(G)$ as
$0=\lambda_{0}(G) \leq \lambda_{1}(G) \leq \cdots \leq \lambda_{n-1}(G)$ and denote the set of these eigenvalues by $\Lambda(G)$.
- $m_{G}(\lambda):=$ the multiplicity of λ.

Notations and Definitions ...

- Hence, we can sort the eigenvalues of $L(G)$ as $0=\lambda_{0}(G) \leq \lambda_{1}(G) \leq \cdots \leq \lambda_{n-1}(G)$ and denote the set of these eigenvalues by $\Lambda(G)$.
- $m_{G}(\lambda):=$ the multiplicity of λ.
- Let $I \subset \mathbb{R}$ be an interval of the real line. Then define $m_{G}(I):=\#\left\{\lambda_{k}(G) \in I\right\}$.

General Properties of Graph Laplacian Eigenvalues

- Graph Laplacian matrices of the same graph are permutation-similar. In fact, graphs G_{1} and G_{2} are isomorphic iff there exists a permutation matrix P such that $L\left(G_{2}\right)=P^{\top} L\left(G_{1}\right) P$.
and the eigenspace corresponding to the zero eigenvalues is spanned by the indicator vectors of each connected component.

General Properties of Graph Laplacian Eigenvalues

- Graph Laplacian matrices of the same graph are permutation-similar. In fact, graphs G_{1} and G_{2} are isomorphic iff there exists a permutation matrix P such that $L\left(G_{2}\right)=P^{\top} L\left(G_{1}\right) P$.
- $\operatorname{rank} L(G)=n-m_{G}(0)$ where $m_{G}(0)$ turns out to be the number of connected components of G. Easy to check that $L(G)$ becomes $m_{G}(0)$ diagonal blocks, and the eigenspace corresponding to the zero eigenvalues is spanned by the indicator vectors of each connected component.

General Properties of Graph Laplacian Eigenvalues

- Graph Laplacian matrices of the same graph are permutation-similar. In fact, graphs G_{1} and G_{2} are isomorphic iff there exists a permutation matrix P such that $L\left(G_{2}\right)=P^{\top} L\left(G_{1}\right) P$.
- $\operatorname{rank} L(G)=n-m_{G}(0)$ where $m_{G}(0)$ turns out to be the number of connected components of G. Easy to check that $L(G)$ becomes $m_{G}(0)$ diagonal blocks, and the eigenspace corresponding to the zero eigenvalues is spanned by the indicator vectors of each connected component.
- In particular, $\lambda_{1} \neq 0$ iff G is connected.

General Properties of Graph Laplacian Eigenvalues

- Graph Laplacian matrices of the same graph are permutation-similar. In fact, graphs G_{1} and G_{2} are isomorphic iff there exists a permutation matrix P such that $L\left(G_{2}\right)=P^{\top} L\left(G_{1}\right) P$.
- $\operatorname{rank} L(G)=n-m_{G}(0)$ where $m_{G}(0)$ turns out to be the number of connected components of G. Easy to check that $L(G)$ becomes $m_{G}(0)$ diagonal blocks, and the eigenspace corresponding to the zero eigenvalues is spanned by the indicator vectors of each connected component.
- In particular, $\lambda_{1} \neq 0$ iff G is connected.
- This led M. Fiedler (1973) to define the algebraic connectivity of G by $a(G):=\lambda_{1}(G)$, viewing it as a quantitative measure of connectivity.

Miroslav Fiedler (1926-2015)

General Properties of Graph Laplacian Eigenvalues ...

- Denote the complement of G (in K_{n}) by G^{c}.

The Petersen graph and its complement in K_{10} (from Wikipedia)

General Properties of Graph Laplacian Eigenvalues ...

- Denote the complement of G (in K_{n}) by G^{c}.

The Petersen graph and its complement in K_{10} (from Wikipedia)

- Then, we have

$$
L(G)+L\left(G^{c}\right)=L\left(K_{n}\right)=n I_{n}-J_{n},
$$

where J_{n} is the $n \times n$ matrix whose entries are all 1 . Moreover, one can easily show: $\lambda_{0}\left(K_{n}\right)=0, \lambda_{j}\left(K_{n}\right) \equiv n, 1 \leq j \leq n-1$.

General Properties of Graph Laplacian Eigenvalues ...

- Denote the complement of G (in K_{n}) by G^{c}.

The Petersen graph and its complement in K_{10} (from Wikipedia)

- Then, we have

$$
L(G)+L\left(G^{c}\right)=L\left(K_{n}\right)=n I_{n}-J_{n},
$$

where J_{n} is the $n \times n$ matrix whose entries are all 1 . Moreover, one can easily show: $\lambda_{0}\left(K_{n}\right)=0, \lambda_{j}\left(K_{n}\right) \equiv n, 1 \leq j \leq n-1$.

- We also have:

$$
\Lambda\left(G^{c}\right)=\left\{0, n-\lambda_{n-1}(G), n-\lambda_{n-2}(G), \ldots, n-\lambda_{1}(G)\right\} .
$$

General Properties of Graph Laplacian Eigenvalues ...

- From the above, we can see that

$$
\lambda_{\max }(G)=\lambda_{n-1}(G) \leq n,
$$

and $m_{G}(n)=m_{G^{c}}(0)-1$.
eigenvalues. Then
$\operatorname{diam}(G) \leq k-1$.

General Properties of Graph Laplacian Eigenvalues ...

- From the above, we can see that

$$
\lambda_{\max }(G)=\lambda_{n-1}(G) \leq n,
$$

and $m_{G}(n)=m_{G^{c}}(0)-1$.

- On the other hand, Grone and Merris showed in 1994

$$
\lambda_{\max }(G)=\lambda_{n-1}(G) \geq \max _{1 \leq j \leq n} d_{j}+1
$$

General Properties of Graph Laplacian Eigenvalues ...

- From the above, we can see that

$$
\lambda_{\max }(G)=\lambda_{n-1}(G) \leq n,
$$

and $m_{G}(n)=m_{G^{c}}(0)-1$.

- On the other hand, Grone and Merris showed in 1994

$$
\lambda_{\max }(G)=\lambda_{n-1}(G) \geq \max _{1 \leq j \leq n} d_{j}+1
$$

- Let G be a connected graph and suppose $L(G)$ has exactly k distinct eigenvalues. Then

$$
\operatorname{diam}(G) \leq k-1
$$

General Properties of Graph Laplacian Eigenvalues ...

- Now define a cut vertex by any vertex that increases the number of connected components of G when removed.

The vertices with mixed color are the cut vertices here (from Wikipedia) component of $G \backslash\{u\}$ contains k vertices, then $\lambda_{n-2}(G) \leq k+1$

General Properties of Graph Laplacian Eigenvalues ...

- Now define a cut vertex by any vertex that increases the number of connected components of G when removed.

The vertices with mixed color are the cut vertices here (from Wikipedia)

- Let u be a cut vertex of the connected graph G. If the largest component of $G \backslash\{u\}$ contains k vertices, then $\lambda_{n-2}(G) \leq k+1$.

General Properties of Graph Laplacian Eigenvalues ...

- A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a pendant vertex is called pendant neighbor.
pendant neighbors, respectively.
$p(G)-m_{G}(1) \leq q(G) \leq m_{G}(2, n]$,
where the second inequality holds if G is connected and satisfies
$2 a(G)<n$.

General Properties of Graph Laplacian Eigenvalues ...

- A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a pendant vertex is called pendant neighbor.
- Let $p(G)$ and $q(G)$ be the number of pendant vertices and that of pendant neighbors, respectively.
where the second inequality holds if G is connected and satisfies

General Properties of Graph Laplacian Eigenvalues ...

- A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a pendant vertex is called pendant neighbor.
- Let $p(G)$ and $q(G)$ be the number of pendant vertices and that of pendant neighbors, respectively.
- The number of pendant neighbors of G is bounded as:

$$
p(G)-m_{G}(1) \leq q(G) \leq m_{G}(2, n],
$$

where the second inequality holds if G is connected and satisfies $2 q(G)<n$.

Outline

(1) Properties of Graph Laplacian Eigenvalues

(2) Algebraic Connectivity $a(G):=\lambda_{1}(G)$

(3) Wiener Index

Some Graph Operations

- G is said to be k-vertex-connected if k is the size of the smallest subset of vertices such that the graph becomes disconnected if they are deleted.
k-vertex-connected

Some Graph Operations

- G is said to be k-vertex-connected if k is the size of the smallest subset of vertices such that the graph becomes disconnected if they are deleted.
- A 1-vertex-connected graph is called connected while a 2-vertex-connected graph is said to be biconnected.

Some Graph Operations

- G is said to be k-vertex-connected if k is the size of the smallest subset of vertices such that the graph becomes disconnected if they are deleted.
- A 1-vertex-connected graph is called connected while a 2-vertex-connected graph is said to be biconnected.
- The vertex-connectivity $\kappa(G)$ of G is the largest k for which G is k-vertex-connected.

Some Graph Operations

- G is said to be k-vertex-connected if k is the size of the smallest subset of vertices such that the graph becomes disconnected if they are deleted.
- A 1-vertex-connected graph is called connected while a 2-vertex-connected graph is said to be biconnected.
- The vertex-connectivity $\kappa(G)$ of G is the largest k for which G is k-vertex-connected.
- Similarly we can define the k-edge-connectedness and the edge-connectivity $\epsilon(G)$.

Some Graph Operations

- The Edge-union $G(V, E)$ of $G_{1}\left(V, E_{1}\right)$ and $G_{2}\left(V, E_{2}\right)$ is defined as $E=E_{1} \cup E_{2}$ and V is common among G, G_{1}, and G_{2}.

Some Graph Operations

- The Edge-union $G(V, E)$ of $G_{1}\left(V, E_{1}\right)$ and $G_{2}\left(V, E_{2}\right)$ is defined as $E=E_{1} \cup E_{2}$ and V is common among G, G_{1}, and G_{2}.
- The Cartesian product $G=G_{1} \times G_{2}$ (or also written as $G=G_{1} \square G_{2}$):

The Cartesian product of two graphs (from Wikipedia)

Some Graph Operations

- The Edge-union $G(V, E)$ of $G_{1}\left(V, E_{1}\right)$ and $G_{2}\left(V, E_{2}\right)$ is defined as $E=E_{1} \cup E_{2}$ and V is common among G, G_{1}, and G_{2}.
- The Cartesian product $G=G_{1} \times G_{2}$ (or also written as $G=G_{1} \square G_{2}$):

The Cartesian product of two graphs (from Wikipedia)

- $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ are said to be obtained from a vertex decomposition of $G(V, E)$ if $V=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\varnothing$.

Some Graph Operations

- The Edge-union $G(V, E)$ of $G_{1}\left(V, E_{1}\right)$ and $G_{2}\left(V, E_{2}\right)$ is defined as $E=E_{1} \cup E_{2}$ and V is common among G, G_{1}, and G_{2}.
- The Cartesian product $G=G_{1} \times G_{2}$ (or also written as $G=G_{1} \square G_{2}$):

The Cartesian product of two graphs (from Wikipedia)

- $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ are said to be obtained from a vertex decomposition of $G(V, E)$ if $V=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\varnothing$.
- If $L(G)=\left[\begin{array}{cc}L\left(G_{1}\right) & O \\ O & L\left(G_{2}\right)\end{array}\right]$, then G is said to be the direct sum of G_{1} and G_{2} and written as $G=G_{1} \oplus G_{2}$.

Algebraic Connectivity and Graph Operations (de Abreu, 2007)

Operations	Relations of $a(G), a\left(G_{i}\right), i=1,2$
G^{c}	$a\left(G^{c}\right)=n-\lambda_{n-1}$
$G_{1}=G \backslash\{e\}$	$a\left(G_{1}\right) \leq a(G)$
$G_{1}=G \backslash\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}$	$a(G) \leq a\left(G_{1}\right)+k$
$G_{1}=G \cup\{e\}$	$a(G) \leq a\left(G_{1}\right) \leq a(G)+2$
$G:$ edge-union of G_{1}, G_{2}	$a\left(G_{1}\right)+a\left(G_{2}\right)=a(G)$
$G=G_{1} \times G_{2}$	$a(G)=\min \left\{a\left(G_{1}\right), a\left(G_{2}\right)\right\}$
$G_{1}, G_{2}:$ vertex decomposition of G	$a(G) \leq \min \left\{a\left(G_{1}\right)+\left\|V_{2}\right\|, a\left(G_{2}\right)+\left\|V_{1}\right\|\right\}$
$G=G_{1} \oplus G_{2}$	$a\left(G_{1}\right)+a\left(G_{2}\right) \leq a\left(G_{1} \oplus G_{2}\right)$

Algebraic Connectivities of Specific Graphs (de Abreu, 2007)

Graph G	Algebraic Connectivity $a(G)$
Complete graph K_{n}	$a\left(K_{n}\right)=n$
Path P_{n}	$a\left(P_{n}\right)=2\left(1-\cos \frac{\pi}{n}\right)$
Cycle C_{n}	$a\left(C_{n}\right)=2\left(1-\cos \frac{2 \pi}{n}\right)$
Bipartite complete graph $K_{p, q}$	$a\left(K_{p, q}\right)=\min \{p, q\}$
Star $K_{1, q}$	$a\left(K_{1, q}\right)=1$
Cube m-dimension $C b_{m}$	$a\left(C b_{m}\right)=2$
Petersen Graph P	$a(P)=2$

Bounds to Algebraic Connectivity

- Fiedler showed in 1973 the following bounds to $a(G)$:
- $2 \min _{j} d_{j}-n+2 \leq a(G) \leq \frac{n}{n-1} \min _{j} d_{j}$ - $a(G)<\kappa(G)<\epsilon(G)<\min _{;} d_{\text {; }}$ - $2 \epsilon(G)\left(1-\cos \frac{\pi}{n}\right) \leq a(G)$ - $2\left(\cos \frac{\pi}{n}-\cos \frac{2 \pi}{n}\right) \kappa(G)-2 \cos \frac{\pi}{n}\left(1-\cos \frac{\pi}{n}\right) \max _{j} d_{j} \leq a(G)$

Bounds to Algebraic Connectivity

- Fiedler showed in 1973 the following bounds to $a(G)$:
- For $G \neq K_{n}, a(G) \leq n-2$;
- $2 \min _{j} d_{j}-n+2 \leq a(G) \leq \frac{n}{n-1} \min _{j} d_{j}$ $a(G) \leq \kappa(G) \leq \epsilon(G) \leq \min _{j} d_{j}$ - $2 n(G)\left(1-\cos \frac{\pi}{n}\right) \leq a(C)$

Bounds to Algebraic Connectivity

- Fiedler showed in 1973 the following bounds to $a(G)$:
- For $G \neq K_{n}, a(G) \leq n-2$;
- $2 \min _{j} d_{j}-n+2 \leq a(G) \leq \frac{n}{n-1} \min _{j} d_{j}$;

Bounds to Algebraic Connectivity

- Fiedler showed in 1973 the following bounds to $a(G)$:
- For $G \neq K_{n}, a(G) \leq n-2$;
- $2 \min _{j} d_{j}-n+2 \leq a(G) \leq \frac{n}{n-1} \min _{j} d_{j}$;
- $a(G) \leq \kappa(G) \leq \epsilon(G) \leq \min _{j} d_{j}$;

Bounds to Algebraic Connectivity

- Fiedler showed in 1973 the following bounds to $a(G)$:
- For $G \neq K_{n}, a(G) \leq n-2$;
- $2 \min _{j} d_{j}-n+2 \leq a(G) \leq \frac{n}{n-1} \min _{j} d_{j}$;
- $a(G) \leq \kappa(G) \leq \epsilon(G) \leq \min _{j} d_{j}$;
- $2 \epsilon(G)\left(1-\cos \frac{\pi}{n}\right) \leq a(G)$;

Bounds to Algebraic Connectivity

- Fiedler showed in 1973 the following bounds to $a(G)$:
- For $G \neq K_{n}, a(G) \leq n-2$;
- $2 \min _{j} d_{j}-n+2 \leq a(G) \leq \frac{n}{n-1} \min _{j} d_{j}$;
- $a(G) \leq \kappa(G) \leq \epsilon(G) \leq \min _{j} d_{j}$;
- $2 \epsilon(G)\left(1-\cos \frac{\pi}{n}\right) \leq a(G)$;
- $2\left(\cos \frac{\pi}{n}-\cos \frac{2 \pi}{n}\right) \kappa(G)-2 \cos \frac{\pi}{n}\left(1-\cos \frac{\pi}{n}\right) \max _{j} d_{j} \leq a(G)$.

Algebraic Connectivity of Trees

- A cycle is a connected graph where every vertex has exactly two neighbors.
- A tree T is a connected graph without cycles.
- Grone, Merris, and Sunder showed in 1990:

Algebraic Connectivity of Trees

- A cycle is a connected graph where every vertex has exactly two neighbors.
- A tree T is a connected graph without cycles.
- Grone, Merris, and Sunder showed in 1990:

Algebraic Connectivity of Trees

- A cycle is a connected graph where every vertex has exactly two neighbors.
- A tree T is a connected graph without cycles.
- Grone, Merris, and Sunder showed in 1990:

$$
a(T) \leq 2\left(1-\cos \left(\frac{\pi}{\operatorname{diam}(T)+1}\right)\right)
$$

Algebraic Connectivity of Trees

- A cycle is a connected graph where every vertex has exactly two neighbors.
- A tree T is a connected graph without cycles.
- Grone, Merris, and Sunder showed in 1990:

$$
a(T) \leq 2\left(1-\cos \left(\frac{\pi}{\operatorname{diam}(T)+1}\right)\right)
$$

- They also showed: if $T \neq K_{1, n-1}$ with $n \geq 6$, then $a(T)<0.49$.

Isoperimetric Number

- Let $S \subset V(G)$ be a nonempty subset of vertices of G.
- The isoperimetric number of G is defined as

random walk on G converges to a stationary distribution.
- For $n \geq 1$ the isonnrimetric number $i(C)$ satisfins

Isoperimetric Number

- Let $S \subset V(G)$ be a nonempty subset of vertices of G.
- $\partial S:=\{e=(u, v) \in E(G) \mid u \in S, v \notin S\}$, which is called the boundary of S.
\square
- For $n \geq 4$, the isoperimetric number $i(G)$ satisfies

Isoperimetric Number

- Let $S \subset V(G)$ be a nonempty subset of vertices of G.
- $\partial S:=\{e=(u, v) \in E(G) \mid u \in S, v \notin S\}$, which is called the boundary of S.
- The isoperimetric number of G is defined as

$$
i(G):=\inf \left\{\frac{|\partial S|}{|S|}\left|\varnothing \neq S \subset V,|S| \leq \frac{n}{2}\right\}\right.
$$

which is closely related to the conductance of a graph, i.e., how fast a random walk on G converges to a stationary distribution.

Isoperimetric Number

- Let $S \subset V(G)$ be a nonempty subset of vertices of G.
- $\partial S:=\{e=(u, v) \in E(G) \mid u \in S, v \notin S\}$, which is called the boundary of S.
- The isoperimetric number of G is defined as

$$
i(G):=\inf \left\{\frac{|\partial S|}{|S|}\left|\varnothing \neq S \subset V,|S| \leq \frac{n}{2}\right\}\right.
$$

which is closely related to the conductance of a graph, i.e., how fast a random walk on G converges to a stationary distribution.

- For $n \geq 4$, the isoperimetric number $i(G)$ satisfies

$$
i(G)<\sqrt{\left(2 \max _{v \in V(G)} d_{v}-a(G)\right) a(G)}
$$

Outline

(1) Properties of Graph Laplacian Eigenvalues

(2) Algebraic Connectivity $a(G):=\lambda_{1}(G)$

(3) Wiener Index

Wiener Index

- The distance matrix $\Delta(G)$ of G represents "distances" among the vertices, i.e., $\Delta(G)_{i, j}=d\left(v_{i}, v_{j}\right)$ is the length (or cost) of the shortest path from vertex ν_{i} to vertex v_{j}.
> surface tension,

of the corresponding molecule/material

Wiener Index

- The distance matrix $\Delta(G)$ of G represents "distances" among the vertices, i.e., $\Delta(G)_{i, j}=d\left(v_{i}, v_{j}\right)$ is the length (or cost) of the shortest path from vertex v_{i} to vertex v_{j}.
- The Wiener index ${ }^{1} W(G)$ of a graph G is the sum of the entries in the upper triangular part of the distance matrix $\Delta(G)$.
$1_{\text {proposed by Harry Wiener of Brooklyn College in } 1947}$

Wiener Index

- The distance matrix $\Delta(G)$ of G represents "distances" among the vertices, i.e., $\Delta(G)_{i, j}=d\left(v_{i}, v_{j}\right)$ is the length (or cost) of the shortest path from vertex v_{i} to vertex v_{j}.
- The Wiener index ${ }^{1} W(G)$ of a graph G is the sum of the entries in the upper triangular part of the distance matrix $\Delta(G)$.
- The Wiener index of a molecular graph has been used in chemical applications because it may exhibit a good correlation with physical and chemical properties (e.g., the boiling point, density, viscosity, surface tension, ...) of the corresponding molecule/material.

[^0]
Wiener Index

- The distance matrix $\Delta(G)$ of G represents "distances" among the vertices, i.e., $\Delta(G)_{i, j}=d\left(v_{i}, v_{j}\right)$ is the length (or cost) of the shortest path from vertex v_{i} to vertex v_{j}.
- The Wiener index ${ }^{1} W(G)$ of a graph G is the sum of the entries in the upper triangular part of the distance matrix $\Delta(G)$.
- The Wiener index of a molecular graph has been used in chemical applications because it may exhibit a good correlation with physical and chemical properties (e.g., the boiling point, density, viscosity, surface tension, ...) of the corresponding molecule/material.
- Let G be a tree. Then

$$
W(G)=\sum_{k=1}^{n-1} \frac{n}{\lambda_{k}} .
$$

[^1]
[^0]: $1_{\text {proposed by Harry Wiener of Brooklyn College in } 1947}$

[^1]: ${ }^{1}$ proposed by Harry Wiener of Brooklyn College in 1947

