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Properties of Graph Laplacian Eigenvalues

Notations and Definitions

In this lecture, we only consider undirected and unweighted graphs and
their unnormalized Laplacians L(G) = D(G)− A(G).
It is your exercise to see how the statements change for the normalized
or symmetrically-normalized graph Laplacians.
Let |V (G)| = n, |E(G)| = m, and assign each edge an arbitrary
orientation to turn G into a directed graph temporarily. Then let us
define the directed incidence matrix R = R(G) = (ri j ) ∈Rn×m of G by

ri j =


1 if e j = [vi ′ , vi ] for some i ′;
−1 if e j = [vi , vi ′ ] for some i ′;
0 otherwise.

Then, we can show that L(G) = R(G)R(G)T; hence it is positive
semi-definite. Note that L(G) is orientation independent.
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Properties of Graph Laplacian Eigenvalues

Notations and Definitions . . .

Hence, we can sort the eigenvalues of L(G) as
0 =λ0(G) ≤λ1(G) ≤ ·· · ≤λn−1(G) and denote the set of these
eigenvalues by Λ(G).
mG (λ) := the multiplicity of λ.
Let I ⊂R be an interval of the real line. Then define
mG (I ) := #{λk (G) ∈ I }.
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Properties of Graph Laplacian Eigenvalues

General Properties of Graph Laplacian Eigenvalues

Graph Laplacian matrices of the same graph are permutation-similar. In
fact, graphs G1 and G2 are isomorphic iff there exists a permutation matrix
P such that L(G2) = PTL(G1)P.

rankL(G) = n−mG (0) where mG (0) turns out to be the number of connected
components of G. Easy to check that L(G) becomes mG (0) diagonal blocks,
and the eigenspace corresponding to the zero eigenvalues is spanned by the
indicator vectors of each connected component.

In particular, λ1 6= 0 iff G is connected.

This led M. Fiedler (1973) to define the algebraic connectivity of G by
a(G) := λ1(G), viewing it as a quantitative measure of connectivity.

Miroslav Fiedler (1926–2015)
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Properties of Graph Laplacian Eigenvalues

General Properties of Graph Laplacian Eigenvalues . . .

Denote the complement of G (in Kn) by Gc .

The Petersen graph and its complement in K10 (from Wikipedia)
Then, we have

L(G)+L(Gc ) = L(Kn) = nIn − Jn ,

where Jn is the n ×n matrix whose entries are all 1. Moreover, one
can easily show: λ0(Kn) = 0, λ j (Kn) ≡ n, 1 ≤ j ≤ n −1.
We also have:

Λ(Gc ) = {0,n −λn−1(G),n −λn−2(G), . . . ,n −λ1(G)}.
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Properties of Graph Laplacian Eigenvalues

General Properties of Graph Laplacian Eigenvalues . . .

From the above, we can see that

λmax(G) =λn−1(G) ≤ n,

and mG (n) = mGc (0)−1.
On the other hand, Grone and Merris showed in 1994

λmax(G) =λn−1(G) ≥ max
1≤ j≤n

d j +1.

Let G be a connected graph and suppose L(G) has exactly k distinct
eigenvalues. Then

diam(G) ≤ k −1.
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Properties of Graph Laplacian Eigenvalues

General Properties of Graph Laplacian Eigenvalues . . .

Now define a cut vertex by any vertex that increases the number of
connected components of G when removed.

The vertices with mixed color are the cut vertices here (from Wikipedia)

Let u be a cut vertex of the connected graph G. If the largest
component of G \ {u} contains k vertices, then λn−2(G) ≤ k +1.
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Properties of Graph Laplacian Eigenvalues

General Properties of Graph Laplacian Eigenvalues . . .

A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a
pendant vertex is called pendant neighbor.
Let p(G) and q(G) be the number of pendant vertices and that of
pendant neighbors, respectively.
The number of pendant neighbors of G is bounded as:

p(G)−mG (1) ≤ q(G) ≤ mG (2,n],

where the second inequality holds if G is connected and satisfies
2q(G) < n.
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Algebraic Connectivity a(G) := λ1(G)

Some Graph Operations

G is said to be k-vertex-connected if k is the size of the smallest
subset of vertices such that the graph becomes disconnected if they
are deleted.
A 1-vertex-connected graph is called connected while a
2-vertex-connected graph is said to be biconnected.
The vertex-connectivity κ(G) of G is the largest k for which G is
k-vertex-connected.
Similarly we can define the k-edge-connectedness and the
edge-connectivity ε(G).
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Algebraic Connectivity a(G) := λ1(G)

Some Graph Operations . . .

The Edge-union G(V ,E) of G1(V ,E1) and G2(V ,E2) is defined as
E = E1 ∪E2 and V is common among G, G1, and G2.
The Cartesian product G =G1 ×G2 (or also written as G =G1äG2):

The Cartesian product of two graphs (from Wikipedia)

G1(V1,E1) and G2(V2,E2) are said to be obtained from a vertex
decomposition of G(V ,E) if V =V1 ∪V2 and V1 ∩V2 =;.
If L(G) =

[
L(G1) O

O L(G2)

]
, then G is said to be the direct sum of G1

and G2 and written as G =G1 ⊕G2.
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Algebraic Connectivity a(G) := λ1(G)

Algebraic Connectivity and Graph Operations (de Abreu,
2007)

Operations Relations of a(G), a(Gi ), i = 1,2
Gc a(Gc ) = n −λn−1

G1 =G \ {e} a(G1) ≤ a(G)
G1 =G \ {vi1 , . . . , vik } a(G) ≤ a(G1)+k
G1 =G ∪ {e} a(G) ≤ a(G1) ≤ a(G)+2
G: edge-union of G1,G2 a(G1)+a(G2) = a(G)
G =G1 ×G2 a(G) = min{a(G1), a(G2)}
G1,G2: vertex decomposition of G a(G) ≤ min{a(G1)+|V2|, a(G2)+|V1|}
G =G1 ⊕G2 a(G1)+a(G2) ≤ a(G1 ⊕G2)

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenvalues 10/08/19 14 / 20



Algebraic Connectivity a(G) := λ1(G)

Algebraic Connectivities of Specific Graphs (de Abreu, 2007)

Graph G Algebraic Connectivity a(G)
Complete graph Kn a (Kn) = n
Path Pn a (Pn) = 2

(
1−cos π

n

)
Cycle Cn a (Cn) = 2

(
1−cos 2π

n

)
Bipartite complete graph Kp,q a

(
Kp,q

)= min{p, q}
Star K1,q a

(
K1,q

)= 1
Cube m-dimension C bm a (C bm) = 2
Petersen Graph P a (P ) = 2
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Algebraic Connectivity a(G) := λ1(G)

Bounds to Algebraic Connectivity

Fiedler showed in 1973 the following bounds to a(G):
For G 6= Kn , a(G) ≤ n −2 ;
2min j d j −n +2 ≤ a(G) ≤ n

n−1 min j d j ;
a(G) ≤ κ(G) ≤ ε(G) ≤ min j d j ;
2ε(G)

(
1−cos π

n

)≤ a(G) ;
2
(
cos π

n −cos 2π
n

)
κ(G)−2cos π

n

(
1−cos π

n

)
max j d j ≤ a(G) .
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n

)
max j d j ≤ a(G) .
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Algebraic Connectivity a(G) := λ1(G)

Algebraic Connectivity of Trees

A cycle is a connected graph where every vertex has exactly two
neighbors.
A tree T is a connected graph without cycles.
Grone, Merris, and Sunder showed in 1990:

a(T ) ≤ 2

(
1−cos

(
π

diam(T )+1

))
.

They also showed: if T 6= K1,n−1 with n ≥ 6, then a(T ) < 0.49.
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Algebraic Connectivity a(G) := λ1(G)

Isoperimetric Number

Let S ⊂V (G) be a nonempty subset of vertices of G.
∂S := {e = (u, v) ∈ E(G) |u ∈ S, v ∉ S}, which is called the boundary of S.
The isoperimetric number of G is defined as

i (G) := inf

{ |∂S|
|S|

∣∣∣; 6= S ⊂V , |S| ≤ n

2

}
,

which is closely related to the conductance of a graph, i.e., how fast a
random walk on G converges to a stationary distribution.
For n ≥ 4, the isoperimetric number i (G) satisfies

i (G) <
√(

2 max
v∈V (G)

dv −a(G)

)
a(G).
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Wiener Index

Outline

1 Properties of Graph Laplacian Eigenvalues

2 Algebraic Connectivity a(G) := λ1(G)

3 Wiener Index

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenvalues 10/08/19 19 / 20



Wiener Index

Wiener Index

The distance matrix ∆(G) of G represents “distances” among the
vertices, i.e., ∆(G)i , j = d(vi , v j ) is the length (or cost) of the shortest
path from vertex vi to vertex v j .
The Wiener index1 W (G) of a graph G is the sum of the entries in the
upper triangular part of the distance matrix ∆(G).
The Wiener index of a molecular graph has been used in chemical
applications because it may exhibit a good correlation with physical
and chemical properties (e.g., the boiling point, density, viscosity,
surface tension, . . . ) of the corresponding molecule/material.
Let G be a tree. Then

W (G) =
n−1∑
k=1

n

λk
.

1proposed by Harry Wiener of Brooklyn College in 1947
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