MAT 280: Harmonic Analysis on Graphs \& Networks Lecture 5: Graph Laplacian Eigenvalues II

Naoki Saito
Department of Mathematics University of California, Davis

October 10, 2019

Outline

(1) Isoperimetric Number
(2) Isospectrality; Spectral Characterization of Graphs
(3) Applications to Morphological Feature Extraction from Dendritic Trees

- Motivation
- Eigenvalue-Based Features
- Conclusions \& Future Plans

Outline

(1) Isoperimetric Number

(2) Isospectrality; Spectral Characterization of Graphs
(3) Applications to Morphological Feature Extraction from Dendritic Trees

- Motivation
- Eigenvalue-Based Features
- Conclusions \& Future Plans

Isoperimetric Number

- Let $S \subset V(G)$ be a nonempty subset of vertices of G.

$$
S=\{\bullet\}, S^{c}=\{0\}
$$

Isoperimetric Number

- Let $S \subset V(G)$ be a nonempty subset of vertices of G.
- $\partial S:=\{e=(u, v) \in E(G) \mid u \in S, v \notin S\}$, which is called the boundary of S.

$$
S=\{\bullet\}, S^{c}=\{0\}
$$

Isoperimetric Number

- The Cheeger ratio for $S \subset V$ is defined as

$$
h(S):=\frac{|\partial S|}{\min \left\{|S|,\left|S^{c}\right|\right\}} .
$$

Isoperimetric Number

- The Cheeger ratio for $S \subset V$ is defined as

$$
h(S):=\frac{|\partial S|}{\min \left\{|S|,\left|S^{c}\right|\right\}} .
$$

- For the example graph in the previous page: $|S|=4 ;\left|S^{c}\right|=5 ;|\partial S|=8$. Hence, $h(S)=8 / 4=2$.

Isoperimetric Number

- The Cheeger ratio for $S \subset V$ is defined as

$$
h(S):=\frac{|\partial S|}{\min \left\{|S|,\left|S^{c}\right|\right\}} .
$$

- For the example graph in the previous page: $|S|=4 ;\left|S^{c}\right|=5 ;|\partial S|=8$. Hence, $h(S)=8 / 4=2$.
- The Cheeger ratio tells us the quality of the cut of V into $S \cup S^{c}$: if S and S^{c} are well-balanced, i.e., $|S| \approx\left|S^{c}\right|$, and \exists few edges connecting S and S^{c}, then $h(S)$ is small.

Isoperimetric Number ...

- The Cheeger ratio for $S \subset V$ is defined as

$$
h(S):=\frac{|\partial S|}{\min \left\{|S|,\left|S^{c}\right|\right\}} .
$$

- For the example graph in the previous page: $|S|=4 ;\left|S^{c}\right|=5 ;|\partial S|=8$. Hence, $h(S)=8 / 4=2$.
- The Cheeger ratio tells us the quality of the cut of V into $S \cup S^{c}$: if S and S^{c} are well-balanced, i.e., $|S| \approx\left|S^{c}\right|$, and \exists few edges connecting S and S^{c}, then $h(S)$ is small.
- The isoperimetric number (or a.k.a. the Cheeger constant) $i(G)$ of G is defined as

$$
i(G):=\inf _{S \subset V ; S \neq \varnothing} \frac{|\partial S|}{\min \left\{|S|,\left|S^{c}\right|\right\}} .
$$

Isoperimetric Number ...

- The Cheeger ratio for $S \subset V$ is defined as

$$
h(S):=\frac{|\partial S|}{\min \left\{|S|,\left|S^{c}\right|\right\}} .
$$

- For the example graph in the previous page: $|S|=4 ;\left|S^{c}\right|=5 ;|\partial S|=8$. Hence, $h(S)=8 / 4=2$.
- The Cheeger ratio tells us the quality of the cut of V into $S \cup S^{c}$: if S and S^{c} are well-balanced, i.e., $|S| \approx\left|S^{c}\right|$, and \exists few edges connecting S and S^{c}, then $h(S)$ is small.
- The isoperimetric number (or a.k.a. the Cheeger constant) $i(G)$ of G is defined as

$$
i(G):=\inf _{S \subset V ; S \neq \varnothing} \frac{|\partial S|}{\min \left\{|S|,\left|S^{c}\right|\right\}} .
$$

- This definition is exactly the same as the one given in my previous lecture, but is in a more symmetric form.

Isoperimetric Number ...

- The Cheeger ratio for $S \subset V$ is defined as

$$
h(S):=\frac{|\partial S|}{\min \left\{|S|,\left|S^{c}\right|\right\}} .
$$

- For the example graph in the previous page: $|S|=4 ;\left|S^{c}\right|=5 ;|\partial S|=8$. Hence, $h(S)=8 / 4=2$.
- The Cheeger ratio tells us the quality of the cut of V into $S \cup S^{c}$: if S and S^{c} are well-balanced, i.e., $|S| \approx\left|S^{c}\right|$, and \exists few edges connecting S and S^{c}, then $h(S)$ is small.
- The isoperimetric number (or a.k.a. the Cheeger constant) $i(G)$ of G is defined as

$$
i(G):=\inf _{S \subset V ; S \neq \varnothing} \frac{|\partial S|}{\min \left\{|S|,\left|S^{c}\right|\right\}} .
$$

- This definition is exactly the same as the one given in my previous lecture, but is in a more symmetric form.
- The version for L_{rw} replaces $|S|$ and $\left|S^{c}\right|$ by $\operatorname{vol}(S)$ and $\operatorname{vol}\left(S^{c}\right)$ where $\operatorname{vol}(S):=\sum_{v \in S} d(\nu)$. That version has also been studied extensively.

Why is $i(G)$ so important or interesting?

- To determine it, we need to find a small edge-cut separating as large a subset S with $|S| \leq n / 2$ as possible from the remaining larger part S^{c}. \Rightarrow It serves as a measure of connectivity of G. May indicate how easy is it to "destroy" a given network G by cutting only a few edges.

Why is $i(G)$ so important or interesting?

- To determine it, we need to find a small edge-cut separating as large a subset S with $|S| \leq n / 2$ as possible from the remaining larger part S^{c}. \Rightarrow It serves as a measure of connectivity of G. May indicate how easy is it to "destroy" a given network G by cutting only a few edges.
- The problem of partitioning $V(G)$ into two equally sized subsets (to within one element) in such a way that the number of the edges in the cut is minimal, is known as the bisection width problem. There are many practical applications, e.g., VLSI design, etc.

Why is $i(G)$ so important or interesting?

- To determine it, we need to find a small edge-cut separating as large a subset S with $|S| \leq n / 2$ as possible from the remaining larger part S^{c}. \Longrightarrow It serves as a measure of connectivity of G. May indicate how easy is it to "destroy" a given network G by cutting only a few edges.
- The problem of partitioning $V(G)$ into two equally sized subsets (to within one element) in such a way that the number of the edges in the cut is minimal, is known as the bisection width problem. There are many practical applications, e.g., VLSI design, etc.
- $i(G)$: large $\Longrightarrow G$ has a large growth rate. More precisely, let $B_{k}(\nu)$ be the set of vertices of G at distance at most k from v, like a ball with center v and radius k. Then, $\left|B_{k+1}(\nu)\right| /\left|B_{k}(\nu)\right| \geq i(G) / d_{\text {max }}(G)$.

Why is $i(G)$ so important or interesting?

- To determine it, we need to find a small edge-cut separating as large a subset S with $|S| \leq n / 2$ as possible from the remaining larger part S^{c}. \Longrightarrow It serves as a measure of connectivity of G. May indicate how easy is it to "destroy" a given network G by cutting only a few edges.
- The problem of partitioning $V(G)$ into two equally sized subsets (to within one element) in such a way that the number of the edges in the cut is minimal, is known as the bisection width problem. There are many practical applications, e.g., VLSI design, etc.
- $i(G)$: large $\Longrightarrow G$ has a large growth rate. More precisely, let $B_{k}(\nu)$ be the set of vertices of G at distance at most k from ν, like a ball with center v and radius k. Then, $\left|B_{k+1}(\nu)\right| /\left|B_{k}(v)\right| \geq i(G) / d_{\text {max }}(G)$.
- It is a discrete analogue of the Cheeger constant in Riemannian geometry, i.e., the minimal area of a hypersurface that divides a given compact Riemannian manifold into two disjoint pieces of equal volume.

Isoperimetric Numbers of Specific Graphs

Graph G	Isoperimetric Number $i(G)$
Complete graph K_{n}	$i\left(K_{n}\right)=\lceil n / 2\rceil$
Path P_{n}	$i\left(P_{n}\right)=1 /\lfloor n / 2\rfloor$
Cycle C_{n}	$i\left(C_{n}\right)=2 /\lfloor n / 2\rfloor$
Bipartite complete graph $K_{p, q}$	$i\left(K_{p, q}\right)=\lceil p q / 2\rceil /\lfloor(p+q) / 2\rfloor$
Cube m-dimension $C b_{m}$	$i\left(C b_{m}\right)=1$
Petersen Graph P	$i(P)=1$

The Isoperimetric Number and Algebraic Connectivity

- Both are viewed as measures of connectivity of a given graph.
- White $i(G)$ is more explicitly reated to the connectivity of a graph than $a(G)$, it is more difficult (i.e., combinatorial) to compute $i(G)$ than $a(G)$
- Hence, the bounds of $i(G)$ in terms of $a(G)$ and the other quantities have been extensively studied $n \geq 4$, where $d_{\max }(G):=\max _{j} d_{j}$

The Isoperimetric Number and Algebraic Connectivity

- Both are viewed as measures of connectivity of a given graph.
- While $i(G)$ is more explicitly related to the connectivity of a graph than $a(G)$, it is more difficult (i.e., combinatorial) to compute $i(G)$ than $a(G)$.
$n \geq 4$, where $d_{\max }(G):=\max _{j} d_{j}$

The Isoperimetric Number and Algebraic Connectivity

- Both are viewed as measures of connectivity of a given graph.
- While $i(G)$ is more explicitly related to the connectivity of a graph than $a(G)$, it is more difficult (i.e., combinatorial) to compute $i(G)$ than $a(G)$.
- Hence, the bounds of $i(G)$ in terms of $a(G)$ and the other quantities have been extensively studied.

The Isoperimetric Number and Algebraic Connectivity

- Both are viewed as measures of connectivity of a given graph.
- While $i(G)$ is more explicitly related to the connectivity of a graph than $a(G)$, it is more difficult (i.e., combinatorial) to compute $i(G)$ than $a(G)$.
- Hence, the bounds of $i(G)$ in terms of $a(G)$ and the other quantities have been extensively studied.
- Mohar (1987, 1989): $a(G) / 2 \leq i(G) \supsetneqq \sqrt{a(G)\left(2 d_{\max }(G)-a(G)\right)}$ for $n \geq 4$, where $d_{\max }(G):=\max _{j} d_{j}$.

The Isoperimetric Number and Algebraic Connectivity

- Both are viewed as measures of connectivity of a given graph.
- While $i(G)$ is more explicitly related to the connectivity of a graph than $a(G)$, it is more difficult (i.e., combinatorial) to compute $i(G)$ than $a(G)$.
- Hence, the bounds of $i(G)$ in terms of $a(G)$ and the other quantities have been extensively studied.
- Mohar (1987, 1989): $a(G) / 2 \leq i(G) \supsetneqq \sqrt{a(G)\left(2 d_{\max }(G)-a(G)\right)}$ for $n \geq 4$, where $d_{\text {max }}(G):=\max _{i} d_{i}$.

Outline

(1) Isoperimetric Number

(2) Isospectrality; Spectral Characterization of Graphs

(3) Applications to Morphological Feature Extraction from Dendritic Trees
 - Motivation
 - Eigenvalue-Based Features
 - Conclusions \& Future Plans

Isospectrality

- The spectrum (i.e., the set of eigenvalues) $\Lambda(G)$ of $L(G)$ cannot uniquely determine the graph G.

Isospectrality

- The spectrum (i.e., the set of eigenvalues) $\Lambda(G)$ of $L(G)$ cannot uniquely determine the graph G.
~ Kac (1966): "Can one hear the shape of a drum?" \Rightarrow Gordon, Webb, \& Wolpert (1992): "One cannot hear the shape of a drum."

Isospectrality

- The spectrum (i.e., the set of eigenvalues) $\Lambda(G)$ of $L(G)$ cannot uniquely determine the graph G.
~ Kac (1966): "Can one hear the shape of a drum?" \Rightarrow Gordon, Webb, \& Wolpert (1992): "One cannot hear the shape of a drum."
- An example of "isospectral" graphs (Tan, 1998; Fujii \& Katsuda, 1999):

$$
\begin{gathered}
L\left(G_{1}\right)=\left[\begin{array}{cccccc}
2 & -1 & 0 & 0 & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & 4 & -1 & -1 & -1 \\
0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & -1 & 2 & 0 \\
-1 & 0 & -1 & 0 & 0 & 2
\end{array}\right] \neq L\left(G_{2}\right)=\left[\begin{array}{cccccc}
2 & -1 & 0 & 0 & -1 & 0 \\
-1 & 3 & -1 & 0 & 0 & -1 \\
0 & -1 & 3 & -1 & -1 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 \\
-1 & 0 & -1 & 0 & 3 & -1 \\
0 & -1 & 0 & 0 & -1 & 2
\end{array}\right] \\
\text { But, } \Lambda\left(G_{1}\right)=\Lambda\left(G_{2}\right)=\{0,0.7639,2,3,3,5.2361\} .
\end{gathered}
$$

Spectral Characterization of Certain Classes of Graphs

- In fact, there are 58 pairs, 6 triples of isospectral graphs within all possible simple/undirected/unweighted graphs with $n<8$ (Tan, 1998). their Laplacian spectra: - \exists some attempts to reconstruct graphs from their Laplacian spectra
via combinatorial optimization (e.g., Comellas \& Diaz-Lopez, 2008) - Nothing prevents us from using the Laplacian spectra for characterizing dendrite patterns!

Spectral Characterization of Certain Classes of Graphs

- In fact, there are 58 pairs, 6 triples of isospectral graphs within all possible simple/undirected/unweighted graphs with $n<8$ (Tan, 1998).
- However, certain classes of graphs can be completely determined by their Laplacian spectra:
- Nothing prevents us from using the Laplacian spectra for
characterizino dendrite natterns!

Spectral Characterization of Certain Classes of Graphs

- In fact, there are 58 pairs, 6 triples of isospectral graphs within all possible simple/undirected/unweighted graphs with $n<8$ (Tan, 1998).
- However, certain classes of graphs can be completely determined by their Laplacian spectra: starlike trees (Omidi \& Tajbakhsh, 2007),

Spectral Characterization of Certain Classes of Graphs

- In fact, there are 58 pairs, 6 triples of isospectral graphs within all possible simple/undirected/unweighted graphs with $n<8$ (Tan, 1998).
- However, certain classes of graphs can be completely determined by their Laplacian spectra: starlike trees (Omidi \& Tajbakhsh, 2007), centipedes (Boulet, 2008), ...

Spectral Characterization of Certain Classes of Graphs

- In fact, there are 58 pairs, 6 triples of isospectral graphs within all possible simple/undirected/unweighted graphs with $n<8$ (Tan, 1998).
- However, certain classes of graphs can be completely determined by their Laplacian spectra: starlike trees (Omidi \& Tajbakhsh, 2007), centipedes (Boulet, 2008), ...

- \exists some attempts to reconstruct graphs from their Laplacian spectra via combinatorial optimization (e.g., Comellas \& Diaz-Lopez, 2008)

Spectral Characterization of Certain Classes of Graphs

- In fact, there are 58 pairs, 6 triples of isospectral graphs within all possible simple/undirected/unweighted graphs with $n<8$ (Tan, 1998).
- However, certain classes of graphs can be completely determined by their Laplacian spectra: starlike trees (Omidi \& Tajbakhsh, 2007), centipedes (Boulet, 2008), ...

- \exists some attempts to reconstruct graphs from their Laplacian spectra via combinatorial optimization (e.g., Comellas \& Diaz-Lopez, 2008)
- Nothing prevents us from using the Laplacian spectra for characterizing dendrite patterns!

Outline

(1) Isoperimetric Number

(2) Isospectrality; Spectral Characterization of Graphs

(3) Applications to Morphological Feature Extraction from Dendritic Trees

- Motivation
- Eigenvalue-Based Features
- Conclusions \& Future Plans

Outline

(1) Isoperimetric Number

(2) Isospectrality; Spectral Characterization of Graphs

(3) Applications to Morphological Feature Extraction from Dendritic Trees

- Motivation
- Eigenvalue-Based Features
- Conclusions \& Future Plans

Morphology of Network-like Structures

(a) Neuron

(b) Universe

Morphology of Retinal Ganglion Cells

Retinal Ganglion Cells (D. Hubel: Eye, Brain, \& Vision, '95)

A Typical Neuron (from Wikipedia)

Structure of a Typical Neuron

Dendrite

Nucleus

Axon terminal

Axon
Schwann cell
Myelin sheath

Clustering Mouse's Retinal Ganglion Cells

- Neuroscientists' Objective: To understand how structural / morphological properties of dendritic trees of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult

Clustering Mouse's Retinal Ganglion Cells

- Neuroscientists' Objective: To understand how structural / morphological properties of dendritic trees of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \Longrightarrow Great possibilities for genetic manipulation

Clustering Mouse's Retinal Ganglion Cells

- Neuroscientists' Objective: To understand how structural / morphological properties of dendritic trees of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \Longrightarrow Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope

Clustering Mouse's Retinal Ganglion Cells

- Neuroscientists' Objective: To understand how structural / morphological properties of dendritic trees of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \Longrightarrow Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope
- State of the art: A manually intensive procedure using specialized software ${ }^{1}$:

[^0]
Clustering Mouse's Retinal Ganglion Cells

- Neuroscientists' Objective: To understand how structural / morphological properties of dendritic trees of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \Longrightarrow Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope
- State of the art: A manually intensive procedure using specialized software ${ }^{1}$:
- Trace and segment dendrite patterns from each 3D cube;

[^1]
Clustering Mouse's Retinal Ganglion Cells

- Neuroscientists' Objective: To understand how structural / morphological properties of dendritic trees of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \Longrightarrow Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope
- State of the art: A manually intensive procedure using specialized software ${ }^{1}$:
- Trace and segment dendrite patterns from each 3D cube;
- Extract geometric/morphological parameters (totally 14 parameters);

[^2]
Clustering Mouse's Retinal Ganglion Cells

- Neuroscientists' Objective: To understand how structural / morphological properties of dendritic trees of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \Longrightarrow Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope
- State of the art: A manually intensive procedure using specialized software ${ }^{1}$:
- Trace and segment dendrite patterns from each 3D cube;
- Extract geometric/morphological parameters (totally 14 parameters);
- Apply a conventional bottom-up "hierarchical clustering" algorithm

[^3]
Clustering Mouse's Retinal Ganglion Cells

- Neuroscientists' Objective: To understand how structural / morphological properties of dendritic trees of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \Longrightarrow Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope
- State of the art: A manually intensive procedure using specialized software ${ }^{1}$:
- Trace and segment dendrite patterns from each 3D cube;
- Extract geometric/morphological parameters (totally 14 parameters);
- Apply a conventional bottom-up "hierarchical clustering" algorithm
- The extracted morphological parameters include: somal size; dendritic field size; total dendrite length; branch order; mean internal branch length; branch angle; mean terminal branch length, ...

[^4]
Clustering Mouse's Retinal Ganglion Cells

- Neuroscientists' Objective: To understand how structural / morphological properties of dendritic trees of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \Longrightarrow Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope
- State of the art: A manually intensive procedure using specialized software ${ }^{1}$:
- Trace and segment dendrite patterns from each 3D cube;
- Extract geometric/morphological parameters (totally 14 parameters);
- Apply a conventional bottom-up "hierarchical clustering" algorithm
- The extracted morphological parameters include: somal size; dendritic field size; total dendrite length; branch order; mean internal branch length; branch angle; mean terminal branch length, ...
- It takes half a day per cell with a lot of human interactions!
${ }^{1}$ Neurolucida ${ }^{\circledR}$, MBF Bioscience

3D Data

Mouse's RGC as a Graph

Clustering using Features Derived by Neurolucida ${ }^{\circledR}$

Our Goal

- We want to develop algorithms for automatic morphological feature extraction and clustering from such dendritic trees. vector space
- In this lecture we mainly consider the features using eigenvalues of

Our Goal

- We want to develop algorithms for automatic morphological feature extraction and clustering from such dendritic trees.
- To do so, we need to convert each dendritic tree to a feature vector in \mathbb{R}^{k} with relatively small $k \in \mathbb{N}$. This is called a graph embedding into a vector space.

Our Goal

- We want to develop algorithms for automatic morphological feature extraction and clustering from such dendritic trees.
- To do so, we need to convert each dendritic tree to a feature vector in \mathbb{R}^{k} with relatively small $k \in \mathbb{N}$. This is called a graph embedding into a vector space.
- In this lecture, we mainly consider the features using eigenvalues of graph Laplacians of such trees.

Our Dataset

consists of 130 RGCs each of which in turn consists of

- A sequence of 3D sample points along dendrite arbors obtained by Neurolucida ${ }^{\circledR}$ (requires intensive human interaction)

- The range of maximum degrees

Our Dataset

consists of 130 RGCs each of which in turn consists of

- A sequence of 3D sample points along dendrite arbors obtained by Neurolucida ${ }^{\circledR}$ (requires intensive human interaction)
- Connectivity and branching information by the same software
\square

Our Dataset

consists of 130 RGCs each of which in turn consists of

- A sequence of 3D sample points along dendrite arbors obtained by Neurolucida ${ }^{\circledR}$ (requires intensive human interaction)
- Connectivity and branching information by the same software
- Each soma (cell body) is represented as a sequence of points traced along its boundary (circular/ring shape)

Our Dataset

consists of 130 RGCs each of which in turn consists of

- A sequence of 3D sample points along dendrite arbors obtained by Neurolucida ${ }^{\circledR}$ (requires intensive human interaction)
- Connectivity and branching information by the same software
- Each soma (cell body) is represented as a sequence of points traced along its boundary (circular/ring shape) \Rightarrow By replacing such a soma ring by a single vertex representing a center of the soma, each dendritic tree of an RGC is literally represented by a tree!
- At this point, we only consider unweighted trees.

Our Dataset

consists of 130 RGCs each of which in turn consists of

- A sequence of 3D sample points along dendrite arbors obtained by Neurolucida ${ }^{\circledR}$ (requires intensive human interaction)
- Connectivity and branching information by the same software
- Each soma (cell body) is represented as a sequence of points traced along its boundary (circular/ring shape) \Rightarrow By replacing such a soma ring by a single vertex representing a center of the soma, each dendritic tree of an RGC is literally represented by a tree!
- At this point, we only consider unweighted trees.
- $n=|V(G)|$ ranges between 565 and 24474 depending on the RGCs.

Our Dataset

consists of 130 RGCs each of which in turn consists of

- A sequence of 3D sample points along dendrite arbors obtained by Neurolucida ${ }^{\circledR}$ (requires intensive human interaction)
- Connectivity and branching information by the same software
- Each soma (cell body) is represented as a sequence of points traced along its boundary (circular/ring shape) \Rightarrow By replacing such a soma ring by a single vertex representing a center of the soma, each dendritic tree of an RGC is literally represented by a tree!
- At this point, we only consider unweighted trees.
- $n=|V(G)|$ ranges between 565 and 24474 depending on the RGCs.
- The range of maximum degrees:

$$
\max _{130 \text { cells }} \max _{k} d\left(v_{k}\right)=8, \quad \min _{130 \text { cells }} \max _{k} d\left(v_{k}\right)=3
$$

Outline

(1) Isoperimetric Number

(2) Isospectrality; Spectral Characterization of Graphs

(3) Applications to Morphological Feature Extraction from Dendritic Trees

- Motivation
- Eigenvalue-Based Features
- Conclusions \& Future Plans

Features Used in Our Experiments

Feature 1: $\left(p(G)-m_{G}(1)\right) /|V(G)|$ as a lower bound of the number of pendant neighbors $q(G)$ normalized by $n=|V(G)|$;

Features Used in Our Experiments

Feature 1: $\left(p(G)-m_{G}(1)\right) /|V(G)|$ as a lower bound of the number of pendant neighbors $q(G)$ normalized by $n=|V(G)|$;
Feature 2: The normalized Wiener index $W(G) /|V(G)|$;
\qquad

Features Used in Our Experiments

Feature 1: $\left(p(G)-m_{G}(1)\right) /|V(G)|$ as a lower bound of the number of pendant neighbors $q(G)$ normalized by $n=|V(G)|$;
Feature 2: The normalized Wiener index $W(G) /|V(G)|$;
Feature 3: $m_{G}(4, \infty) /|V(G)|$, i.e., the number of eigenvalues of $L(G)$ larger than 4 (normalized) ;

Features Used in Our Experiments

Feature 1: $\left(p(G)-m_{G}(1)\right) /|V(G)|$ as a lower bound of the number of pendant neighbors $q(G)$ normalized by $n=|V(G)|$;
Feature 2: The normalized Wiener index $W(G) /|V(G)|$;
Feature 3: $m_{G}(4, \infty) /|V(G)|$, i.e., the number of eigenvalues of $L(G)$ larger than 4 (normalized) ;
Feature 4: $\sqrt{a(G)\left(2 \max _{v \in V(G)} d_{v}-a(G)\right)}$, i.e., the upper bound of the isoperimetric number $i(G)$.

Features Used in Our Experiments

Feature 1: $\left(p(G)-m_{G}(1)\right) /|V(G)|$ as a lower bound of the number of pendant neighbors $q(G)$ normalized by $n=|V(G)|$;
Feature 2: The normalized Wiener index $W(G) /|V(G)|$;
Feature 3: $m_{G}(4, \infty) /|V(G)|$, i.e., the number of eigenvalues of $L(G)$ larger than 4 (normalized) ;
Feature 4: $\sqrt{a(G)\left(2 \max _{\nu \in V(G)} d_{v}-a(G)\right)}$, i.e., the upper bound of the isoperimetric number $i(G)$.

- We normalized Features $1,2,3$, by $n=|V(G)|$ because we wanted to make features less dependent on the number of samples or how the dendrite arbors are sampled. Of course, the number of vertices itself could be a feature although it may not be a decisive one.

Features Used in Our Experiments

Feature 1: $\left(p(G)-m_{G}(1)\right) /|V(G)|$ as a lower bound of the number of pendant neighbors $q(G)$ normalized by $n=|V(G)|$;
Feature 2: The normalized Wiener index $W(G) /|V(G)|$;
Feature 3: $m_{G}(4, \infty) /|V(G)|$, i.e., the number of eigenvalues of $L(G)$ larger than 4 (normalized) ;
Feature 4: $\sqrt{a(G)\left(2 \max _{v \in V(G)} d_{v}-a(G)\right)}$, i.e., the upper bound of the isoperimetric number $i(G)$.

- We normalized Features $1,2,3$, by $n=|V(G)|$ because we wanted to make features less dependent on the number of samples or how the dendrite arbors are sampled. Of course, the number of vertices itself could be a feature although it may not be a decisive one.
- Feature 4 was not explicitly normalized because the isoperimetric number $i(G)$ itself is a normalized quantity in terms of number of vertices.

Features Used in Our Experiments ...

- Feature 1 was used because the number of pendant neighbors seems to be strongly related to the so-called spines, short protrusions from the dendrite arbors.
more likely for the RGC to have spines.

Features Used in Our Experiments ...

- Feature 1 was used because the number of pendant neighbors seems to be strongly related to the so-called spines, short protrusions from the dendrite arbors.
- Hence, we expect that the larger this lower bound $p(G)-m_{G}(1)$ is, the more likely for the RGC to have spines.

Features Used in Our Experiments ...

- Feature 1 was used because the number of pendant neighbors seems to be strongly related to the so-called spines, short protrusions from the dendrite arbors.
- Hence, we expect that the larger this lower bound $p(G)-m_{G}(1)$ is, the more likely for the RGC to have spines.

(a) RGC \#60; F_{1} large

Features Used in Our Experiments ...

- Feature 1 was used because the number of pendant neighbors seems to be strongly related to the so-called spines, short protrusions from the dendrite arbors.
- Hence, we expect that the larger this lower bound $p(G)-m_{G}(1)$ is, the more likely for the RGC to have spines.

(a) RGC \#60; F_{1} large

(b) RGC \#100; F_{1} small

Features Used in Our Experiments ...

- Feature 3, the normalized version of $m_{G}(4, \infty)$, was used because of the following observation:
- The eigenvalue distribution of each RGC consists of a smooth the value 4

Features Used in Our Experiments ...

- Feature 3, the normalized version of $m_{G}(4, \infty)$, was used because of the following observation:
- The eigenvalue distribution of each RGC consists of a smooth bell-shaped curve that ranges over $[0,4]$ and the sudden burst above the value 4.

(a) RGC \#60

Features Used in Our Experiments ...

- Feature 3, the normalized version of $m_{G}(4, \infty)$, was used because of the following observation:
- The eigenvalue distribution of each RGC consists of a smooth bell-shaped curve that ranges over $[0,4]$ and the sudden burst above the value 4.

(a) RGC \#60

(b) RGC \#100

Features Used in Our Experiments ...

We have observed that this value 4 is critical since:

Features Used in Our Experiments ...

We have observed that this value 4 is critical since:

- the eigenfunctions corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier cosines/sines) over the entire dendrites or one of the dendrite arbors;

Features Used in Our Experiments ...

We have observed that this value 4 is critical since:

- the eigenfunctions corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier cosines/sines) over the entire dendrites or one of the dendrite arbors;

(a) RGC \#100; $\lambda_{1141}=3.9994$

Features Used in Our Experiments ...

We have observed that this value 4 is critical since:

- the eigenfunctions corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier cosines/sines) over the entire dendrites or one of the dendrite arbors;
- those corresponding to the eigenvalues above 4 are much more localized (like wavelets) around branches.

(a) RGC \#100; $\lambda_{1141}=3.9994$

Features Used in Our Experiments ...

We have observed that this value 4 is critical since:

- the eigenfunctions corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier cosines/sines) over the entire dendrites or one of the dendrite arbors;
- those corresponding to the eigenvalues above 4 are much more localized (like wavelets) around branches.

(a) RGC \#100; $\lambda_{1141}=3.9994$

(b) RGC \#100; $\lambda_{1142}=4.3829$

Recap: Clustering using Features Derived by Neurolucida ${ }^{\circledR}$

Results: Scatter Plot; Feature 1 vs Feature 2

Figure: A scatter plot of the normalized lower bounds of the number of the pendant neighbors vs the normalized Wiener indices.

Results: Scatter Plot; Feature 3 vs Feature 4

Figure: A scatter plot of the normalized number of the eigenvalues larger than 4 vs the upper bounds of the isoperimetric numbers.

Interpretation of the Results

- Cluster 6 RGCs separate themselves quite well from the other RGC clusters.
- In fact, the sparse and distributed dendrite patterns such as those in Clusters 6 and 10 are located below the major axis of the point clouds in the $F_{1}-F_{2}$ scatter plot and above the major axis of the point clouds in the $F_{3}-F_{4}$ scatter plot. \Rightarrow the dendrite patterns belonging to Cluster 6 and 10 have smaller number of spines and smaller Wiener indices compared to the other denser dendrite patterns such as Clusters 1 to 5.
- Considerable feature variability in Clusters 7 and 8.

Cluster 1 vs Cluster 6 ...

童

5

(a) Cluster 1

(b) Cluster 6

Outline

(1) Isoperimetric Number

(2) Isospectrality; Spectral Characterization of Graphs

(3) Applications to Morphological Feature Extraction from Dendritic Trees

- Motivation
- Eigenvalue-Based Features
- Conclusions \& Future Plans

Conclusions \& Future Plans

- Network-like structures are abundant and need to be quantitatively analyzed.
- How to embed such graphs/networks into a vector space becomes important.
- Demonstrated the usefulness of the eigenvalues of graph Laplacians for dendrite pattern analysis although the results are still preliminary.
- Need to investigate more eigenvalue-based features.
- Need to investigate resampling of dendrite arbor samples.
- How about the weighted graph Laplacians?
- Analyze the features derived by Neurolucida ${ }^{\circledR}$: are they derivable from the Laplacian eigenvalues?
- Automating segmentation of dendritic trees from 3D images will be highly useful although it is quite tough.

[^0]: ${ }^{1}$ Neurolucida ${ }^{\circledR}$, MBF Bioscience

[^1]: ${ }^{1}$ Neurolucida ${ }^{\circledR}$, MBF Bioscience

[^2]: ${ }^{1}$ Neurolucida ${ }^{\circledR}$, MBF Bioscience

[^3]: ${ }^{1}$ Neurolucida ${ }^{\circledR}$, MBF Bioscience

[^4]: ${ }^{1}$ Neurolucida ${ }^{\circledR}$, MBF Bioscience

