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Isoperimetric Number

Isoperimetric Number

@ Let ScV(G) be a nonempty subset of vertices of G.

S={e}, 5°={o}
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Isoperimetric Number

Isoperimetric Number

@ Let ScV(G) be a nonempty subset of vertices of G.
@ 0S:={e=(u, V)€ E(G)|ueS,ve¢S} which is called the boundary of S.

S={e}, 5°={o}
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Isoperimetric Number

Isoperimetric Number . ..

@ The Cheeger ratio for Sc V is defined as
[N

h(S) i= ———.
©) min{|S|,|S¢[}
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Isoperimetric Number . ..

@ The Cheeger ratio for Sc V is defined as
[N

h(S) == ——.
min{|S|, |S°[}

@ For the example graph in the previous page: |S|=4; |S°|=5; |0S| =

Hence, h(S)=8/4=2.
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Isoperimetric Number

Isoperimetric Number . ..

@ The Cheeger ratio for Sc V is defined as
[0S

min{|S|, S|}’

@ For the example graph in the previous page: |S|=4; |S¢| =5; |8S| = 8.
Hence, h(S)=8/4=2.

@ The Cheeger ratio tells us the quality of the cut of V into SUS®: if S
and S¢ are well-balanced, i.e., |S| ~ |S¢|, and 3 few edges connecting S
and S¢, then Kh(S) is small.

h(S) :=
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Isoperimetric Number . ..

@ The Cheeger ratio for Sc V is defined as
[0S

min{|S|, S|}’

@ For the example graph in the previous page: |S|=4; |S¢| =5; |8S| = 8.
Hence, h(S)=8/4=2.

@ The Cheeger ratio tells us the quality of the cut of V into SUS®: if S
and S¢ are well-balanced, i.e., |S| ~ |S¢|, and 3 few edges connecting S
and S¢, then Kh(S) is small.

e The isoperimetric number (or a.k.a. the Cheeger constant) i(G) of G
is defined as

h(S) :=

0S|

i(@):= in T ol ort
scV;S#¢ min{| S|, |S¢|}
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Isoperimetric Number . ..

@ The Cheeger ratio for Sc V is defined as
[0S

min{|S|, S|}’

@ For the example graph in the previous page: |S|=4; |S¢| =5; |8S| = 8.
Hence, h(S)=8/4=2.

@ The Cheeger ratio tells us the quality of the cut of V into SUS®: if S
and S€ are well-balanced, i.e., |S| =S¢, and 3 few edges connecting S
and S¢, then h(S) is small.

e The isoperimetric number (or a.k.a. the Cheeger constant) i(G) of G
is defined as

h(S) :=

. [N
inf ————.

Scv;S#¢ min{|S|, |S¢[}

@ This definition is exactly the same as the one given in my previous
lecture, but is in a more symmetric form.

i(GQ):=
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Isoperimetric Number . ..

@ The Cheeger ratio for Sc V is defined as
[0S

min{|S|, S|}’

@ For the example graph in the previous page: |S|=4; |S¢| =5; |8S| = 8.
Hence, h(S)=8/4=2.

@ The Cheeger ratio tells us the quality of the cut of V into SUS®: if S
and S€ are well-balanced, i.e., |S| =S¢, and 3 few edges connecting S
and S¢, then h(S) is small.

e The isoperimetric number (or a.k.a. the Cheeger constant) i(G) of G
is defined as

h(S) :=

. [N
inf ————.

Scv;S#¢ min{|S|, |S¢[}

@ This definition is exactly the same as the one given in my previous
lecture, but is in a more symmetric form.

@ The version for Ly, replaces |S| and |S¢| by vol(S) and vol(S°) where
vol(S) := Y ,esd(v). That version has also been studied extensively.
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Why is i(G) so important or interesting?

@ To determine it, we need to find a small edge-cut separating as large a
subset S with |S| < n/2 as possible from the remaining larger part S°.
= It serves as a measure of connectivity of G. May indicate how easy
is it to “destroy” a given network G by cutting only a few edges.
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subset S with |S| < n/2 as possible from the remaining larger part S°.
— |t serves as a measure of connectivity of G. May indicate how easy
is it to “destroy” a given network G by cutting only a few edges.

@ The problem of partitioning V(G) into two equally sized subsets (to
within one element) in such a way that the number of the edges in the
cut is minimal, is known as the bisection width problem. There are
many practical applications, e.g., VLSI design, etc.
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Why is i(G) so important or interesting?

@ To determine it, we need to find a small edge-cut separating as large a
subset S with |S| < n/2 as possible from the remaining larger part S°.
— |t serves as a measure of connectivity of G. May indicate how easy
is it to “destroy” a given network G by cutting only a few edges.

@ The problem of partitioning V(G) into two equally sized subsets (to
within one element) in such a way that the number of the edges in the
cut is minimal, is known as the bisection width problem. There are
many practical applications, e.g., VLSI design, etc.

@ i(G): large = G has a large growth rate. More precisely, let Bi(v) be
the set of vertices of G at distance at most k from v, like a ball with
center v and radius k. Then, |Bio1(W)I/|Bi(0)| = i(G)/ dmax(G).
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Why is i(G) so important or interesting?

@ To determine it, we need to find a small edge-cut separating as large a
subset S with |S| < n/2 as possible from the remaining larger part S°.
— |t serves as a measure of connectivity of G. May indicate how easy
is it to “destroy” a given network G by cutting only a few edges.

@ The problem of partitioning V(G) into two equally sized subsets (to
within one element) in such a way that the number of the edges in the
cut is minimal, is known as the bisection width problem. There are
many practical applications, e.g., VLSI design, etc.

@ i(G): large = G has a large growth rate. More precisely, let Bi(v) be
the set of vertices of G at distance at most k from v, like a ball with
center v and radius k. Then, |Bio1(W)I/|Bi(0)| = i(G)/ dmax(G).

o It is a discrete analogue of the Cheeger constant in Riemannian
geometry, i.e., the minimal area of a hypersurface that divides a given
compact Riemannian manifold into two disjoint pieces of equal volume.
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Isoperimetric Number

Isoperimetric Numbers of Specific Graphs

Graph G Isoperimetric Number i(G)
Complete graph K, i(Kp)=[n/2]

Path P, i(Py)=1/|n/2]

Cycle C, i(Cy)=2/\n/2)

Bipartite complete graph K, 4 | i(Kp,q) = [pq/21/L(p+ q)/2]
Cube m-dimension Cb,, i(Chy) =1

Petersen Graph P i(p=1
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Isoperimetric Number

The Isoperimetric Number and Algebraic Connectivity
@ Both are viewed as measures of connectivity of a given graph.
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The Isoperimetric Number and Algebraic Connectivity

@ Both are viewed as measures of connectivity of a given graph.

@ While i(G) is more explicitly related to the connectivity of a graph
than a(G), it is more difficult (i.e., combinatorial) to compute i(G)
than a(G).
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The Isoperimetric Number and Algebraic Connectivity

@ Both are viewed as measures of connectivity of a given graph.

@ While i(G) is more explicitly related to the connectivity of a graph
than a(G), it is more difficult (i.e., combinatorial) to compute i(G)
than a(G).

@ Hence, the bounds of i(G) in terms of a(G) and the other quantities
have been extensively studied.
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Isoperimetric Number

The Isoperimetric Number and Algebraic Connectivity

@ Both are viewed as measures of connectivity of a given graph.

@ While i(G) is more explicitly related to the connectivity of a graph
than a(G), it is more difficult (i.e., combinatorial) to compute i(G)
than a(G).

@ Hence, the bounds of i(G) in terms of a(G) and the other quantities
have been extensively studied.

e Mohar (1987, 1989): a(G)/2<i(G) S v/ a(G) dmax(G) — a(G)) for
n =4, where dyax(G) := max;d;.
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Isoperimetric Number

The Isoperimetric Number and Algebraic Connectivity

@ Both are viewed as measures of connectivity of a given graph.

@ While i(G) is more explicitly related to the connectivity of a graph
than a(G), it is more difficult (i.e., combinatorial) to compute i(G)
than a(G).

@ Hence, the bounds of i(G) in terms of a(G) and the other quantities
have been extensively studied.

e Mohar (1987, 1989): a(G)/2<i(G) S v/ a(G) dmax(G) — a(G)) for
n=4, where dmax(G) := max; d;.

0 2 4 6 8 10
Algebraic Connectivity a(G) (dmar = 5)
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Isospectrality; Spectral Characterization of Graphs
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© Isospectrality; Spectral Characterization of Graphs
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Isospectrality; Spectral Characterization of Graphs

Isospectrality

@ The spectrum (i.e., the set of eigenvalues) A(G) of L(G) cannot
uniquely determine the graph G.
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Isospectrality; Spectral Characterization of Graphs

Isospectrality

@ The spectrum (i.e., the set of eigenvalues) A(G) of L(G) cannot
uniquely determine the graph G.
~ Kac (1966): “Can one hear the shape of a drum?’ = Gordon,
Webb, & Wolpert (1992): “One cannot hear the shape of a drum.”
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Isospectrality; Spectral Characterization of Graphs

Isospectrality

@ The spectrum (i.e., the set of eigenvalues) A(G) of L(G) cannot
uniquely determine the graph G.
~ Kac (1966): “Can one hear the shape of a drum?’ = Gordon,
Webb, & Wolpert (1992): “One cannot hear the shape of a drum.”
@ An example of “isospectral” graphs (Tan, 1998; Fujii & Katsuda,

- - - -1 0
—1 2 —1 0 0 o —1 3 —1 o 0 -1
0 -1 4 -1 -1 -1 -1 3 -1 -1 0
LGo=14g o -1 2 -1 ofl7M®=1y o -1 1 0 o
0 0 -1 -1 2 0 -1 0 -1 0 3 -1
-1 0 -1 0 0 2 0 -1 0 0 -1 2

But, A(G1) = A(Gy) ={0,0.7639,2,3,3,5.2361}.
i0/10/19  10/35



Isospectrality; Spectral Characterization of Graphs

Spectral Characterization of Certain Classes of Graphs

@ In fact, there are 58 pairs, 6 triples of isospectral graphs within all
possible simple/undirected/unweighted graphs with n <8 (Tan, 1998).
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Isospectrality; Spectral Characterization of Graphs

Spectral Characterization of Certain Classes of Graphs

@ In fact, there are 58 pairs, 6 triples of isospectral graphs within all
possible simple/undirected/unweighted graphs with n <8 (Tan, 1998).

@ However, certain classes of graphs can be completely determined by
their Laplacian spectra:
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Isospectrality; Spectral Characterization of Graphs

Spectral Characterization of Certain Classes of Graphs

@ In fact, there are 58 pairs, 6 triples of isospectral graphs within all
possible simple/undirected/unweighted graphs with n <8 (Tan, 1998).

@ However, certain classes of graphs can be completely determined by
their Laplacian spectra: starlike trees (Omidi & Tajbakhsh, 2007),
centipedes (Boulet, 2008), ...

Tl

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenvalues Il 10/10/19 11/35



Isospectrality; Spectral Characterization of Graphs

Spectral Characterization of Certain Classes of Graphs

@ In fact, there are 58 pairs, 6 triples of isospectral graphs within all
possible simple/undirected/unweighted graphs with n <8 (Tan, 1998).

@ However, certain classes of graphs can be completely determined by
their Laplacian spectra: starlike trees (Omidi & Tajbakhsh, 2007),
centipedes (Boulet, 2008), ...

Tl

@ J some attempts to reconstruct graphs from their Laplacian spectra
via combinatorial optimization (e.g., Comellas & Diaz-Lopez, 2008)
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Isospectrality; Spectral Characterization of Graphs

Spectral Characterization of Certain Classes of Graphs

@ In fact, there are 58 pairs, 6 triples of isospectral graphs within all
possible simple/undirected/unweighted graphs with n <8 (Tan, 1998).

@ However, certain classes of graphs can be completely determined by
their Laplacian spectra: starlike trees (Omidi & Tajbakhsh, 2007),
centipedes (Boulet, 2008), ...

Tl

@ J some attempts to reconstruct graphs from their Laplacian spectra
via combinatorial optimization (e.g., Comellas & Diaz-Lopez, 2008)

@ Nothing prevents us from using the Laplacian spectra for
characterizing dendrite patterns!
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Molphological Analysis of Dendritic Trees
Outline

© Applications to Morphological Feature Extraction from Dendritic Trees
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Molphological Analysis of Dendritic Trees
Outline

© Applications to Morphological Feature Extraction from Dendritic Trees
@ Motivation
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et
Morphology of Network-like Structures

(a) Neuron (b) Universe
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Molphological Analysis of Dendritic Trees Y[IOVE(L]]

Morphology of Retinal Ganglion Cells
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Molphological Analysis of Dendritic Trees Y[IOVE(L]]

Retinal Ganglion Cells (D. Hubel: Eye, Brain, & Vision, '95)

Ganglion  Horizontal
cell cell

Bipolar
cell

Amacrine
cell

nerve
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Molphological Analysis of Dendritic Trees

A Typical Neuron (from Wikipedia)

Structure of a Typical Neuron

Dendrite Axon terminal

Schwann cell

Nucleus Myelin sheath
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bty
Clustering Mouse's Retinal Ganglion Cells

o Neuroscientists' Objective: To understand how structural /
morphological properties of dendritic trees of mouse retinal ganglion
cells (RGCs) relate to the cell types and their functionality; how such
properties change | evolve from newborn to adult
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Clustering Mouse's Retinal Ganglion Cells

o Neuroscientists' Objective: To understand how structural /
morphological properties of dendritic trees of mouse retinal ganglion
cells (RGCs) relate to the cell types and their functionality; how such
properties change | evolve from newborn to adult

@ Why mouse? = Great possibilities for genetic manipulation

e Data: 3D images of dendrites of RGCs via a confocal microscope
@ State of the art: A manually intensive procedure using specialized
software!:

INeurolucida®, MBF Bioscience
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e Data: 3D images of dendrites of RGCs via a confocal microscope
@ State of the art: A manually intensive procedure using specialized
software!:
e Trace and segment dendrite patterns from each 3D cube;
o Extract geometric/morphological parameters (totally 14 parameters);
e Apply a conventional bottom-up “hierarchical clustering” algorithm
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bty
Clustering Mouse's Retinal Ganglion Cells

o Neuroscientists' Objective: To understand how structural /
morphological properties of dendritic trees of mouse retinal ganglion
cells (RGCs) relate to the cell types and their functionality; how such
properties change | evolve from newborn to adult

@ Why mouse? = Great possibilities for genetic manipulation

e Data: 3D images of dendrites of RGCs via a confocal microscope
@ State of the art: A manually intensive procedure using specialized
software!:
e Trace and segment dendrite patterns from each 3D cube;
o Extract geometric/morphological parameters (totally 14 parameters);
e Apply a conventional bottom-up “hierarchical clustering” algorithm
@ The extracted morphological parameters include: somal size; dendritic
field size; total dendrite length; branch order; mean internal branch
length; branch angle; mean terminal branch length, ...

INeurolucida®, MBF Bioscience
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bty
Clustering Mouse's Retinal Ganglion Cells

o Neuroscientists' Objective: To understand how structural /
morphological properties of dendritic trees of mouse retinal ganglion
cells (RGCs) relate to the cell types and their functionality; how such
properties change | evolve from newborn to adult

@ Why mouse? = Great possibilities for genetic manipulation

e Data: 3D images of dendrites of RGCs via a confocal microscope
@ State of the art: A manually intensive procedure using specialized
software!:
e Trace and segment dendrite patterns from each 3D cube;
o Extract geometric/morphological parameters (totally 14 parameters);
e Apply a conventional bottom-up “hierarchical clustering” algorithm
@ The extracted morphological parameters include: somal size; dendritic
field size; total dendrite length; branch order; mean internal branch
length; branch angle; mean terminal branch length, ...

o |t takes half a day per cell with a lot of human interactions!
INeurolucida®, MBF Bioscience
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Molphological Analysis of De WIS Motivation
3D Data
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Molphological Analysis of Dendritic Trees Y[IOVE(L]]

Mouse's RGC as a Graph

200

250

Y (um) -50
400 o0 150 -100

X (pm)
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Molphological Analysis of Dendritic Trees

Clustering using Features Derived by Neurolucida®

ian Eigenvalues I|



Molphological Analysis of Dendritic Trees Y[IOVE(L]]
Our Goal

@ We want to develop algorithms for automatic morphological feature
extraction and clustering from such dendritic trees.
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Molphological Analysis of Dendritic Trees Y[IOVE(L]]
Our Goal

@ We want to develop algorithms for automatic morphological feature
extraction and clustering from such dendritic trees.

@ To do so, we need to convert each dendritic tree to a feature vector in
R* with relatively small ke N. This is called a graph embedding into a
vector space.
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Molphological Analysis of Dendritic Trees Y[IOVE(L]]
Our Goal

@ We want to develop algorithms for automatic morphological feature
extraction and clustering from such dendritic trees.

@ To do so, we need to convert each dendritic tree to a feature vector in
R* with relatively small ke N. This is called a graph embedding into a
vector space.

@ In this lecture, we mainly consider the features using eigenvalues of
graph Laplacians of such trees.
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Molphological Analysis of Dendritic Trees Y[IOVE(L]]
Our Dataset

consists of 130 RGCs each of which in turn consists of

@ A sequence of 3D sample points along dendrite arbors obtained by
Neurolucida® (requires intensive human interaction)
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consists of 130 RGCs each of which in turn consists of

@ A sequence of 3D sample points along dendrite arbors obtained by
Neurolucida® (requires intensive human interaction)

@ Connectivity and branching information by the same software

e Each soma (cell body) is represented as a sequence of points traced
along its boundary (circular/ring shape) = By replacing such a
soma ring by a single vertex representing a center of the soma, each
dendritic tree of an RGC is literally represented by a treel

@ At this point, we only consider unweighted trees.
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Our Dataset

consists of 130 RGCs each of which in turn consists of

@ A sequence of 3D sample points along dendrite arbors obtained by
Neurolucida® (requires intensive human interaction)

@ Connectivity and branching information by the same software

e Each soma (cell body) is represented as a sequence of points traced
along its boundary (circular/ring shape) = By replacing such a
soma ring by a single vertex representing a center of the soma, each
dendritic tree of an RGC is literally represented by a treel

@ At this point, we only consider unweighted trees.
@ n=|V(G)| ranges between 565 and 24474 depending on the RGCs.
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Molphological Analysis of Dendritic Trees Y[IOVE(L]]
Our Dataset

consists of 130 RGCs each of which in turn consists of

@ A sequence of 3D sample points along dendrite arbors obtained by
Neurolucida® (requires intensive human interaction)

@ Connectivity and branching information by the same software

e Each soma (cell body) is represented as a sequence of points traced
along its boundary (circular/ring shape) = By replacing such a
soma ring by a single vertex representing a center of the soma, each
dendritic tree of an RGC is literally represented by a treel

@ At this point, we only consider unweighted trees.
@ n=|V(G)| ranges between 565 and 24474 depending on the RGCs.

@ The range of maximum degrees:

max maxd(vy) =8, min maxd(vy) = 3.
130 cells k 130 cells k
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© Applications to Morphological Feature Extraction from Dendritic Trees

@ Eigenvalue-Based Features
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Features Used in Our Experiments

Feature 1: (p(G) — mg(1))/|V(G)| as a lower bound of the number of
pendant neighbors g(G) normalized by n=|V(G)| ;
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Features Used in Our Experiments

Feature 1: (p(G) — mg(1))/|V(G)| as a lower bound of the number of
pendant neighbors g(G) normalized by n=|V(G)| ;

Feature 2: The normalized Wiener index W(G)/|V(G)| ;

Feature 3: mg(4,00)/|V(G)|, i.e., the number of eigenvalues of L(G)
larger than 4 (normalized) ;
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Features Used in Our Experiments

Feature 1: (p(G) — mg(1))/|V(G)| as a lower bound of the number of
pendant neighbors g(G) normalized by n=|V(G)| ;
Feature 2: The normalized Wiener index W(G)/|V(G)| ;

Feature 3: mg(4,00)/|V(G)|, i.e., the number of eigenvalues of L(G)
larger than 4 (normalized) ;

Feature 4: \/a(G) (2maxyev (G dy — a(G)), i.e., the upper bound of the
isoperimetric number i(G).
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Features Used in Our Experiments

Feature 1: (p(G) — mg(1))/|V(G)| as a lower bound of the number of
pendant neighbors g(G) normalized by n=|V(G)| ;

Feature 2: The normalized Wiener index W(G)/|V(G)| ;

Feature 3: mg(4,00)/|V(G)|, i.e., the number of eigenvalues of L(G)
larger than 4 (normalized) ;

Feature 4: \/a(G) (2maxyev (G dy — a(G)), i.e., the upper bound of the
isoperimetric number i(G).

@ We normalized Features 1, 2, 3, by n=|V(G)| because we wanted to
make features less dependent on the number of samples or how the
dendrite arbors are sampled. Of course, the number of vertices itself
could be a feature although it may not be a decisive one.
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Features Used in Our Experiments

Feature 1: (p(G) — mg(1))/|V(G)| as a lower bound of the number of
pendant neighbors g(G) normalized by n=|V(G)| ;
Feature 2: The normalized Wiener index W(G)/|V(G)| ;

Feature 3: mg(4,00)/|V(G)|, i.e., the number of eigenvalues of L(G)
larger than 4 (normalized) ;

Feature 4: \/a(G) (2maxyev (G dy — a(G)), i.e., the upper bound of the
isoperimetric number i(G).

@ We normalized Features 1, 2, 3, by n=|V(G)| because we wanted to
make features less dependent on the number of samples or how the
dendrite arbors are sampled. Of course, the number of vertices itself
could be a feature although it may not be a decisive one.

@ Feature 4 was not explicitly normalized because the isoperimetric

number i(G) itself is a normalized quantity in terms of number of
vertices.
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Features Used in Our Experiments . ..

@ Feature 1 was used because the number of pendant neighbors seems
to be strongly related to the so-called spines, short protrusions from
the dendrite arbors.
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Features Used in Our Experiments . ..

@ Feature 1 was used because the number of pendant neighbors seems
to be strongly related to the so-called spines, short protrusions from
the dendrite arbors.

@ Hence, we expect that the larger this lower bound p(G) — mg(1) is, the
more likely for the RGC to have spines.
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Features Used in Our Experiments . ..

@ Feature 1 was used because the number of pendant neighbors seems
to be strongly related to the so-called spines, short protrusions from
the dendrite arbors.

@ Hence, we expect that the larger this lower bound p(G) — mg(1) is, the
more likely for the RGC to have spines.
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Features Used in Our Experiments . ..

@ Feature 1 was used because the number of pendant neighbors seems
to be strongly related to the so-called spines, short protrusions from
the dendrite arbors.

@ Hence, we expect that the larger this lower bound p(G) — mg(1) is, the
more likely for the RGC to have spines.
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Features Used in Our Experiments . ..

@ Feature 3, the normalized version of mg(4,00), was used because of
the following observation:
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Features Used in Our Experiments . ..

@ Feature 3, the normalized version of mg(4,00), was used because of
the following observation:

@ The eigenvalue distribution of each RGC consists of a smooth
bell-shaped curve that ranges over [0,4] and the sudden burst above
the value 4.

1000 2000 3000 4000 5000 6000
k
(a) RGC #60
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Features Used in Our Experiments . ..

@ Feature 3, the normalized version of mg(4,00), was used because of
the following observation:

@ The eigenvalue distribution of each RGC consists of a smooth
bell-shaped curve that ranges over [0,4] and the sudden burst above
the value 4.
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(a) RGC #60 (b) RGC #100
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Features Used in Our Experiments . ..

We have observed that this value 4 is critical since:
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Features Used in Our Experiments . ..

We have observed that this value 4 is critical since:
@ the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;
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Features Used in Our Experiments . ..

We have observed that this value 4 is critical since:
@ the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;
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Features Used in Our Experiments . ..

We have observed that this value 4 is critical since:

@ the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;

@ those corresponding to the eigenvalues above 4 are much more

localized (like wavelets) around branches.
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Features Used in Our Experiments . ..

We have observed that this value 4 is critical since:

@ the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;

@ those corresponding to the eigenvalues above 4 are much more
localized (like wavelets) around branches.
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Recap: Clustering using Features Derived by Neurolucida®
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Results: Scatter Plot: Feature 1 vs Feature 2
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Figure: A scatter plot of the normalized lower bounds of the number of the
pendant neighbors vs the normalized Wiener indices.
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Results: Scatter Plot: Feature 3 vs Feature 4
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Figure: A scatter plot of the normalized number of the eigenvalues larger than 4
vs the upper bounds of the isoperimetric numbers.
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Interpretation of the Results

o Cluster 6 RGCs separate themselves quite well from the other RGC
clusters.

@ In fact, the sparse and distributed dendrite patterns such as those in
Clusters 6 and 10 are located below the major axis of the point clouds
in the F; — F, scatter plot and above the major axis of the point clouds
in the F3 — F4 scatter plot. = the dendrite patterns belonging to
Cluster 6 and 10 have smaller number of spines and smaller Wiener
indices compared to the other denser dendrite patterns such as
Clusters 1 to 5.

o Considerable feature variability in Clusters 7 and 8.
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Eigenvalue-Based Features
Cluster 1 vs Cluster 6 . ..
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© Applications to Morphological Feature Extraction from Dendritic Trees

@ Conclusions & Future Plans
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Conclusions & Future Plans

Network-like structures are abundant and need to be quantitatively
analyzed.

How to embed such graphs/networks into a vector space becomes
important.

Demonstrated the usefulness of the eigenvalues of graph Laplacians
for dendrite pattern analysis although the results are still preliminary.

Need to investigate more eigenvalue-based features.
Need to investigate resampling of dendrite arbor samples.
How about the weighted graph Laplacians?

Analyze the features derived by Neurolucida®: are they derivable from
the Laplacian eigenvalues?

Automating segmentation of dendritic trees from 3D images will be
highly useful although it is quite tough.
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