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Isoperimetric Number

Isoperimetric Number

Let S ⊂V (G) be a nonempty subset of vertices of G.
∂S := {e = (u, v) ∈ E(G) |u ∈ S, v ∉ S}, which is called the boundary of S.

S = {•}, Sc = {◦}

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenvalues II 10/10/19 4 / 35



Isoperimetric Number

Isoperimetric Number

Let S ⊂V (G) be a nonempty subset of vertices of G.
∂S := {e = (u, v) ∈ E(G) |u ∈ S, v ∉ S}, which is called the boundary of S.

S = {•}, Sc = {◦}

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenvalues II 10/10/19 4 / 35



Isoperimetric Number

Isoperimetric Number . . .
The Cheeger ratio for S ⊂V is defined as

h(S) := |∂S|
min{|S|, |Sc |} .

For the example graph in the previous page: |S| = 4; |Sc | = 5; |∂S| = 8.
Hence, h(S) = 8/4 = 2.
The Cheeger ratio tells us the quality of the cut of V into S ∪Sc : if S
and Sc are well-balanced, i.e., |S| ≈ |Sc |, and ∃ few edges connecting S
and Sc , then h(S) is small.
The isoperimetric number (or a.k.a. the Cheeger constant) i (G) of G
is defined as

i (G) := inf
S⊂V ;S 6=;

|∂S|
min{|S|, |Sc |} .

This definition is exactly the same as the one given in my previous
lecture, but is in a more symmetric form.
The version for Lrw replaces |S| and |Sc | by vol(S) and vol(Sc ) where
vol(S) := ∑

v∈S d(v). That version has also been studied extensively.
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Isoperimetric Number

Why is i (G) so important or interesting?

To determine it, we need to find a small edge-cut separating as large a
subset S with |S| ≤ n/2 as possible from the remaining larger part Sc .
=⇒ It serves as a measure of connectivity of G. May indicate how easy
is it to “destroy” a given network G by cutting only a few edges.
The problem of partitioning V (G) into two equally sized subsets (to
within one element) in such a way that the number of the edges in the
cut is minimal, is known as the bisection width problem. There are
many practical applications, e.g., VLSI design, etc.
i (G): large =⇒ G has a large growth rate. More precisely, let Bk (v) be
the set of vertices of G at distance at most k from v , like a ball with
center v and radius k. Then, |Bk+1(v)|/|Bk (v)| ≥ i (G)/dmax(G).
It is a discrete analogue of the Cheeger constant in Riemannian
geometry, i.e., the minimal area of a hypersurface that divides a given
compact Riemannian manifold into two disjoint pieces of equal volume.
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Isoperimetric Number

Isoperimetric Numbers of Specific Graphs

Graph G Isoperimetric Number i (G)
Complete graph Kn i (Kn) = dn/2e
Path Pn i (Pn) = 1/bn/2c
Cycle Cn i (Cn) = 2/bn/2c
Bipartite complete graph Kp,q i

(
Kp,q

)= dpq/2e/b(p +q)/2c
Cube m-dimension C bm i (C bm) = 1
Petersen Graph P i (P ) = 1
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Isoperimetric Number

The Isoperimetric Number and Algebraic Connectivity
Both are viewed as measures of connectivity of a given graph.
While i (G) is more explicitly related to the connectivity of a graph
than a(G), it is more difficult (i.e., combinatorial) to compute i (G)
than a(G).
Hence, the bounds of i (G) in terms of a(G) and the other quantities
have been extensively studied.
Mohar (1987, 1989): a(G)/2 ≤ i (G)�

√
a(G) (2dmax(G)−a(G)) for

n ≥ 4, where dmax(G) := max j d j .
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Isospectrality; Spectral Characterization of Graphs
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Isospectrality; Spectral Characterization of Graphs

Isospectrality

The spectrum (i.e., the set of eigenvalues) Λ(G) of L(G) cannot
uniquely determine the graph G.
∼ Kac (1966): “Can one hear the shape of a drum?” =⇒ Gordon,
Webb, & Wolpert (1992): “One cannot hear the shape of a drum.”
An example of “isospectral” graphs (Tan, 1998; Fujii & Katsuda,
1999):

L(G1) =



2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 4 −1 −1 −1
0 0 −1 2 −1 0
0 0 −1 −1 2 0
−1 0 −1 0 0 2

 6= L(G2) =



2 −1 0 0 −1 0
−1 3 −1 0 0 −1
0 −1 3 −1 −1 0
0 0 −1 1 0 0
−1 0 −1 0 3 −1
0 −1 0 0 −1 2


But,Λ(G1) =Λ(G2) = {0,0.7639,2,3,3,5.2361}.
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Isospectrality; Spectral Characterization of Graphs

Spectral Characterization of Certain Classes of Graphs

In fact, there are 58 pairs, 6 triples of isospectral graphs within all
possible simple/undirected/unweighted graphs with n < 8 (Tan, 1998).
However, certain classes of graphs can be completely determined by
their Laplacian spectra: starlike trees (Omidi & Tajbakhsh, 2007),
centipedes (Boulet, 2008), . . .

∃ some attempts to reconstruct graphs from their Laplacian spectra
via combinatorial optimization (e.g., Comellas & Diaz-Lopez, 2008)
Nothing prevents us from using the Laplacian spectra for
characterizing dendrite patterns!
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Molphological Analysis of Dendritic Trees Motivation

Morphology of Network-like Structures

(a) Neuron (b) Universe
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Molphological Analysis of Dendritic Trees Motivation

Morphology of Retinal Ganglion Cells
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Molphological Analysis of Dendritic Trees Motivation

Retinal Ganglion Cells (D. Hubel: Eye, Brain, & Vision, ’95)
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Molphological Analysis of Dendritic Trees Motivation

A Typical Neuron (from Wikipedia)
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Molphological Analysis of Dendritic Trees Motivation

Clustering Mouse’s Retinal Ganglion Cells
Neuroscientists’ Objective: To understand how structural /
morphological properties of dendritic trees of mouse retinal ganglion
cells (RGCs) relate to the cell types and their functionality; how such
properties change / evolve from newborn to adult
Why mouse? =⇒ Great possibilities for genetic manipulation
Data: 3D images of dendrites of RGCs via a confocal microscope
State of the art: A manually intensive procedure using specialized
software1:

Trace and segment dendrite patterns from each 3D cube;
Extract geometric/morphological parameters (totally 14 parameters);
Apply a conventional bottom-up “hierarchical clustering” algorithm

The extracted morphological parameters include: somal size; dendritic
field size; total dendrite length; branch order; mean internal branch
length; branch angle; mean terminal branch length, . . .
It takes half a day per cell with a lot of human interactions!
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Molphological Analysis of Dendritic Trees Motivation

3D Data
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Molphological Analysis of Dendritic Trees Motivation

Mouse’s RGC as a Graph
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Molphological Analysis of Dendritic Trees Motivation

Clustering using Features Derived by Neurolucida®
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Molphological Analysis of Dendritic Trees Motivation

Our Goal

We want to develop algorithms for automatic morphological feature
extraction and clustering from such dendritic trees.
To do so, we need to convert each dendritic tree to a feature vector in
Rk with relatively small k ∈N. This is called a graph embedding into a
vector space.
In this lecture, we mainly consider the features using eigenvalues of
graph Laplacians of such trees.
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Molphological Analysis of Dendritic Trees Motivation

Our Dataset

consists of 130 RGCs each of which in turn consists of
A sequence of 3D sample points along dendrite arbors obtained by
Neurolucida® (requires intensive human interaction)
Connectivity and branching information by the same software
Each soma (cell body) is represented as a sequence of points traced
along its boundary (circular/ring shape) =⇒ By replacing such a
soma ring by a single vertex representing a center of the soma, each
dendritic tree of an RGC is literally represented by a tree!
At this point, we only consider unweighted trees.
n = |V (G)| ranges between 565 and 24474 depending on the RGCs.
The range of maximum degrees:

max
130 cells

max
k

d(vk ) = 8, min
130 cells

max
k

d(vk ) = 3.
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Molphological Analysis of Dendritic Trees Eigenvalue-Based Features

Outline

1 Isoperimetric Number

2 Isospectrality; Spectral Characterization of Graphs

3 Applications to Morphological Feature Extraction from Dendritic Trees
Motivation
Eigenvalue-Based Features
Conclusions & Future Plans
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Molphological Analysis of Dendritic Trees Eigenvalue-Based Features

Features Used in Our Experiments

Feature 1: (p(G)−mG (1))/|V (G)| as a lower bound of the number of
pendant neighbors q(G) normalized by n = |V (G)| ;

Feature 2: The normalized Wiener index W (G)/|V (G)| ;
Feature 3: mG (4,∞)/|V (G)|, i.e., the number of eigenvalues of L(G)

larger than 4 (normalized) ;

Feature 4:
√

a(G)
(
2maxv∈V (G) dv −a(G)

)
, i.e., the upper bound of the

isoperimetric number i (G).

We normalized Features 1, 2, 3, by n = |V (G)| because we wanted to
make features less dependent on the number of samples or how the
dendrite arbors are sampled. Of course, the number of vertices itself
could be a feature although it may not be a decisive one.
Feature 4 was not explicitly normalized because the isoperimetric
number i (G) itself is a normalized quantity in terms of number of
vertices.
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Molphological Analysis of Dendritic Trees Eigenvalue-Based Features

Features Used in Our Experiments . . .

Feature 1 was used because the number of pendant neighbors seems
to be strongly related to the so-called spines, short protrusions from
the dendrite arbors.
Hence, we expect that the larger this lower bound p(G)−mG (1) is, the
more likely for the RGC to have spines.

(a) RGC #60; F1 large (b) RGC #100; F1 small
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Molphological Analysis of Dendritic Trees Eigenvalue-Based Features

Features Used in Our Experiments . . .

Feature 3, the normalized version of mG (4,∞), was used because of
the following observation:
The eigenvalue distribution of each RGC consists of a smooth
bell-shaped curve that ranges over [0,4] and the sudden burst above
the value 4.
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Molphological Analysis of Dendritic Trees Eigenvalue-Based Features

Features Used in Our Experiments . . .

We have observed that this value 4 is critical since:
the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;
those corresponding to the eigenvalues above 4 are much more
localized (like wavelets) around branches.

(a) RGC #100; λ1141 = 3.9994 (b) RGC #100; λ1142 = 4.3829
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Recap: Clustering using Features Derived by Neurolucida®
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Results: Scatter Plot; Feature 1 vs Feature 2

Figure: A scatter plot of the normalized lower bounds of the number of the
pendant neighbors vs the normalized Wiener indices.
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Results: Scatter Plot; Feature 3 vs Feature 4

Figure: A scatter plot of the normalized number of the eigenvalues larger than 4
vs the upper bounds of the isoperimetric numbers.
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Interpretation of the Results

Cluster 6 RGCs separate themselves quite well from the other RGC
clusters.
In fact, the sparse and distributed dendrite patterns such as those in
Clusters 6 and 10 are located below the major axis of the point clouds
in the F1−F2 scatter plot and above the major axis of the point clouds
in the F3 −F4 scatter plot. =⇒ the dendrite patterns belonging to
Cluster 6 and 10 have smaller number of spines and smaller Wiener
indices compared to the other denser dendrite patterns such as
Clusters 1 to 5.
Considerable feature variability in Clusters 7 and 8.
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Cluster 1 vs Cluster 6 . . .

(a) Cluster 1 (b) Cluster 6
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Conclusions & Future Plans

Network-like structures are abundant and need to be quantitatively
analyzed.
How to embed such graphs/networks into a vector space becomes
important.
Demonstrated the usefulness of the eigenvalues of graph Laplacians
for dendrite pattern analysis although the results are still preliminary.
Need to investigate more eigenvalue-based features.
Need to investigate resampling of dendrite arbor samples.
How about the weighted graph Laplacians?
Analyze the features derived by Neurolucida®: are they derivable from
the Laplacian eigenvalues?
Automating segmentation of dendritic trees from 3D images will be
highly useful although it is quite tough.
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