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Why Graph Laplacian Eigenfunctions?

Why Graph Laplacian Eigenfunctions?

Provide an orthonormal basis on a graph:
can expand functions defined on a graph
can perform spectral analysis/synthesis/filtering of data measured on
vertices of a graph
. . .

Can be used for graph partitioning, graph drawing, data analysis,
clustering, . . .=⇒ Graph Cut, Spectral Clustering
But, less studied than graph Laplacian eigenvalues
In this course, I will use the terms “eigenfunctions” and “eigenvectors”
interchangeably.
Also, an eigenvector/function is denoted by φ, and its value at vertex
x ∈V is denoted by φ(x).
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Properties of Graph Laplacian Eigenfunctions

Basic Properties of GL Eigenfunctions

If G = (V ,E), |V | = n, is connected, then λ0 = 0, a(G) =λ1 > 0.
We already know that the eigenfunction corresponding to λ0 = 0 is
φ0 = 1p

n
1n .

Hence, φ j corresponding to λ j > 0, j = 1, . . . ,n−1, must be orthogonal
to 1n :

∑
x∈V φ j (x) = 0, i.e., it must oscillate.

If φ(x) = 0, then (Lφ)(x) =λφ(x) = 0. Hence,
∑

y∼x Lx yφ(y) = 0.

Theorem (Grover (1990); Gladwell & Zhu (2002))

An eigenfunction of L(G) cannot have a nonnegative local minimum or a
nonpositive local maximum.

Proof. Suppose φ(x) is a local minimum of φ with φ(x) ≥ 0. Then, ∀y ∼ x,
φ(x)−φ(y) < 0. Now, recall Lφ(x) =∑

y∼x ax y (φ(x)−φ(y)) =λφ(x) ≥ 0
where ax y ≥ 0 is the x y-th entry of the adjacency matrix A(G). These
contradicts each other. ä
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Properties of Graph Laplacian Eigenfunctions

Basic Properties of Unweighted GL Eigenfunctions

Theorem (Merris (1998))

If 0�λ< n is an eigenvalue of L(G), then any eigenfunction affording λ
takes the value 0 on every vertex of degree n −1.

Proof. Let v ∈V be a vertex with d(v) = n −1. Then,
Lφ(v) = (n −1)φ(v)−∑

u 6=vφ(u) =λφ(v). But, φ⊥ 1n , so∑
u 6=vφ(u) =−φ(v). This leads to: nφ(v) =λφ(v). Since 0�λ� n, we

must have φ(v) = 0. ä
Theorem (Merris (1998))

Let (λ,φ) be an eigenpair of L(G). If φ(u) =φ(v), then (λ,φ) is also an
eigenpair of L(G ′) where G ′ is the graph obtained from G by either deleting
or adding the edge e = (u, v) depending on whether or not e ∈ E(G).
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Properties of Graph Laplacian Eigenfunctions

Basic Properties of Unweighted GL Eigenfunctions . . .

Let W be a nonempty subset of V (G). Then, the reduced graph G{W } is
obtained from G by deleting all vertices in V \W that are not adjacent to a
vertex of W and subsequent deletion of any remaining edges that are not
incident with a vertex in W .

W = {•}, W c = {◦}
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Properties of Graph Laplacian Eigenfunctions

Basic Properties of Unweighted GL Eigenfunctions . . .

Theorem (Merris (1998))

Fix a nonempty subset W ⊂V . Suppose φ is an eigenfunction of the
reduced graph G{W } that affords λ and is supported by W in the sense
that if φ(u) 6= 0, then u ∈W . Then the extension φ̃ with φ̃(v) =φ(v) for
v ∈W and φ̃(v) = 0 for v ∈V \W is an eigenfunction of G affording λ.

Theorem (Merris (1998))

Let φ be an eigenfunction affording λ of G. Let Nv be the set of neighbors
of v . Suppose φ(u) =φ(v) = 0, where Nu ∩Nv =;. Let G ′ be the graph on
n −1 vertices obtained by coalescing u and v into a single vertex, which is
adjacent in G ′ to precisely those vertices that are adjacent in G to u or to
v . Then, the function φ′ obtained by restricting φ to V (G) \ {v} is an
eigenfunction of G ′ affording λ.
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Properties of Graph Laplacian Eigenfunctions

A Simple Example

1

2

3 4 5 6

7

8
G ;N3 ∩ N6 = ∅

λ2(G) = 1;φ2(G) = [−0.0261,−0.0261,0,0.0523,0.0523,0,−0.7303,0.6781]T

1

2

3,6

4 5

7

8

G ′

λ2(G ′) = 1;φ2(G ′) ∝ [−0.0261,−0.0261,0,0.0523,0.0523,−0.7303,0.6781]T
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The Perron-Frobenius Theory

The Perron-Frobenius Theorem
Let A ∈Rn×n be a rather general symmetric matrix associated with a graph
G such that Auv 6= 0 iff e = (u, v) ∈ E(G). Then, A is called irreducible if its
underlying graph is connected.

Theorem (Perron-Frobenius Theorem)

Let A,B be real symmetric irreducible nonnegative n ×n matrices. Then,
(i) the spectral radius ρ(A) is a simple eigenvalue of A. If φ is an

eigenfunction for ρ(A), then no entries of φ are zero, and all have the
same sign.

(ii) Furthermore, if A−B is nonnegative, then ρ(B) ≤ ρ(A), with equality
iff B = A.

Corollary
Let G be a connected graph. Then, the smallest eigenvalue of L(G),
Lrw(G), Lsym(G), i.e., λ0 = 0, is simple, and φ0 can be taken to have all
entries positive. φ0 is often called the Perron vector of G.
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The Perron-Frobenius Theory

My Comments on the Perron-Frobenius Theorem

If G = Pn , then φ j of L(G) is j th DCT-II basis vector, as I discussed in
Lecture 3. Hence, the Perron vector of Pn is the constant vector for
the DC component in the signal processing terminology.
For the continuous case, I talked about the integral operator K that
commutes with the Laplace operator in Lecture 2. In particular, I
showed the 1D example where the domain is the unit interval
Ω= (0,1). In that case, the smallest eigenvalue is λ0 ≈−5.756915, and
φ0(x) ∝ cosh

√
−λ0

(
x − 1

2

)
. This function also does not change its

sign, hence it can be viewed as the Perron vector of K .
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The Perron-Frobenius Theory

My Comments on the Perron-Frobenius Theorem . . .

Does there exist the P-F theory for compact operators? =⇒ YES!
Theorem (Krein & Rutman (1948))

Let X be a Banach space, and let K ⊂ X be a convex cone such that the
set K −K = { f − g | f , g ∈ K } is dense in X . Let T : X → X be a non-zero
compact operator which is positive, meaning that T (K ) ⊂ K , and assume
that its spectral radius ρ(T ) is strictly positive. Then ρ(T ) is an eigenvalue
of T with positive eigenfunction, meaning that there exists φ ∈ K \ {0} such
that T (φ) = ρ(T )φ.

Generally, one of my research goals is to consider the graph version of
the integral operator commuting with a given graph Laplacian, and
analyze its properties!
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From Perron-Frobenius to Courant’s Nodal Domain
Theorem

Outline
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From Perron-Frobenius to Courant’s Nodal Domain
Theorem

Perron-Frobenius/Fiedler =⇒ Courant

From the Perron-Frobenius theorem, for a connected graph G, we
know that λ0 = 0 and φ0 is all positive.
By Fielder, we also know that the algebraic connectivity
a(G) =λ1(G) > 0, φ1 (called the Fiedler vector of G) splits V into
three subsets V =V+∪V−∪V0 where the values of φ1 on V+, V−, V0

are positive, negative, and zero (note that V0 could be ;).
These reminds us of Courant’s celebrated Nodal Domain Theorem for
elliptic operatros on manifolds.

(a) Ferdinand Georg
Frobenius (1849–1917)

(b) Oskar Perron
(1880–1975)

(c) Richard Courant
(1888–1972)

(d) Miroslav Fiedler
(1926–2015)
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From Perron-Frobenius to Courant’s Nodal Domain
Theorem

Courant’s Nodal Domain Theorem

Theorem (Courant (1923))

Let L be a self-adjoint second order differential operator, and consider the
following elliptic eigenvalue problem on a domain Ω⊂Rd :

Lu +λρu = 0, ρ > 0,

with arbitrary homogeneous boundary conditions. If its eigenfunctions are
ordered according to increasing eigenvalues, then the nodes (a.k.a. nodal
sets or nodal lines) of the kth eigenfunction φk (k = 0,1, . . .) divide Ω into
no more than k +1 subdomains.

Of course, the nodal sets of a function f (x) in Ω is defined as

N [ f ] := {x ∈Ω | f (x) = 0}.
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From Perron-Frobenius to Courant’s Nodal Domain
Theorem

A Famous Example of Nodal Domain Theorem

Courtesy: http://www.cymascope.com/cyma_research/history.html

(a) Chladni Plates

(b) Ernst Chladini (1756–1827)
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From Perron-Frobenius to Courant’s Nodal Domain
Theorem

Discrete Nodal Domains

In the context of manifolds, the nodal domains of f refers to the
connected components of the complement of the nodal set N [ f ], i.e.,
to the components of {x ∈Ω | f (x) 6= 0}, which are bounded by the
nodal sets.
The discrete analog of a “nodal domain” is a maximal connected
induced subgraph consisting entirely of positive and negative vertices
w.r.t. a given function f defined over V (G).
However, more subtlety comes in:

1

2 3 4

5

K1,4

λ1 = 1; mK1,4 (1) = 3;φ1 ∝ [1,−1,0,1,−1]T.
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From Perron-Frobenius to Courant’s Nodal Domain
Theorem

Discrete Nodal Domains . . .

A positive (or negative) strong nodal domain of f on V (G) is a
maximal connected induced subgraph of G on vertices v ∈V with
f (v) > 0 (or f (v) < 0). The number of strong nodal domains of f is
denoted by S( f ).
In contrast, a positive (or negative) weak nodal domain of f on V (G)
is a maximal connected induced subgraph of G on vertices v ∈V with
f (v) ≥ 0 (or f (v) ≤ 0) that contains at least one nonzero vertex. The
number of weak nodal domains of f is denoted by W( f ).
In the above example of K1,4, S(φ1) = 4 and W(φ1) = 2 because the
strong nodal domains are {{1}, {2}, {4}, {5}} while the weak nodal
domains are {{1,3,4}, {2,3,5}}.
Obviously, we always have W( f ) ≤S( f ).
The zero vertices separate positive (or negative) strong nodal domains
while they join weak nodal domains. In fact, each zero vertex
simultaneously belongs to exactly one weak positive nodal domain and
exactly one weak negative nodal domain.
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From Perron-Frobenius to Courant’s Nodal Domain
Theorem

Discrete Nodal Domains . . .

We focus our attention on the kth eigenvalue λk with multiplicity r of a
graph Laplacian (L, Lrw, Lsym).

λ0 ≤λ1 ≤ ·· · ≤λk−1 <λk =λk+1 = ·· · =λk+r−1 <λk+r ≤ ·· · ≤λn−1.

Theorem (Discrete Nordal Domain Theorem (Davies, Gladwell, Leydold,
Stadler, 2001))

Let G be a connected graph with n vertices. Then, any graph Laplacian
eigenfunction φk corresponding to λk with multiplicity r has at most k +1
weak nodal domains and k + r strong nodal domains, i.e.,

W(φk ) ≤ k +1, S(φk ) ≤ k + r

where k ∈ [0,n −1].

In the example of K1,4, λ1 = 1 has multiplicity r = 3. Hence,
W(φ1) = 2 ≤ 1+1 and S(φ1) = 4 ≤ 1+3 are satisfied!
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From Perron-Frobenius to Courant’s Nodal Domain
Theorem

Discrete Nodal Domains . . .

Corollary (Fiedler (1975))

If G is connected, then W(φ1) = 2.

Corollary (Fiedler (1975))

The eigenfunction φk affording λk has at most k positive weak nodal
domains for k ≥ 1. Consequently, W(φk ) ≤ 2k.

In the previous example of K1,4, we have λmax =λ4 = 5, and
φ4 ∝ [1,1,−4,1,1]T. Hence, W(φ4) = 5 ≤ 2 ·4 = 8, satisfying the corollary.

1

2 3 4

5

K1,4
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From Perron-Frobenius to Courant’s Nodal Domain
Theorem

Discrete Nodal Domains of a Dendritic Tree: sign(φ1)
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From Perron-Frobenius to Courant’s Nodal Domain
Theorem

Discrete Nodal Domains of a Dendritic Tree: sign(φ2)
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From Perron-Frobenius to Courant’s Nodal Domain
Theorem

Discrete Nodal Domains of a Dendritic Tree: sign(φ3)
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From Perron-Frobenius to Courant’s Nodal Domain
Theorem

Discrete Nodal Domains of a Dendritic Tree: sign(φ4)
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