MAT 280: Harmonic Analysis on Graphs \& Networks Lecture 6: Graph Laplacian Eigenfunctions

Naoki Saito
Department of Mathematics
University of California, Davis

October 15, 2019

Outline

(1) Why Graph Laplacian Eigenfunctions?
(2) Properties of Graph Laplacian Eigenfunctions
(3) The Perron-Frobenius Theory

4 From Perron-Frobenius to Courant's Nodal Domain Theorem

Outline

(1) Why Graph Laplacian Eigenfunctions?

(2) Properties of Graph Laplacian Eigenfunctions

(3) The Perron-Frobenius Theory

4 From Perron-Frobenius to Courant's Nodal Domain Theorem

Why Graph Laplacian Eigenfunctions?

- Provide an orthonormal basis on a graph:
- Can be used for graph partitioning, graph drawing, data analysis, clustering,
- But, less studied than graph Laplacian eigenvalues
- In this course, I will use the terms "eigenfunctions" and "eigenvectors" interchangeably.
- Also, an eigenvector/function is denoted by ϕ, and its value at vertex $x \in V$ is denoted by $\boldsymbol{\phi}(x)$

Why Graph Laplacian Eigenfunctions?

- Provide an orthonormal basis on a graph:
- can expand functions defined on a graph
- Can be used for graph partitioning, graph drawing, data analysis, clustering,
- But, less studied than graph Laplacian eigenvalues
- In this course, I will use the terms "eigenfunctions" and "eigenvectors' interchangeably.
- Also, an eigenvector/function is denoted by ϕ, and its value at vertex

Why Graph Laplacian Eigenfunctions?

- Provide an orthonormal basis on a graph:
- can expand functions defined on a graph
- can perform spectral analysis/synthesis/filtering of data measured on vertices of a graph

Why Graph Laplacian Eigenfunctions?

- Provide an orthonormal basis on a graph:
- can expand functions defined on a graph
- can perform spectral analysis/synthesis/filtering of data measured on vertices of a graph
- ...
- Can be used for graph partitioning, graph drawing, data analysis, clustering,
- Dut, I-ss studied than graph Laplacian eigenvalues - In this course, I will use the terms "eigenfunctions" and "eigenvectors" interchangeahly.

Why Graph Laplacian Eigenfunctions?

- Provide an orthonormal basis on a graph:
- can expand functions defined on a graph
- can perform spectral analysis/synthesis/filtering of data measured on vertices of a graph
- ...
- Can be used for graph partitioning, graph drawing, data analysis, clustering, $\ldots \Longrightarrow$ Graph Cut, Spectral Clustering
\square

Why Graph Laplacian Eigenfunctions?

- Provide an orthonormal basis on a graph:
- can expand functions defined on a graph
- can perform spectral analysis/synthesis/filtering of data measured on vertices of a graph
- . .
- Can be used for graph partitioning, graph drawing, data analysis, clustering, $\ldots \Longrightarrow$ Graph Cut, Spectral Clustering
- But, less studied than graph Laplacian eigenvalues

Why Graph Laplacian Eigenfunctions?

- Provide an orthonormal basis on a graph:
- can expand functions defined on a graph
- can perform spectral analysis/synthesis/filtering of data measured on vertices of a graph
- . .
- Can be used for graph partitioning, graph drawing, data analysis, clustering, $\ldots \Longrightarrow$ Graph Cut, Spectral Clustering
- But, less studied than graph Laplacian eigenvalues
- In this course, I will use the terms "eigenfunctions" and "eigenvectors" interchangeably.

Why Graph Laplacian Eigenfunctions?

- Provide an orthonormal basis on a graph:
- can expand functions defined on a graph
- can perform spectral analysis/synthesis/filtering of data measured on vertices of a graph
- . .
- Can be used for graph partitioning, graph drawing, data analysis, clustering, $\ldots \Longrightarrow$ Graph Cut, Spectral Clustering
- But, less studied than graph Laplacian eigenvalues
- In this course, I will use the terms "eigenfunctions" and "eigenvectors" interchangeably.
- Also, an eigenvector/function is denoted by $\boldsymbol{\phi}$, and its value at vertex $x \in V$ is denoted by $\boldsymbol{\phi}(x)$.

Outline

(1) Why Graph Laplacian Eigenfunctions?

(2) Properties of Graph Laplacian Eigenfunctions
(3) The Perron-Frobenius Theory
4. From Perron-Frobenius to Courant's Nodal Domain Theorem

Basic Properties of GL Eigenfunctions

- If $G=(V, E),|V|=n$, is connected, then $\lambda_{0}=0, a(G)=\lambda_{1}>0$.

\qquad nonpositive local maximum

Basic Properties of GL Eigenfunctions

- If $G=(V, E),|V|=n$, is connected, then $\lambda_{0}=0, a(G)=\lambda_{1}>0$.
- We already know that the eigenfunction corresponding to $\lambda_{0}=0$ is

$$
\boldsymbol{\phi}_{0}=\frac{1}{\sqrt{n}} \mathbf{1}_{n} .
$$

Basic Properties of GL Eigenfunctions

- If $G=(V, E),|V|=n$, is connected, then $\lambda_{0}=0, a(G)=\lambda_{1}>0$.
- We already know that the eigenfunction corresponding to $\lambda_{0}=0$ is $\boldsymbol{\phi}_{0}=\frac{1}{\sqrt{n}} \mathbf{1}_{n}$.
- Hence, $\boldsymbol{\phi}_{j}$ corresponding to $\lambda_{j}>0, j=1, \ldots, n-1$, must be orthogonal to $\mathbf{1}_{n}: \sum_{x \in V} \boldsymbol{\phi}_{j}(x)=0$, i.e., it must oscillate.

Basic Properties of GL Eigenfunctions

- If $G=(V, E),|V|=n$, is connected, then $\lambda_{0}=0, a(G)=\lambda_{1}>0$.
- We already know that the eigenfunction corresponding to $\lambda_{0}=0$ is $\boldsymbol{\phi}_{0}=\frac{1}{\sqrt{n}} \mathbf{1}_{n}$.
- Hence, $\boldsymbol{\phi}_{j}$ corresponding to $\lambda_{j}>0, j=1, \ldots, n-1$, must be orthogonal to $\mathbf{1}_{n}: \sum_{x \in V} \phi_{j}(x)=0$, i.e., it must oscillate.
- If $\boldsymbol{\phi}(x)=0$, then $(L \boldsymbol{\phi})(x)=\lambda \boldsymbol{\phi}(x)=0$. Hence, $\sum_{y \sim x} L_{x y} \boldsymbol{\phi}(y)=0$.

Basic Properties of GL Eigenfunctions

- If $G=(V, E),|V|=n$, is connected, then $\lambda_{0}=0, a(G)=\lambda_{1}>0$.
- We already know that the eigenfunction corresponding to $\lambda_{0}=0$ is $\boldsymbol{\phi}_{0}=\frac{1}{\sqrt{n}} \mathbf{1}_{n}$.
- Hence, $\boldsymbol{\phi}_{j}$ corresponding to $\lambda_{j}>0, j=1, \ldots, n-1$, must be orthogonal to $\mathbf{1}_{n}: \sum_{x \in V} \boldsymbol{\phi}_{j}(x)=0$, i.e., it must oscillate.
- If $\boldsymbol{\phi}(x)=0$, then $(L \boldsymbol{\phi})(x)=\lambda \boldsymbol{\phi}(x)=0$. Hence, $\sum_{y \sim x} L_{x y} \boldsymbol{\phi}(y)=0$.

Theorem (Grover (1990); Gladwell \& Zhu (2002))

An eigenfunction of $L(G)$ cannot have a nonnegative local minimum or a nonpositive local maximum.

Basic Properties of GL Eigenfunctions

- If $G=(V, E),|V|=n$, is connected, then $\lambda_{0}=0, a(G)=\lambda_{1}>0$.
- We already know that the eigenfunction corresponding to $\lambda_{0}=0$ is $\boldsymbol{\phi}_{0}=\frac{1}{\sqrt{n}} \mathbf{1}_{n}$.
- Hence, $\boldsymbol{\phi}_{j}$ corresponding to $\lambda_{j}>0, j=1, \ldots, n-1$, must be orthogonal to $\mathbf{1}_{n}: \sum_{x \in V} \boldsymbol{\phi}_{j}(x)=0$, i.e., it must oscillate.
- If $\boldsymbol{\phi}(x)=0$, then $(L \boldsymbol{\phi})(x)=\lambda \boldsymbol{\phi}(x)=0$. Hence, $\sum_{y \sim x} L_{x y} \boldsymbol{\phi}(y)=0$.

Theorem (Grover (1990); Gladwell \& Zhu (2002))

An eigenfunction of $L(G)$ cannot have a nonnegative local minimum or a nonpositive local maximum.

Proof. Suppose $\boldsymbol{\phi}(x)$ is a local minimum of $\boldsymbol{\phi}$ with $\boldsymbol{\phi}(x) \geq 0$. Then, $\forall y \sim x$, $\boldsymbol{\phi}(x)-\boldsymbol{\phi}(y)<0$. Now, recall $L \boldsymbol{\phi}(x)=\sum_{y \sim x} a_{x y}(\boldsymbol{\phi}(x)-\boldsymbol{\phi}(y))=\lambda \boldsymbol{\phi}(x) \geq 0$ where $a_{x y} \geq 0$ is the $x y$-th entry of the adjacency matrix $A(G)$. These contradicts each other.

Basic Properties of Unweighted GL Eigenfunctions

Theorem (Merris (1998))

If $0 \varsubsetneqq \lambda<n$ is an eigenvalue of $L(G)$, then any eigenfunction affording λ takes the value 0 on every vertex of degree $n-1$.

Basic Properties of Unweighted GL Eigenfunctions

Theorem (Merris (1998))

If $0 \varsubsetneqq \lambda<n$ is an eigenvalue of $L(G)$, then any eigenfunction affording λ takes the value 0 on every vertex of degree $n-1$.
 $L \boldsymbol{\phi}(\nu)=(n-1) \boldsymbol{\phi}(\nu)-\sum_{u \neq \nu} \boldsymbol{\phi}(u)=\lambda \boldsymbol{\phi}(\nu)$. But, $\boldsymbol{\phi} \perp \mathbf{1}_{n}$, so $\sum_{u \neq \nu} \boldsymbol{\phi}(u)=-\boldsymbol{\phi}(\nu)$. This leads to: $n \boldsymbol{\phi}(\nu)=\lambda \boldsymbol{\phi}(\nu)$. Since $0 \varsubsetneqq \lambda \supsetneqq n$, we must have $\boldsymbol{\phi}(\nu)=0$.

Basic Properties of Unweighted GL Eigenfunctions

Theorem (Merris (1998))

If $0 \supsetneqq \lambda<n$ is an eigenvalue of $L(G)$, then any eigenfunction affording λ takes the value 0 on every vertex of degree $n-1$.
 $L \boldsymbol{\phi}(v)=(n-1) \boldsymbol{\phi}(v)-\sum_{u \neq v} \boldsymbol{\phi}(u)=\lambda \boldsymbol{\phi}(\nu)$. But, $\boldsymbol{\phi} \perp \mathbf{1}_{n}$, so
$\sum_{u \neq \nu} \boldsymbol{\phi}(u)=-\boldsymbol{\phi}(\nu)$. This leads to: $n \boldsymbol{\phi}(\nu)=\lambda \boldsymbol{\phi}(\nu)$. Since $0 \supsetneqq \lambda \supsetneqq n$, we must have $\boldsymbol{\phi}(\nu)=0$.

Theorem (Merris (1998))
Let $(\lambda, \boldsymbol{\phi})$ be an eigenpair of $L(G)$. If $\boldsymbol{\phi}(u)=\boldsymbol{\phi}(\nu)$, then $(\lambda, \boldsymbol{\phi})$ is also an eigenpair of $L\left(G^{\prime}\right)$ where G^{\prime} is the graph obtained from G by either deleting or adding the edge $e=(u, v)$ depending on whether or not $e \in E(G)$.

Basic Properties of Unweighted GL Eigenfunctions ...

Let W be a nonempty subset of $V(G)$. Then, the reduced graph $G\{W\}$ is obtained from G by deleting all vertices in $V \backslash W$ that are not adjacent to a vertex of W and subsequent deletion of any remaining edges that are not incident with a vertex in W.

$$
W=\{\bullet\}, W^{c}=\{0\}
$$

Basic Properties of Unweighted GL Eigenfunctions ...

Let W be a nonempty subset of $V(G)$. Then, the reduced graph $G\{W\}$ is obtained from G by deleting all vertices in $V \backslash W$ that are not adjacent to a vertex of W and subsequent deletion of any remaining edges that are not incident with a vertex in W.

$G\{W\}$

Basic Properties of Unweighted GL Eigenfunctions ...

Theorem (Merris (1998))

Fix a nonempty subset $W \subset V$. Suppose $\boldsymbol{\phi}$ is an eigenfunction of the reduced graph $G\{W\}$ that affords λ and is supported by W in the sense that if $\boldsymbol{\phi}(u) \neq 0$, then $u \in W$. Then the extension $\widetilde{\boldsymbol{\phi}}$ with $\widetilde{\boldsymbol{\phi}}(v)=\boldsymbol{\phi}(v)$ for $\nu \in W$ and $\widetilde{\boldsymbol{\phi}}(\nu)=0$ for $\nu \in V \backslash W$ is an eigenfunction of G affording λ.

Basic Properties of Unweighted GL Eigenfunctions ...

Theorem (Merris (1998))

Fix a nonempty subset $W \subset V$. Suppose $\boldsymbol{\phi}$ is an eigenfunction of the reduced graph $G\{W\}$ that affords λ and is supported by W in the sense that if $\boldsymbol{\phi}(u) \neq 0$, then $u \in W$. Then the extension $\widetilde{\boldsymbol{\phi}}$ with $\widetilde{\boldsymbol{\phi}}(\nu)=\boldsymbol{\phi}(\nu)$ for $\nu \in W$ and $\widetilde{\phi}(\nu)=0$ for $\nu \in V \backslash W$ is an eigenfunction of G affording λ.

Theorem (Merris (1998))

Let $\boldsymbol{\phi}$ be an eigenfunction affording λ of G. Let N_{ν} be the set of neighbors of ν. Suppose $\boldsymbol{\phi}(u)=\boldsymbol{\phi}(\nu)=0$, where $N_{u} \cap N_{\nu}=\varnothing$. Let G^{\prime} be the graph on $n-1$ vertices obtained by coalescing u and v into a single vertex, which is adjacent in G^{\prime} to precisely those vertices that are adjacent in G to u or to v. Then, the function $\boldsymbol{\phi}^{\prime}$ obtained by restricting $\boldsymbol{\phi}$ to $V(G) \backslash\{\nu\}$ is an eigenfunction of G^{\prime} affording λ.

A Simple Example

A Simple Example

$\lambda_{2}\left(G^{\prime}\right)=1 ; \boldsymbol{\phi}_{2}\left(G^{\prime}\right) \propto[-0.0261,-0.0261,0,0.0523,0.0523,-0.7303,0.6781]^{\top}$

Outline

(1) Why Graph Laplacian Eigenfunctions?

(2) Properties of Graph Laplacian Eigenfunctions

(3) The Perron-Frobenius Theory

4 From Perron-Frobenius to Courant's Nodal Domain Theorem

The Perron-Frobenius Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a rather general symmetric matrix associated with a graph G such that $A_{u v} \neq 0$ iff $e=(u, v) \in E(G)$. Then, A is called irreducible if its underlying graph is connected.

The Perron-Frobenius Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a rather general symmetric matrix associated with a graph G such that $A_{u v} \neq 0$ iff $e=(u, v) \in E(G)$. Then, A is called irreducible if its underlying graph is connected.

Theorem (Perron-Frobenius Theorem)
Let A, B be real symmetric irreducible nonnegative $n \times n$ matrices. Then,
(i) the spectral radius $\rho(A)$ is a simple eigenvalue of A. If $\boldsymbol{\phi}$ is an eigenfunction for $\rho(A)$, then no entries of $\boldsymbol{\phi}$ are zero, and all have the same sign.
(ii) Furthermore, if $A-B$ is nonnegative, then $\rho(B) \leq \rho(A)$, with equality iff $B=A$.

The Perron-Frobenius Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a rather general symmetric matrix associated with a graph G such that $A_{u v} \neq 0$ iff $e=(u, v) \in E(G)$. Then, A is called irreducible if its underlying graph is connected.

Theorem (Perron-Frobenius Theorem)
Let A, B be real symmetric irreducible nonnegative $n \times n$ matrices. Then,
(i) the spectral radius $\rho(A)$ is a simple eigenvalue of A. If $\boldsymbol{\phi}$ is an eigenfunction for $\rho(A)$, then no entries of $\boldsymbol{\phi}$ are zero, and all have the same sign.
(ii) Furthermore, if $A-B$ is nonnegative, then $\rho(B) \leq \rho(A)$, with equality iff $B=A$.

Corollary

Let G be a connected graph. Then, the smallest eigenvalue of $L(G)$, $L_{\mathrm{rw}}(G), L_{\mathrm{sym}}(G)$, i.e., $\lambda_{0}=0$, is simple, and ϕ_{0} can be taken to have all entries positive. $\boldsymbol{\phi}_{0}$ is often called the Perron vector of G.

My Comments on the Perron-Frobenius Theorem

- If $G=P_{n}$, then $\boldsymbol{\phi}_{j}$ of $L(G)$ is j th DCT-II basis vector, as I discussed in Lecture 3. Hence, the Perron vector of P_{n} is the constant vector for the $D C$ component in the signal processing terminology.

My Comments on the Perron-Frobenius Theorem

- If $G=P_{n}$, then $\boldsymbol{\phi}_{j}$ of $L(G)$ is j th DCT-II basis vector, as I discussed in Lecture 3. Hence, the Perron vector of P_{n} is the constant vector for the $D C$ component in the signal processing terminology.
- For the continuous case, I talked about the integral operator \mathbb{K} that commutes with the Laplace operator in Lecture 2. In particular, I showed the 1D example where the domain is the unit interval $\Omega=(0,1)$. In that case, the smallest eigenvalue is $\lambda_{0} \approx-5.756915$, and $\phi_{0}(x) \propto \cosh \sqrt{-\lambda_{0}}\left(x-\frac{1}{2}\right)$. This function also does not change its sign, hence it can be viewed as the Perron vector of \mathscr{K}.

My Comments on the Perron-Frobenius Theorem . . .

- Does there exist the P-F theory for compact operators?
- Generally, one of my research goals is to consider the graph version of the integral operator commuting with a given graph Laplacian, and analyze its properties!

My Comments on the Perron-Frobenius Theorem . . .

- Does there exist the P-F theory for compact operators? \Rightarrow YES!

Theorem (Krein \& Rutman (1948))
Let X be a Banach space, and let $K \subset X$ be a convex cone such that the set $K-K=\{f-g \mid f, g \in K\}$ is dense in X. Let $T: X \rightarrow X$ be a non-zero compact operator which is positive, meaning that $T(K) \subset K$, and assume that its spectral radius $\rho(T)$ is strictly positive. Then $\rho(T)$ is an eigenvalue of T with positive eigenfunction, meaning that there exists $\phi \in K \backslash\{0\}$ such that $T(\phi)=\rho(T) \phi$.

My Comments on the Perron-Frobenius Theorem . . .

- Does there exist the P-F theory for compact operators? \Rightarrow YES!

Theorem (Krein \& Rutman (1948))
Let X be a Banach space, and let $K \subset X$ be a convex cone such that the set $K-K=\{f-g \mid f, g \in K\}$ is dense in X. Let $T: X \rightarrow X$ be a non-zero compact operator which is positive, meaning that $T(K) \subset K$, and assume that its spectral radius $\rho(T)$ is strictly positive. Then $\rho(T)$ is an eigenvalue of T with positive eigenfunction, meaning that there exists $\phi \in K \backslash\{0\}$ such that $T(\phi)=\rho(T) \phi$.

- Generally, one of my research goals is to consider the graph version of the integral operator commuting with a given graph Laplacian, and analyze its properties!

Outline

(1) Why Graph Laplacian Eigenfunctions?

(2) Properties of Graph Laplacian Eigenfunctions

(3) The Perron-Frobenius Theory

4 From Perron-Frobenius to Courant's Nodal Domain Theorem

Perron-Frobenius/Fiedler \Longrightarrow Courant

- From the Perron-Frobenius theorem, for a connected graph G, we know that $\lambda_{0}=0$ and ϕ_{0} is all positive.

Perron-Frobenius/Fiedler \Longrightarrow Courant

- From the Perron-Frobenius theorem, for a connected graph G, we know that $\lambda_{0}=0$ and ϕ_{0} is all positive.
- By Fielder, we also know that the algebraic connectivity $a(G)=\lambda_{1}(G)>0, \boldsymbol{\phi}_{1}$ (called the Fiedler vector of G) splits V into three subsets $V=V_{+} \cup V_{-} \cup V_{0}$ where the values of $\boldsymbol{\phi}_{1}$ on V_{+}, V_{-}, V_{0} are positive, negative, and zero (note that V_{0} could be \varnothing).

Perron-Frobenius/Fiedler \Longrightarrow Courant

- From the Perron-Frobenius theorem, for a connected graph G, we know that $\lambda_{0}=0$ and ϕ_{0} is all positive.
- By Fielder, we also know that the algebraic connectivity $a(G)=\lambda_{1}(G)>0, \boldsymbol{\phi}_{1}$ (called the Fiedler vector of G) splits V into three subsets $V=V_{+} \cup V_{-} \cup V_{0}$ where the values of $\boldsymbol{\phi}_{1}$ on V_{+}, V_{-}, V_{0} are positive, negative, and zero (note that V_{0} could be \varnothing).
- These reminds us of Courant's celebrated Nodal Domain Theorem for elliptic operatros on manifolds.

Perron-Frobenius/Fiedler \Longrightarrow Courant

- From the Perron-Frobenius theorem, for a connected graph G, we know that $\lambda_{0}=0$ and $\boldsymbol{\phi}_{0}$ is all positive.
- By Fielder, we also know that the algebraic connectivity $a(G)=\lambda_{1}(G)>0, \boldsymbol{\phi}_{1}$ (called the Fiedler vector of G) splits V into three subsets $V=V_{+} \cup V_{-} \cup V_{0}$ where the values of $\boldsymbol{\phi}_{1}$ on V_{+}, V_{-}, V_{0} are positive, negative, and zero (note that V_{0} could be \varnothing).
- These reminds us of Courant's celebrated Nodal Domain Theorem for elliptic operatros on manifolds.

(a) Ferdinand Georg Frobenius (1849-1917)

(b) Oskar Perron (1880-1975)

(c) Richard Courant (1888-1972)

(d) Miroslav Fiedler (1926-2015)

Courant's Nodal Domain Theorem

Theorem (Courant (1923))

Let L be a self-adjoint second order differential operator, and consider the following elliptic eigenvalue problem on a domain $\Omega \subset \mathbb{R}^{d}$:

$$
L u+\lambda \rho u=0, \quad \rho>0,
$$

with arbitrary homogeneous boundary conditions. If its eigenfunctions are ordered according to increasing eigenvalues, then the nodes (a.k.a. nodal sets or nodal lines) of the k th eigenfunction $\phi_{k}(k=0,1, \ldots)$ divide Ω into no more than $k+1$ subdomains.

Courant's Nodal Domain Theorem

Theorem (Courant (1923))

Let L be a self-adjoint second order differential operator, and consider the following elliptic eigenvalue problem on a domain $\Omega \subset \mathbb{R}^{d}$:

$$
L u+\lambda \rho u=0, \quad \rho>0,
$$

with arbitrary homogeneous boundary conditions. If its eigenfunctions are ordered according to increasing eigenvalues, then the nodes (a.k.a. nodal sets or nodal lines) of the k th eigenfunction $\phi_{k}(k=0,1, \ldots)$ divide Ω into no more than $k+1$ subdomains.

Of course, the nodal sets of a function $f(\boldsymbol{x})$ in Ω is defined as

$$
\mathscr{N}[f]:=\{\boldsymbol{x} \in \Omega \mid f(\boldsymbol{x})=0\} .
$$

A Famous Example of Nodal Domain Theorem

Courtesy: http://www.cymascope.com/cyma_research/history.html

(b) Ernst Chladini (1756-1827)
(a) Chladni Plates

Discrete Nodal Domains

- In the context of manifolds, the nodal domains of f refers to the connected components of the complement of the nodal set $\mathscr{N}[f]$, i.e., to the components of $\{\boldsymbol{x} \in \Omega \mid f(\boldsymbol{x}) \neq 0\}$, which are bounded by the nodal sets.

Discrete Nodal Domains

- In the context of manifolds, the nodal domains of f refers to the connected components of the complement of the nodal set $\mathscr{N}[f]$, i.e., to the components of $\{\boldsymbol{x} \in \Omega \mid f(\boldsymbol{x}) \neq 0\}$, which are bounded by the nodal sets.
- The discrete analog of a "nodal domain" is a maximal connected induced subgraph consisting entirely of positive and negative vertices w.r.t. a given function f defined over $V(G)$.

Discrete Nodal Domains

- In the context of manifolds, the nodal domains of f refers to the connected components of the complement of the nodal set $\mathscr{N}[f]$, i.e., to the components of $\{\boldsymbol{x} \in \Omega \mid f(\boldsymbol{x}) \neq 0\}$, which are bounded by the nodal sets.
- The discrete analog of a "nodal domain" is a maximal connected induced subgraph consisting entirely of positive and negative vertices w.r.t. a given function f defined over $V(G)$.
- However, more subtlety comes in:

$$
\stackrel{K_{1,4}}{\lambda_{1}=1 ; m_{K_{1,4}}(1)=3 ; \boldsymbol{\phi}_{1} \propto[1,-1,0,1,-1]^{\top} .}
$$

Discrete Nodal Domains ...

- A positive (or negative) strong nodal domain of f on $V(G)$ is a maximal connected induced subgraph of G on vertices $v \in V$ with $f(\nu)>0$ (or $f(\nu)<0)$. The number of strong nodal domains of f is denoted by $\mathfrak{S}(f)$.

Discrete Nodal Domains ...

- A positive (or negative) strong nodal domain of f on $V(G)$ is a maximal connected induced subgraph of G on vertices $v \in V$ with $f(\nu)>0$ (or $f(\nu)<0)$. The number of strong nodal domains of f is denoted by $\mathfrak{S}(f)$.
- In contrast, a positive (or negative) weak nodal domain of f on $V(G)$ is a maximal connected induced subgraph of G on vertices $v \in V$ with $f(\nu) \geq 0$ (or $f(\nu) \leq 0$) that contains at least one nonzero vertex. The number of weak nodal domains of f is denoted by $\mathfrak{W}(f)$.

Discrete Nodal Domains ...

- A positive (or negative) strong nodal domain of f on $V(G)$ is a maximal connected induced subgraph of G on vertices $v \in V$ with $f(\nu)>0$ (or $f(\nu)<0$). The number of strong nodal domains of f is denoted by $\mathfrak{S}(f)$.
- In contrast, a positive (or negative) weak nodal domain of f on $V(G)$ is a maximal connected induced subgraph of G on vertices $v \in V$ with $f(\nu) \geq 0$ (or $f(\nu) \leq 0$) that contains at least one nonzero vertex. The number of weak nodal domains of f is denoted by $\mathfrak{W}(f)$.
- In the above example of $K_{1,4}, \mathfrak{S}\left(\boldsymbol{\phi}_{1}\right)=4$ and $\mathfrak{W J}\left(\boldsymbol{\phi}_{1}\right)=2$ because the strong nodal domains are $\{\{1\},\{2\},\{4\},\{5\}\}$ while the weak nodal domains are $\{\{1,3,4\},\{2,3,5\}\}$.

Discrete Nodal Domains ...

- A positive (or negative) strong nodal domain of f on $V(G)$ is a maximal connected induced subgraph of G on vertices $v \in V$ with $f(\nu)>0$ (or $f(\nu)<0)$. The number of strong nodal domains of f is denoted by $\mathfrak{S}(f)$.
- In contrast, a positive (or negative) weak nodal domain of f on $V(G)$ is a maximal connected induced subgraph of G on vertices $v \in V$ with $f(\nu) \geq 0$ (or $f(\nu) \leq 0$) that contains at least one nonzero vertex. The number of weak nodal domains of f is denoted by $\mathfrak{W}(f)$.
- In the above example of $K_{1,4}, \mathfrak{S}\left(\boldsymbol{\phi}_{1}\right)=4$ and $\mathfrak{W}\left(\boldsymbol{\phi}_{1}\right)=2$ because the strong nodal domains are $\{\{1\},\{2\},\{4\},\{5\}\}$ while the weak nodal domains are $\{\{1,3,4\},\{2,3,5\}\}$.
- Obviously, we always have $\mathfrak{W}(f) \leq \mathfrak{S}(f)$.

Discrete Nodal Domains ...

- A positive (or negative) strong nodal domain of f on $V(G)$ is a maximal connected induced subgraph of G on vertices $v \in V$ with $f(\nu)>0$ (or $f(\nu)<0$). The number of strong nodal domains of f is denoted by $\mathfrak{S}(f)$.
- In contrast, a positive (or negative) weak nodal domain of f on $V(G)$ is a maximal connected induced subgraph of G on vertices $v \in V$ with $f(\nu) \geq 0$ (or $f(\nu) \leq 0$) that contains at least one nonzero vertex. The number of weak nodal domains of f is denoted by $\mathfrak{W}(f)$.
- In the above example of $K_{1,4}, \mathfrak{S}\left(\boldsymbol{\phi}_{1}\right)=4$ and $\mathfrak{W}\left(\boldsymbol{\phi}_{1}\right)=2$ because the strong nodal domains are $\{\{1\},\{2\},\{4\},\{5\}\}$ while the weak nodal domains are $\{\{1,3,4\},\{2,3,5\}\}$.
- Obviously, we always have $\mathfrak{W}(f) \leq \mathfrak{S}(f)$.
- The zero vertices separate positive (or negative) strong nodal domains while they join weak nodal domains. In fact, each zero vertex simultaneously belongs to exactly one weak positive nodal domain and exactly one weak negative nodal domain.

Discrete Nodal Domains

We focus our attention on the k th eigenvalue λ_{k} with multiplicity r of a graph Laplacian ($L, L_{\mathrm{rw}}, L_{\mathrm{sym}}$).

$$
\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{k-1}<\lambda_{k}=\lambda_{k+1}=\cdots=\lambda_{k+r-1}<\lambda_{k+r} \leq \cdots \leq \lambda_{n-1} .
$$

Discrete Nodal Domains ...

We focus our attention on the k th eigenvalue λ_{k} with multiplicity r of a graph Laplacian ($L, L_{\mathrm{rw}}, L_{\mathrm{sym}}$).

$$
\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{k-1}<\lambda_{k}=\lambda_{k+1}=\cdots=\lambda_{k+r-1}<\lambda_{k+r} \leq \cdots \leq \lambda_{n-1} .
$$

Theorem (Discrete Nordal Domain Theorem (Davies, Gladwell, Leydold, Stadler, 2001))
Let G be a connected graph with n vertices. Then, any graph Laplacian eigenfunction $\boldsymbol{\phi}_{k}$ corresponding to λ_{k} with multiplicity r has at most $k+1$ weak nodal domains and $k+r$ strong nodal domains, i.e.,

$$
\mathfrak{W}\left(\boldsymbol{\phi}_{k}\right) \leq k+1, \quad \mathfrak{S}\left(\boldsymbol{\phi}_{k}\right) \leq k+r
$$

where $k \in[0, n-1]$.

Discrete Nodal Domains ...

We focus our attention on the k th eigenvalue λ_{k} with multiplicity r of a graph Laplacian ($L, L_{\mathrm{rw}}, L_{\mathrm{sym}}$).

$$
\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{k-1}<\lambda_{k}=\lambda_{k+1}=\cdots=\lambda_{k+r-1}<\lambda_{k+r} \leq \cdots \leq \lambda_{n-1} .
$$

Theorem (Discrete Nordal Domain Theorem (Davies, Gladwell, Leydold, Stadler, 2001))
Let G be a connected graph with n vertices. Then, any graph Laplacian eigenfunction $\boldsymbol{\phi}_{k}$ corresponding to λ_{k} with multiplicity r has at most $k+1$ weak nodal domains and $k+r$ strong nodal domains, i.e.,

$$
\mathfrak{W}\left(\boldsymbol{\phi}_{k}\right) \leq k+1, \quad \mathfrak{S}\left(\boldsymbol{\phi}_{k}\right) \leq k+r
$$

where $k \in[0, n-1]$.
In the example of $K_{1,4}, \lambda_{1}=1$ has multiplicity $r=3$. Hence, $\mathfrak{W}\left(\boldsymbol{\phi}_{1}\right)=2 \leq 1+1$ and $\mathfrak{S}\left(\boldsymbol{\phi}_{1}\right)=4 \leq 1+3$ are satisfied!

Discrete Nodal Domains ...

Corollary (Fiedler (1975))

If G is connected, then $\mathfrak{W}\left(\boldsymbol{\phi}_{1}\right)=2$.

Discrete Nodal Domains ...

```
Corollary (Fiedler (1975)) If \(G\) is connected, then \(\mathfrak{W}\left(\boldsymbol{\phi}_{1}\right)=2\).
```


Corollary (Fiedler (1975))

The eigenfunction ϕ_{k} affording λ_{k} has at most k positive weak nodal domains for $k \geq 1$. Consequently, $\mathfrak{W}\left(\boldsymbol{\phi}_{k}\right) \leq 2 k$.

Discrete Nodal Domains ...

Corollary (Fiedler (1975))

 If G is connected, then $\mathfrak{W}\left(\boldsymbol{\phi}_{1}\right)=2$.
Corollary (Fiedler (1975))

The eigenfunction ϕ_{k} affording λ_{k} has at most k positive weak nodal domains for $k \geq 1$. Consequently, $\mathfrak{W}\left(\boldsymbol{\phi}_{k}\right) \leq 2 k$.

In the previous example of $K_{1,4}$, we have $\lambda_{\text {max }}=\lambda_{4}=5$, and $\boldsymbol{\phi}_{4} \propto[1,1,-4,1,1]^{\top}$. Hence, $\mathfrak{W}\left(\boldsymbol{\phi}_{4}\right)=5 \leq 2 \cdot 4=8$, satisfying the corollary.

Discrete Nodal Domains of a Dendritic Tree: $\operatorname{sign}\left(\boldsymbol{\phi}_{1}\right)$

Discrete Nodal Domains of a Dendritic Tree: $\operatorname{sign}\left(\boldsymbol{\phi}_{2}\right)$

Discrete Nodal Domains of a Dendritic Tree: $\operatorname{sign}\left(\boldsymbol{\phi}_{3}\right)$

Discrete Nodal Domains of a Dendritic Tree: $\operatorname{sign}\left(\boldsymbol{\phi}_{4}\right)$

