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Spectral Clustering

GL Eigenfunctions for Lrw and Lsym

Recall that we have three different versions of graph Laplacians:

L(G) := D − A Unnormalized

Lrw(G) := In −D−1 A = In −P = D−1L Normalized

Lsym(G) := In −D− 1
2 AD− 1

2 = D− 1
2 LD− 1

2 Symmetrically-Normalized

Proposition (Properties of Lrw and Lsym)

(a) (λ,φ) is an eigenpair of Lrw iff (λ,D1/2φ) is an eigenpair of Lsym. In
particular, (0,1n) for Lrw ⇐⇒ (0,D1/21n) of Lsym.

(b) (λ,φ) is an eigenpair of Lrw iff (λ,φ) solves the generalized
eigenproblem: Lφ=λDφ.

(c) Both Lrw and Lsym are positive semi-definite and n nonnegative
real-valued eigenvalues.
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Spectral Clustering

Spectral Clustering Algorithm for a Weighted Graph G

1 Construct a weighted adjacency matrix A.
2 Choose a graph Laplacian to use: L, Lrw, or Lsym.
3 Compute the first k eigenvectors φ0, . . . ,φk−1. (Note in the case of

Lrw, one needs to solve the generalized eigenproblem Lφ=λDφ.)
4 Let Φ := [φ0 · · ·φk−1] ∈Rn×k . (Note in the case of Lsym, each row of
Φ is further normalized to have norm 1.)

5 Let yT

j ∈R1×k be the j th row vector of Φ.

6 Cluster these n vectors {y 1, . . . , y n} ⊂Rk representing V (G) with the
k-means algorithm into clusters C1, . . . ,Ck .

7 Label each vertex with its cluster number.
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Spectral Clustering

Simple Examples for Spectral Clustering

The following example was taken from Von Luxburg’s tutorial paper
with some modification.
The dataset consists of 200 random samples from four normal
distributions N(µ j ,σ2) where µ j = 2 j , j = 1,2,3,4, and σ= 0.25.

These 200 points in R are the vertices.
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Spectral Clustering

Simple Examples for Spectral Clustering . . .

A complete graph K200 was generated with the edge weight by
ai j = exp(−|xi −x j |2/2ε2) where ε= 1 was used throughout the
experiments.
Applied the spectral clustering algorithms.
Note that we will discuss more about how to construct a graph from
given datasets in the future lectures. The above strategy is used for
simplicity.
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Spectral Clustering

Using L

(a) λk

(b) φk
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Spectral Clustering

Using Lrw

(a) λk

(b) φk
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Spectral Clustering

Using Lsym

(a) λk

(b) φk
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Spectral Clustering

Simple Examples for Spectral Clustering . . .

Now, let’s consider a less clear cut case. This time, the dataset still
consists of 200 random samples from four normal distributions
N(µ j ,σ2) where µ j = 2 j , j = 1,2,3,4. But now I set the larger
standard deviation, i.e., σ= 1 instead of σ= 0.25.

Then let’s repeat the same experiments and see how the situation
changes.
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Spectral Clustering

Using Lsym

(a) λk

(b) φk
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Spectral Clustering

Using L

(a) σ= 0.25 (b) σ= 1
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Spectral Clustering

Using Lrw

(a) σ= 0.25 (b) σ= 1
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Spectral Clustering

Using Lsym

(a) σ= 0.25 (b) σ= 1

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/17/19 17 / 31



Spectral Clustering

Observations

For the clear cut case, L, Lrw, and Lsym all performed similarly.
Yet, the eigenvalue distributions of Lrw and Lsym revealed the number
of existing clusters more clearly than that of L.
For the case with severer overlaps, Lrw and Lsym outperformed L.
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Spectral Clustering via Graph Cut Viewpoint

Graph Cut Viewpoint

Natural to consider spectral clustering as graph cut or graph
partitioning.
Let G be an undirected but weighted graph.
Define a measure of connectedness or cut cost C (X ,Y ) between two
(not necessarily disjoint) vertex subsets X ,Y ⊂V by

C (X ,Y ) := ∑
x∈X ,y∈Y

ax y

For a partition V (G) =
k⋃

i=1
Xi , Xi ∩X j =;, i 6= j , define the cut of V (G)

by

cut(X1, . . . , Xk ) := 1

2

k∑
i=1

C (Xi , X c
i ),

where of course X c
i := V \ Xi . Note: for k = 2, cut(X1, X2) =C (X1, X2)

with X2 = X c
1 .
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Spectral Clustering via Graph Cut Viewpoint

Graph Cut Viewpoint . . .

Given a weighted adjacency matrix A(G), the simplest and most direct
way to construct a partition of G is to solve the mincut problem:

min
V =⋃k

i=1 Xi

cut(X1, . . . , Xk ).

Unfortunately, this often does not lead to satisfactory partitions. Why?
=⇒ In many cases, the solution of mincut simply separates one
individual vertex from the rest.
One way to circumvent this problem is to explicitly request each Xi is
“reasonably large”.
Two options: RatioCut (Hagen and Kahng, 1992) and normalized cut,
a.k.a. Ncut (Shi and Malik, 2000).
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Spectral Clustering via Graph Cut Viewpoint

Graph Cut Viewpoint . . .

RatioCut(X1, . . . , Xk ) :=
k∑

i=1

C (Xi , X c
i )

|Xi |

=
k∑

i=1

cut(Xi , X c
i )

|Xi |
.

where |Xi | is the number of vertices in Xi .

Ncut(X1, . . . , Xk ) :=
k∑

i=1

C (Xi , X c
i )

vol(Xi )

=
k∑

i=1

cut(Xi , X c
i )

vol(Xi )
,

where vol(Xi ) := ∑
v∈Xi

d(v) as we defined in Lecture 5.
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Spectral Clustering via Graph Cut Viewpoint

Graph Cut Viewpoint . . .

Minimizing these quantities leads to a set of more balanced clusters
X1, . . . , Xk .
Unfortunately, introducing these balancing conditions makes the
minimization problem become NP hard (i.e., like the traveling
salesman problem).
Hence, we should be satisfied with approximate solutions that can be
computed within a reasonable amount of time.
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Spectral Clustering via Graph Cut Viewpoint

Approximation of RatioCut for k = 2

Want to achieve: min
X⊂V

RatioCut(X , X c )

Define the vector f ∈Rn s.t.

fi :=


√
|X c |
|X | if vi ∈ X ;

−
√

|X |
|X c | if vi ∈ X c .

Then, the RatioCut objective function can be conveniently rewritten
using L as follows:

f TL f = 1

2

n∑
i , j=1

ai j ( fi − f j )2

= 1

2

∑
vi∈X ;v j∈X c

ai j

(√
|X c |
|X | +

√
|X |
|X c |

)2

+ 1

2

∑
vi∈X c ;v j∈X

ai j

(
−

√
|X c |
|X | −

√
|X |
|X c |

)2
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Want to achieve: min
X⊂V

RatioCut(X , X c )

Define the vector f ∈Rn s.t.

fi :=


√
|X c |
|X | if vi ∈ X ;

−
√

|X |
|X c | if vi ∈ X c .

Then, the RatioCut objective function can be conveniently rewritten
using L as follows:

f TL f = 1

2

n∑
i , j=1

ai j ( fi − f j )2

= 1

2

∑
vi∈X ;v j∈X c
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|X c |
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Approximation of RatioCut for k = 2 . . .

...

f TL f = cut(X , X c )

( |X c |
|X | + |X |

|X c | +2

)
= cut(X , X c )

( |X |+ |X c |
|X | + |X |+ |X c |

|X c |
)

= |V |RatioCut(X , X c ).

In addition, we have

n∑
i=1

fi = ∑
vi∈X

√
|X c |
|X | − ∑

vi∈X c

√
|X |
|X c |

= |X |
√

|X c |
|X | − |X c |

√
|X |
|X c | = 0.
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Spectral Clustering via Graph Cut Viewpoint

Approximation of RatioCut for k = 2 . . .

Moreover,

‖ f ‖2 =
n∑

i=1
f 2

i = |X | |X
c |

|X | + |X c | |X |
|X c |

= |X |+ |X c | = |V | = n.

Hence we have the following equivalent minimization problem:

min
X⊂V

f TL f subject to f ⊥ 1n ; fi defined as above; ‖ f ‖ =p
n.

Unfortunately, this is still NP hard due to the definition of fi .
Now, relaxing the constraints, i.e., allowing fi to take arbitrary values
in R leads to the following:

min
f ∈Rn

f TL f subject to f ⊥ 1n ; ‖ f ‖ =p
n.

The solution to the above problem is nothing but f =φ1, the Fiedler
vector of G thanks to the Rayleigh-Ritz Theorem!!

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/17/19 26 / 31



Spectral Clustering via Graph Cut Viewpoint

Approximation of RatioCut for k = 2 . . .

Moreover,

‖ f ‖2 =
n∑

i=1
f 2

i = |X | |X
c |

|X | + |X c | |X |
|X c |

= |X |+ |X c | = |V | = n.

Hence we have the following equivalent minimization problem:

min
X⊂V

f TL f subject to f ⊥ 1n ; fi defined as above; ‖ f ‖ =p
n.

Unfortunately, this is still NP hard due to the definition of fi .
Now, relaxing the constraints, i.e., allowing fi to take arbitrary values
in R leads to the following:

min
f ∈Rn

f TL f subject to f ⊥ 1n ; ‖ f ‖ =p
n.

The solution to the above problem is nothing but f =φ1, the Fiedler
vector of G thanks to the Rayleigh-Ritz Theorem!!

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/17/19 26 / 31



Spectral Clustering via Graph Cut Viewpoint

Approximation of RatioCut for k = 2 . . .

Moreover,

‖ f ‖2 =
n∑

i=1
f 2

i = |X | |X
c |

|X | + |X c | |X |
|X c |

= |X |+ |X c | = |V | = n.

Hence we have the following equivalent minimization problem:

min
X⊂V

f TL f subject to f ⊥ 1n ; fi defined as above; ‖ f ‖ =p
n.

Unfortunately, this is still NP hard due to the definition of fi .
Now, relaxing the constraints, i.e., allowing fi to take arbitrary values
in R leads to the following:

min
f ∈Rn

f TL f subject to f ⊥ 1n ; ‖ f ‖ =p
n.

The solution to the above problem is nothing but f =φ1, the Fiedler
vector of G thanks to the Rayleigh-Ritz Theorem!!

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/17/19 26 / 31



Spectral Clustering via Graph Cut Viewpoint

Approximation of RatioCut for k = 2 . . .

Moreover,

‖ f ‖2 =
n∑

i=1
f 2

i = |X | |X
c |

|X | + |X c | |X |
|X c |

= |X |+ |X c | = |V | = n.

Hence we have the following equivalent minimization problem:

min
X⊂V

f TL f subject to f ⊥ 1n ; fi defined as above; ‖ f ‖ =p
n.

Unfortunately, this is still NP hard due to the definition of fi .
Now, relaxing the constraints, i.e., allowing fi to take arbitrary values
in R leads to the following:

min
f ∈Rn

f TL f subject to f ⊥ 1n ; ‖ f ‖ =p
n.

The solution to the above problem is nothing but f =φ1, the Fiedler
vector of G thanks to the Rayleigh-Ritz Theorem!!

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/17/19 26 / 31



Spectral Clustering via Graph Cut Viewpoint

Approximation of RatioCut for k = 2 . . .

Moreover,

‖ f ‖2 =
n∑

i=1
f 2

i = |X | |X
c |

|X | + |X c | |X |
|X c |

= |X |+ |X c | = |V | = n.

Hence we have the following equivalent minimization problem:

min
X⊂V

f TL f subject to f ⊥ 1n ; fi defined as above; ‖ f ‖ =p
n.

Unfortunately, this is still NP hard due to the definition of fi .
Now, relaxing the constraints, i.e., allowing fi to take arbitrary values
in R leads to the following:

min
f ∈Rn

f TL f subject to f ⊥ 1n ; ‖ f ‖ =p
n.

The solution to the above problem is nothing but f =φ1, the Fiedler
vector of G thanks to the Rayleigh-Ritz Theorem!!

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/17/19 26 / 31



Spectral Clustering via Graph Cut Viewpoint

Approximation of RatioCut for arbitrary k

In principle, the approach is similar to k = 2 case.
Define the k indicator vectors h j ∈Rn , j = 1, . . . ,k, s.t.

hi j :=
{

1/
√|X j | if vi ∈ X j ;

0 otherwise.

Then, define H := [h1 · · ·hk ] ∈Rn×k . Observe also that HTH = Ik .
Using the similar calculation as the k = 2 case, we have

(HTLH)i i = hT

i Lhi =
cut(Xi , X c

i )

|Xi |
.

Hence, we have

RatioCut(X1, . . . , Xk ) =
k∑

i=1
hT

i Lhi =
k∑

i=1
(HTLH)i i = tr(HTLH).
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Spectral Clustering via Graph Cut Viewpoint

Approximation of RatioCut for arbitrary k . . .

Hence, the problem to optimize is:

min
V =⋃k

i=1 Xi

tr(HTLH) subject to HTH = Ik ; H defined as above.

Again, this is still NP hard. Hence, relaxing this by allowing each hi j

to have arbitrary values in R, we have

min
H∈Rn×k

tr(HTLH) subject to HTH = Ik .

This can be solved by choosing H =Φ= [φ0 · · ·φk−1], i.e., the matrix
consisting of the first k eigenvectors of L!

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/17/19 28 / 31



Spectral Clustering via Graph Cut Viewpoint

Approximation of RatioCut for arbitrary k . . .

Hence, the problem to optimize is:

min
V =⋃k

i=1 Xi

tr(HTLH) subject to HTH = Ik ; H defined as above.

Again, this is still NP hard. Hence, relaxing this by allowing each hi j

to have arbitrary values in R, we have

min
H∈Rn×k

tr(HTLH) subject to HTH = Ik .

This can be solved by choosing H =Φ= [φ0 · · ·φk−1], i.e., the matrix
consisting of the first k eigenvectors of L!

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/17/19 28 / 31



Spectral Clustering via Graph Cut Viewpoint

Approximation of RatioCut for arbitrary k . . .

Hence, the problem to optimize is:

min
V =⋃k

i=1 Xi

tr(HTLH) subject to HTH = Ik ; H defined as above.

Again, this is still NP hard. Hence, relaxing this by allowing each hi j

to have arbitrary values in R, we have

min
H∈Rn×k

tr(HTLH) subject to HTH = Ik .

This can be solved by choosing H =Φ= [φ0 · · ·φk−1], i.e., the matrix
consisting of the first k eigenvectors of L!

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/17/19 28 / 31



Spectral Clustering via Graph Cut Viewpoint

Approximation of Ncut

In principle, the approach is similar to the RatioCut case. Replace |Xi |,
|X c

i | in the RatioCut arguments by vol(Xi ), vol(X c
i ), respectively.

Then, after the similar relaxation of the constraints, for k = 2, we have

min
f ∈Rn

f TL f subject to D f ⊥ 1n ; f TD f = vol(V ).

Substituting g := D1/2 f in the above minimization yields:

min
g∈Rn

g TLsymg subject to g ⊥ D1/21n ;‖g‖2 = vol(V ).

Hence, again by the Rayleigh-Ritz Theorem, g =φsym
1 (i.e., the

eigenvector of Lsym corresponding to the smallest nonzero eigenvalue)
is the solution, which leads to f = D−1/2φ

sym
1 =φrw

1 , i.e., the
eigenvector corresponding to the smallest nonzero eigenvalue of the
generalized eigenproblem: L f =λD f .
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Spectral Clustering via Graph Cut Viewpoint

Approximation of Ncut . . .

Finally for k > 2, let us first define H = (hi j ) ∈Rn×k by

hi j :=
{

1/
√

vol(X j ) if vi ∈ X j ;

0 otherwise.

Then, using the reweighted matrix H̃ := D1/2H and the similar
argument leads us to the following relaxed minimization problem:

min
H̃∈Rn×k

tr(H̃TLsymH̃) subject to H̃TH̃ = Ik .

Its solution is H̃ =Φsym = [φsym
0 · · ·φsym

k−1], i.e., the first k eigenvectors
of Lsym.
The final solution H = D−1/2H̃ is therefore

H =Φrw = [φrw
0 · · ·φrw

k−1],

i.e., the first k eigenvectors of Lrw !!
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Spectral Clustering via Graph Cut Viewpoint

Caveat

The partition obtained by the relaxed approximate minimization
problem is not necessarily the same as the solution of the exact mincut
problem.
An example of “cockroach graphs” found by Guattery and Miller
(1998).
The ideal RatioCut splits V into X = {v1, . . . , vk , v2k+1, . . . , v3k } and
X c = {vk+1 . . . , v2k , v3k+1, . . . , v4k }.
On the other hand, the spectral clustering using φ1 of L(G) splits V
into Y = {v1, . . . , v2k } and Y c = {v2k+1, . . . , v4k }.

v1 vk vk+1 v2k

v2k+1 v3k v3k+1 v4k
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