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GL Eigenfunctions for Ly and Leym

Recall that we have three different versions of graph Laplacians:

LG :=D-A Unnormalized
Lw(G) :=1,-D'A=1,-P=D"'L Normalized
Lsym(G) = I, - D 2AD :=D :LD: Symmetrically-Normalized
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GL Eigenfunctions for Ly and Leym

Recall that we have three different versions of graph Laplacians:

LG :=D-A Unnormalized
LG :=1,-D'A=1,-P=D7'L Normalized
Lom(G) := I,~ D 2AD™2=D":LD™?  Symmetrically-Normalized

Proposition (Properties of Ly and Lsym)

(a) (A, ¢) is an eigenpair of Lny iff (A, D'/?¢) is an eigenpair of Leym. In
particular, (0,1,) for Ly, < (0,D"?1,) of Leym.

(b) (A,¢p) is an eigenpair of Ly iff (A,¢) solves the generalized
eigenproblem: L¢p = AD¢p.

(c) Both Ly and Lgyy are positive semi-definite and n nonnegative
real-valued eigenvalues.

y
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Spectral Clustering Algorithm for a Weighted Graph G

@ Construct a weighted adjacency matrix A.
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Spectral Clustering Algorithm for a Weighted Graph G

@ Construct a weighted adjacency matrix A.

@ Choose a graph Laplacian to use: L, Ly, or Lsym.
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Spectral Clustering Algorithm for a Weighted Graph G

@ Construct a weighted adjacency matrix A.
@ Choose a graph Laplacian to use: L, Ly, or Lsym.

© Compute the first k eigenvectors ¢y,...,¢;_;. (Note in the case of
Lyw, one needs to solve the generalized eigenproblem L¢p =AD¢.)
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Spectral Clustering Algorithm for a Weighted Graph G

@ Construct a weighted adjacency matrix A.
@ Choose a graph Laplacian to use: L, Ly, or Lsym.

© Compute the first k eigenvectors ¢,...,¢;_;. (Note in the case of
Lyw, one needs to solve the generalized eigenproblem L¢p =AD¢.)

Q Let @ := [¢y---p;_,] €R™F. (Note in the case of Lsym, each row of
®@ is further normalized to have norm 1.)
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Spectral Clustering Algorithm for a Weighted Graph G

Construct a weighted adjacency matrix A.

Choose a graph Laplacian to use: L, Ly, or Lsym.

000

Compute the first k eigenvectors ¢,...,¢;_;. (Note in the case of
Lyw, one needs to solve the generalized eigenproblem L¢p =AD¢.)

Q Let @ := [¢y---p;_,] €R™F. (Note in the case of Lsym, each row of
®@ is further normalized to have norm 1.)

O Let y} € R™F be the jth row vector of ®.
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Spectral Clustering Algorithm for a Weighted Graph G

Construct a weighted adjacency matrix A.

Choose a graph Laplacian to use: L, Ly, or Lsym.

000

Compute the first k eigenvectors ¢,...,¢;_;. (Note in the case of
Lyw, one needs to solve the generalized eigenproblem L¢p =AD¢.)

Q Let @ := [¢y---p;_,] €R™F. (Note in the case of Lsym, each row of
®@ is further normalized to have norm 1.)

O Let y} € R™F be the jth row vector of ®.

O Cluster these n vectors {yy,...,y,} RF representing V(G) with the
k-means algorithm into clusters Cy,...,Ck.
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Spectral Clustering Algorithm for a Weighted Graph G

Construct a weighted adjacency matrix A.

Choose a graph Laplacian to use: L, Ly, or Lsym.

000

Compute the first k eigenvectors ¢,...,¢;_;. (Note in the case of
Lyw, one needs to solve the generalized eigenproblem L¢p =AD¢.)

Q Let @ := [¢y---p;_,] €R™F. (Note in the case of Lsym, each row of
®@ is further normalized to have norm 1.)

O Let y} € R™F be the jth row vector of ®.

O Cluster these n vectors {yy,...,y,} RF representing V(G) with the
k-means algorithm into clusters Cy,...,Ck.

@ Label each vertex with its cluster number.
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Simple Examples for Spectral Clustering

@ The following example was taken from Von Luxburg's tutorial paper
with some modification.
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Simple Examples for Spectral Clustering

@ The following example was taken from Von Luxburg's tutorial paper
with some modification.

@ The dataset consists of 200 random samples from four normal
distributions N(u;,02) where puj=2j, j=1,2,3,4, and 0 =0.25.
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Simple Examples for Spectral Clustering

@ The following example was taken from Von Luxburg's tutorial paper
with some modification.

@ The dataset consists of 200 random samples from four normal
distributions N(u;,02) where puj=2j, j=1,2,3,4, and 0 =0.25.

@ These 200 points in R are the vertices.
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Simple Examples for Spectral Clustering . ..

o A complete graph Koo was generated with the edge weight by
aij = exp(—|x; — x;|*/2¢®) where € = 1 was used throughout the
experiments.
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Simple Examples for Spectral Clustering . ..

o A complete graph Koo was generated with the edge weight by
aij = exp(—|x; — x;|*/2¢®) where € = 1 was used throughout the
experiments.

o Applied the spectral clustering algorithms.
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Spectral Clustering

Simple Examples for Spectral Clustering . ..

o A complete graph Koo was generated with the edge weight by
aij = exp(—|x; — x;|*/2¢®) where € = 1 was used throughout the
experiments.

o Applied the spectral clustering algorithms.

@ Note that we will discuss more about how to construct a graph from
given datasets in the future lectures. The above strategy is used for
simplicity.
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Spectral Clust

Using L
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Using Ly
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Using Leym
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Simple Examples for Spectral Clustering . ..

@ Now, let's consider a less clear cut case. This time, the dataset still
consists of 200 random samples from four normal distributions
N(uj,0?) where pj=2j, j=1,2,3,4. But now | set the larger
standard deviation, i.e., o0 =1 instead of 0 =0.25.
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Simple Examples for Spectral Clustering . ..

@ Now, let's consider a less clear cut case. This time, the dataset still
consists of 200 random samples from four normal distributions
N(,uj,az) where puj=2j, j=1,2,3,4. But now | set the larger
standard deviation, i.e., o0 =1 instead of 0 =0.25.

@ Then let's repeat the same experiments and see how the situation

changes.
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Spectral Clusterin

Using L
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Spectral Clusterin

Using Ly
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Spectral Clust

Using Leym
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Using L
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Using Ly
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Spectral Cluster

Using Leym
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Spectral Clustering

Observations

o For the clear cut case, L, Ly, and Lgym all performed similarly.
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Spectral Clustering

Observations

o For the clear cut case, L, Ly, and Lgyy all performed similarly.

@ Yet, the eigenvalue distributions of Ly, and Lgyy, revealed the number
of existing clusters more clearly than that of L.
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Spectral Clustering

Observations

o For the clear cut case, L, Ly, and Lgyy all performed similarly.

@ Yet, the eigenvalue distributions of Ly, and Lgyy, revealed the number
of existing clusters more clearly than that of L.

@ For the case with severer overlaps, Ly and Lsym outperformed L.
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Spectral Clustering via Graph Cut Viewpoint
Outline

© Spectral Clustering via Graph Cut Viewpoint
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Graph Cut Viewpoint

@ Natural to consider spectral clustering as graph cut or graph
partitioning.
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Graph Cut Viewpoint
@ Natural to consider spectral clustering as graph cut or graph

partitioning.
@ Let G be an undirected but weighted graph.
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Graph Cut Viewpoint

@ Natural to consider spectral clustering as graph cut or graph
partitioning.

@ Let G be an undirected but weighted graph.

@ Define a measure of connectedness or cut cost C(X,Y) between two
(not necessarily disjoint) vertex subsets X,Y c V by

CX,Y):= ) ay
xeX,yeY
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Graph Cut Viewpoint

@ Natural to consider spectral clustering as graph cut or graph
partitioning.
@ Let G be an undirected but weighted graph.

@ Define a measure of connectedness or cut cost C(X,Y) between two
(not necessarily disjoint) vertex subsets X,Y c V by

CX,Y):= ) ay
xeX,yeY

k
@ For a partition V(G) = UXi. XinXj=9, i # ], define the cut of V(G)

i=1
by
1 k
cut(Xy, ..., Xp) = 3 ) CXi, X§),
i=1
where of course X{ := V\ X;. Note: for k=2, cut(Xj, X») = C(X3, X2)
with X5 = ch
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Graph Cut Viewpoint . ..

o Given a weighted adjacency matrix A(G), the simplest and most direct
way to construct a partition of G is to solve the mincut problem:

min cut(Xy,..., Xg).
v=U X;
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Graph Cut Viewpoint . ..

o Given a weighted adjacency matrix A(G), the simplest and most direct
way to construct a partition of G is to solve the mincut problem:

min cut(Xy,..., Xg).
v=U X;

@ Unfortunately, this often does not lead to satisfactory partitions. Why?
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Graph Cut Viewpoint . ..

o Given a weighted adjacency matrix A(G), the simplest and most direct
way to construct a partition of G is to solve the mincut problem:

min cut(Xy,..., Xg).
v=U X;

@ Unfortunately, this often does not lead to satisfactory partitions. Why?
= In many cases, the solution of mincut simply separates one
individual vertex from the rest.
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Graph Cut Viewpoint . ..

o Given a weighted adjacency matrix A(G), the simplest and most direct
way to construct a partition of G is to solve the mincut problem:

min cut(Xy,..., Xg).
v=U X;

@ Unfortunately, this often does not lead to satisfactory partitions. Why?
= In many cases, the solution of mincut simply separates one
individual vertex from the rest.

@ One way to circumvent this problem is to explicitly request each X; is
“reasonably large".
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Graph Cut Viewpoint . ..

o Given a weighted adjacency matrix A(G), the simplest and most direct
way to construct a partition of G is to solve the mincut problem:

min cut(Xy,..., Xg).
v=U X;

@ Unfortunately, this often does not lead to satisfactory partitions. Why?
= In many cases, the solution of mincut simply separates one
individual vertex from the rest.

@ One way to circumvent this problem is to explicitly request each X; is
“reasonably large".

e Two options: RatioCut (Hagen and Kahng, 1992) and normalized cut,
a.k.a. Ncut (Shi and Malik, 2000).
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Graph Cut Viewpoint . ..

. k C(X;, X7)
RatioCut(Xj,..., X;) := Z
L TIxil
k

cut(X,,X )

- Zl X1

where | X;| is the number of vertices in X;.
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Graph Cut Viewpoint . ..

_ k C(X;, X7)
RatioCut(Xy,..., X)) := Z
o Xl
k

cut(X,,X )

- Zl 1|

where | X;| is the number of vertices in X;.

Neut X § CO% X
cut yeeey =
! k ~= "Vol(X;)

i cut(X;, X{)
& vollXy)

’

where vol(X;) := Z d(v) as we defined in Lecture 5.
veX;
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Graph Cut Viewpoint . ..

@ Minimizing these quantities leads to a set of more balanced clusters
X1, Xk
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Graph Cut Viewpoint . ..

@ Minimizing these quantities leads to a set of more balanced clusters
X1, X

@ Unfortunately, introducing these balancing conditions makes the
minimization problem become NP hard (i.e., like the traveling
salesman problem).
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Graph Cut Viewpoint . ..

@ Minimizing these quantities leads to a set of more balanced clusters
Xy,..., X.

@ Unfortunately, introducing these balancing conditions makes the
minimization problem become NP hard (i.e., like the traveling
salesman problem).

@ Hence, we should be satisfied with approximate solutions that can be
computed within a reasonable amount of time.
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Approximation of RatioCut for k=2

@ Want to achieve: g{ni{}RatiOCut(X, X
c
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Approximation of RatioCut for k=2

@ Want to achieve: r)?igRatiOCut(X, X
c

@ Define the vector feR" s.t.

c .
X4 if vieX;

fio= IX]
l —\/% if l/iEXc.
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Approximation of RatioCut for k=2
e Want to achieve: r}glcigRatiOCut(X, X9
@ Define the vector feR" s.t.
X4 if v;eX;

fi= X
! _ [1x1
1X°]

if Vi € X°.

@ Then, the RatioCut objective function can be conveniently rewritten
using L as follows:
1 n
fTLf = > Y aii(fi-f)?
i,j=1
1

2 l/iEX;I/jEXC ( |

Loy a,-( X |X|)

Cc
2 v,-eXf;vjeX | |X |
saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/17/19 24 /31

x| 1] )

X




Approximation of RatioCut for k=2 ...

X 1X]
L =cut(X,XC)( + +2)
FLf X 1Xe
o [1XT+IXC] X+ 1X
=cut(X, X%) +
|X| | X¢|

= |V|RatioCut(X, X°).
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Approximation of RatioCut for k=2 ...

IXCI |X]
TLF =cut(X, XC)( +2)
FLr= | X IXCI
o [1XT+IXC] X+ 1X
=cut(X, X%) +
|X| | X¢|

=|V|RatioCut(X, X°).

In addition, we have

> fi
i=1

vieX |X| v,eXf X¢

X
x| 1XI
IXI 1X¢]

=0.
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Approximation of RatioCut for k=2 ...

@ Moreover,

|X€] |X]

2 _ 2 _
If1° = Zf |X||| XIS

IXI+IXCI =Vl=
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Approximation of RatioCut for k=2 ...

@ Moreover,

|X€] |X]

2 _ 2 _
IflI°> = Zf |X||| +1X ||XC|

|X|+IX”I =Vl=

@ Hence we have the following equivalent minimization problem:

gI(li{/lfTLf subject to f L 1,; f; defined as above; || fll = vn.
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Approximation of RatioCut for k=2 ...

@ Moreover,

|X€] |X]

2 _ 2 _
IflI°> = Zf |X||| +1X ||XC|

|X|+IXCI =Vl=

@ Hence we have the following equivalent minimization problem:

gI(li{/lfTLf subject to f L 1,; f; defined as above; || fll = vn.

@ Unfortunately, this is still NP hard due to the definition of f;.
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Approximation of RatioCut for k=2 ...

@ Moreover,

IXCI X|

2 _ o XL
If1? = Zf X1y X e

|X| +1X¢ = |V| =
@ Hence we have the following equivalent minimization problem:
I)?i{/lfTLf subject to f L 1,; f; defined as above; || fll = vn.
c
@ Unfortunately, this is still NP hard due to the definition of f;.

e Now, relaxing the constraints, i.e., allowing f; to take arbitrary values
in R leads to the following:

}nﬁ_\enf Lf subject to f L1, [fll=vn.
€
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Approximation of RatioCut for k=2 ...

@ Moreover,

9 IXCI o 1 X
= —_—
I£ll 2 = X X

|X|+|XC| = |V| =

@ Hence we have the following equivalent minimization problem:

I}?i{/lfTLf subject to f L 1,; f; defined as above; || fll = vn.

@ Unfortunately, this is still NP hard due to the definition of f;.

e Now, relaxing the constraints, i.e., allowing f; to take arbitrary values
in R leads to the following:

}nknf Lf subjectto fL1,; |fl=vn.
€

@ The solution to the above problem is nothing but f =¢,, the Fiedler

vector of G thanks to the Rayleigh-Ritz Theorem!!
10/17/19  26/31



Approximation of RatioCut for arbitrary k

@ In principle, the approach is similar to k=2 case.
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Approximation of RatioCut for arbitrary k

@ In principle, the approach is similar to k=2 case.
® Define the k indicator vectors hj e R", j=1,...,k, s.t.

h {1/\/|X]’| if ViEXj;
ij =

0 otherwise.

Then, define H := [h; --- hy] € R"k. Observe also that H™H = I..
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Approximation of RatioCut for arbitrary k

@ In principle, the approach is similar to k=2 case.
® Define the k indicator vectors hj e R", j=1,...,k, s.t.

h {1/\/|X]’| if ViEXj;
ij =

0 otherwise.

Then, define H := [h; --- hy] € R"k. Observe also that H™H = I..
@ Using the similar calculation as the k=2 case, we have
cut(Xi,XiC)

(HLH)i = b Lhi = —~
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Approximation of RatioCut for arbitrary k

In principle, the approach is similar to k=2 case.
Define the k indicator vectors hj eR", j=1,...,k, s.t.

h {1/\/|X]’| if l)l'EXj;
ij =

0 otherwise.

Then, define H := [h; --- hy] € R"k. Observe also that H™H = I..

@ Using the similar calculation as the k=2 case, we have
cut(Xi,XiC)
(HTLH)l'l' = h:—th = T
i

@ Hence, we have

k
Y (H'LH);; = tr(H" LH).

k
RatioCut(X,...,Xg) = Y_h]Lh; =
i=1 i=1
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Approximation of RatioCut for arbitrary k . ..

@ Hence, the problem to optimize is:

min tr(H'LH) subject to H'H = I;; H defined as above.
V=UiL Xi
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Approximation of RatioCut for arbitrary k . ..

@ Hence, the problem to optimize is:

min tr(H'LH) subject to H'H = I;; H defined as above.
V=Ui=1Xi

@ Again, this is still NP hard. Hence, relaxing this by allowing each h;;
to have arbitrary values in R, we have

min tr(H'LH) subject to H'H=1I.
HER"XIC
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Approximation of RatioCut for arbitrary k . ..

@ Hence, the problem to optimize is:

min tr(H'LH) subject to H'H = I;; H defined as above.
V=Ui=1Xi

@ Again, this is still NP hard. Hence, relaxing this by allowing each h;;
to have arbitrary values in R, we have

min tr(H'LH) subject to H'H=1I.
HER"Xk

@ This can be solved by choosing H=® = [¢p---p;_,], i.e., the matrix
consisting of the first k eigenvectors of L!

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/17/19 28 /31



Spectral Clustering via Graph Cut Viewpoint

Approximation of Ncut

@ In principle, the approach is similar to the RatioCut case. Replace |X;|,
|X71in the RatioCut arguments by vol(X;), vol(XY), respectively.
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Spectral Clustering via Graph Cut Viewpoint

Approximation of Ncut

@ In principle, the approach is similar to the RatioCut case. Replace |X;|,
|X71in the RatioCut arguments by vol(X;), vol(XY), respectively.

@ Then, after the similar relaxation of the constraints, for k=2, we have

;nknfTLf subject to Df L 1,,; fTDf =vol(V).
€ n
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Spectral Clustering via Graph Cut Viewpoint

Approximation of Ncut

@ In principle, the approach is similar to the RatioCut case. Replace |X;j],
IXZ.CI in the RatioCut arguments by vol(X;), Vol(Xl?), respectively.

@ Then, after the similar relaxation of the constraints, for k=2, we have

;n%%nfTLf subject to Df L 1,,; fTDf =vol(V).
€ n

@ Substituting g := D2 f in the above minimization yields:

m%&ngTLsymg subject to g L D'?1,; gl = vol(V).
geR"
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Spectral Clustering via Graph Cut Viewpoint

Approximation of Ncut

In principle, the approach is similar to the RatioCut case. Replace |Xj],
IXZ.CI in the RatioCut arguments by vol(X;), Vol(le’), respectively.

Then, after the similar relaxation of the constraints, for k=2, we have

;n}%nfTLf subject to Df L 1,,; fTDf =vol(V).
€ n

Substituting g := D2 f in the above minimization yields:

mhngTLsymg subject to g L D'?1,; gl = vol(V).
geR"

Hence, again by the Rayleigh-Ritz Theorem, g:(piym (i.e., the
eigenvector of Lgym corresponding to the smallest nonzero eigenvalue)
is the solution, which leads to f:D_”2 iym: W, ie., the
eigenvector corresponding to the smallest nonzero eigenvalue of the

generalized eigenproblem: Lf=ADf.
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Spectral Clustering via Graph Cut Viewpoint

Approximation of Ncut . ..

o Finally for k>2, let us first define H = (h;;) e Rk by

1/ (X)) if vieX;;

0 otherwise.
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Spectral Clustering via Graph Cut Viewpoint

Approximation of Ncut . ..

o Finally for k>2, let us first define H=(h;;) € R*k by
hij i 1/y/vol(X;) if v;€ Xj;
0 otherwise.

@ Then, using the reweighted matrix H := D'2H and the similar
argument leads us to the following relaxed minimization problem:

min tr(FITLSymﬁ) subject to H"H = I.
H€|R”Xk
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Spectral Clustering via Graph Cut Viewpoint

Approximation of Ncut . ..

o Finally for k>2, let us first define H = (h;;) € R"*k by

1/ (X)) if vieX;;

0 otherwise.

@ Then, using the reweighted matrix H := D'2H and the similar
argument leads us to the following relaxed minimization problem:

min tr(fITLSymﬁ) subject to H"H = I.
HERnxk

o Its solution is H = @Y™ = [ --- "], i.e., the first k eigenvectors
of Leym.
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Spectral Clustering via Graph Cut Viewpoint

Approximation of Ncut . ..

o Finally for k>2, let us first define H = (h;;) € R"*k by

1/ (X)) if vieX;;

0 otherwise.

@ Then, using the reweighted matrix H := D'2H and the similar
argument leads us to the following relaxed minimization problem:

min tr(fITLSymﬁ) subject to H"H = I.
HERnxk

o Its solution is H = @Y™ = [ --- "], i.e., the first k eigenvectors
of Leym.
@ The final solution H= D Y2H is therefore
H= q)rw = [(PBW ° ¢I];vil])

i.e., the first k eigenvectors of Ly, !!
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Spectral Clustering via Graph Cut Viewpoint

Caveat

@ The partition obtained by the relaxed approximate minimization
problem is not necessarily the same as the solution of the exact mincut
problem.
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Spectral Clustering via Graph Cut Viewpoint

Caveat

@ The partition obtained by the relaxed approximate minimization
problem is not necessarily the same as the solution of the exact mincut

problem.

@ An example of “cockroach graphs” found by Guattery and Miller

(1998).

|
Vk :Vk+1 Vok
>
-t ] - - — ] - — =
|
1
V3k :V3k+1 Vak
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Spectral Clustering via Graph Cut Viewpoint

Caveat

@ The partition obtained by the relaxed approximate minimization
problem is not necessarily the same as the solution of the exact mincut

problem.
@ An example of “cockroach graphs” found by Guattery and Miller
(1998).
@ The ideal RatioCut splits V into X ={vy,..., Uk, Vok+1,..., V3x} and
X ={Vks1--) V2ky U3kt 1s-+» Vak}-
|
Vi Vik : Vk+1 V2k
[ ° ° ° * :
___________________ I e I
° ° ° . -~
V2k+1 V3k :V3k+1 Vak
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Spectral Clustering via Graph Cut Viewpoint

Caveat

@ The partition obtained by the relaxed approximate minimization
problem is not necessarily the same as the solution of the exact mincut

problem.

@ An example of “cockroach graphs” found by Guattery and Miller
(1998).

@ The ideal RatioCut splits V into X = {v1,..., Uk, Usk+1,..., U3k} and
X ={Vks1.-0) V2k> U3kt 1)+ -+» Vak}.

@ On the other hand, the spectral clustering using ¢, of L(G) splits V
into Y ={v1,..., vk} and Y° = {vors1,..., Vag}.

Vi Vik : Vk+1 V2k
° ° ° ° o—|
___________________ -t ] - - — ] - — =
® ® ® ® o~
V2k+1 V3k :V3k+1 Vak

|
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