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Motivation: Phase Transition Phenomenon on Dendritic
Trees

A Peculiar Phase Transition Phenomenon
Recall the interesting phase transition phenomenon of the graph Laplacian
eigenvalues and eigenfunctions on dendritic trees mentioned in Lecture 5.
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Motivation: Phase Transition Phenomenon on Dendritic
Trees

A Peculiar Phase Transition Phenomenon . . .

We have observed that this value 4 is critical since:
the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;
those corresponding to the eigenvalues above 4 are much more
localized (like wavelets) around junctions/bifurcation vertices.

(a) RGC #100; λ1141 = 3.9994 (b) RGC #100; λ1142 = 4.3829
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Motivation: Phase Transition Phenomenon on Dendritic
Trees

Natural Questions

Q1 Why does such a phase transition phenomenon occur?
Q2 What is the significance of the eigenvalue 4?
Q3 Is there any tree that possesses an eigenvalue exactly equal to 4?
Q4 What about more general graphs that possess eigenvalues exactly

equal to 4?
Q5 How about trees with edge weights?

We believe that answering such questions will be useful for:

Analyzing data measured on not only dendritic trees but also general
graphs
Building/designing wavelet-like analysis/synthesis tools on graphs
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Starlike Trees

A Starlike Tree

It is a good idea to start our analysis on trees much simpler than the real
dendritic trees. A starlike tree is such a model where there is only one
vertex whose degree is larger than 2.

Let S(n1,n2, . . . ,nk ) be a starlike tree that has k(≥ 3) paths (i.e.,
branches) emanating from the center vertex v1.
Let the i th branch have ni vertices excluding v1.
Let n1 ≥ n2 ≥ ·· · ≥ nk .

The total number of vertices: n = 1+
k∑

i=1
ni .

(a) S(2,2,1,1,1,1) (b) S(n1,1,1,1,1,1,1,1) a.k.a. comet
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Starlike Trees

Known Results on Starlike Trees

We proved (in 2010) the largest eigenvalue for a comet is always larger
than 4.
K. Ch. Das (2007) proved the following results.

λmax =λn−1 < k +1+ 1

k −1

2+2cos

(
2π

2nk +1

)
≤λn−2 ≤ 2+2cos

(
2π

2n1 +1

)
On the other hand, Grone and Merris (1994) proved the following
lower bound for a general graph G with at least one edge:

λmax ≥ max
1≤ j≤n

d(v j )+1.
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Starlike Trees

Our Results on Starlike Trees

Corollary (S-Woei 2010)

A starlike tree has exactly one graph Laplacian eigenvalue greater than or
equal to 4. The equality holds if and only if the starlike tree is
K1,3 = S(1,1,1), which is also known as a claw.

Theorem (S-Woei 2011)

Let φn−1 =
(
φ1,n−1, · · · ,φn,n−1

)T, where φ j ,n−1 is the value of the
eigenfunction corresponding to the largest eigenvalue λn−1 at the vertex
v j , j = 1, . . . ,n. Then, the absolute value of this eigenfunction at the
central vertex v1 cannot be exceeded by those at the other vertices, i.e.,

|φ1,n−1| > |φ j ,n−1|, j = 2, . . . ,n.

The proof is based on Geršgorin’s Theorem.
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Starlike Trees

Geršgorin’s Theorem (1931)

Consider any A = (ai j ) ∈Cn×n , and define

N := {1, . . . ,n},

ri (A) := ∑
j∈N \{i }

|ai j |,

Γi (A) := {z ∈C : |z −ai i | ≤ ri (A)},

Γ(A) := ⋃
i∈N

Γi (A).

Then for any λ ∈σ(A), there is a positive integer k ∈ N such that

|λ−akk | ≤ rk (A).

Consequently, λ ∈ Γk (A) ⊆ Γ(A). Hence,

σ(A) ⊆ Γ(A).
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Starlike Trees

Proof of Theorem of S-Woei 2011

To prove this theorem, we use the following lemma:

Lemma

Let A ∈Cn×n , λk (A) be any eigenvalue of A, and φk = (φ1,k , . . . ,φn,k )T be
the corresponding eigenvector. Let k∗ denote the index of the largest
eigenvector component in φk , i.e.,

∣∣φk∗,k
∣∣= max j∈N

∣∣φ j ,k
∣∣. Then, we must

have λk (A) ∈ Γk∗(A). In other words, for the index of the largest eigenvector
component, the corresponding Geršgorin disk must contain the eigenvalue.

Proof. We follow the usual proof of Geršgorin’s theorem. The k∗th row of
Aφk =λkφk yields

|λk −ak∗k∗ | ≤ ∑
j∈N \{k∗}

∣∣ak∗ j
∣∣ ∣∣φ j ,k

∣∣∣∣φk∗,k
∣∣ ≤ ∑

j∈N \{k∗}

∣∣ak∗ j
∣∣ .

This implies λk ∈ Γk∗(A), which proves the lemma. ä
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Starlike Trees

Proof of Theorem of S-Woei 2011 . . .

Let us now prove the target theorem. First of all, by Corollary (S-Woei
2011), we have λn−1 ≥ 4. However, λn−1 = 4 happens only for K1,3. In that
case, it is easy to see that this theorem holds by directly examining the
eigenvector φn−1 =φ3 ∝ (3,−1,−1,−1)T. Hence, let us examine the case
λn−1 > 4. In this case, the lemma indicates 4 <λn−1 ∈ Γ(n−1)∗(L) where
(n −1)∗ ∈ N is the index of the largest component in φn−1. Now, note that
the disk Γi (L) for any vertex vi that has degree 2 is {z ∈C : |z −2| ≤ 2} (and
{z ∈C : |z −1| ≤ 1} for a degree 1 vertex). This means that the Geršgorin
disk Γ(n−1)∗ containing the eigenvalue λn−1 > 4 cannot be in the union of
the Geršgorin disks corresponding to the vertices whose degrees are 2 or
less. Hence the index of the largest eigenvector component in φn−1 must
correspond to an index for which the vertex has degree 3 or larger. In our
starlike-tree case, there is only one such vertex, v1, i.e., (n −1)∗ = 1. ä
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Starlike Trees

Why Is the Eigenvalue 4 Critical on Starlike Trees? (Q2)

The eigenvalue equation along each branch, say, the first branch
containing n1 vertices, leads to the following recursion formula:

φ j+1 + (λ−2)φ j +φ j−1 = 0, j = 2, . . . ,n1

with the appropriate boundary condition.
Consider its characteristic equation r 2 + (λ−2)r +1 = 0.
Then, the general solution can be written as φ j = Ar j−2

1 +Br j−2
2 ,

j = 2, . . . ,n1 +1, where r1,r2 are the roots of the characteristic
equation, and A,B are appropriate constants derived from the
boundary condition.
The discriminant of the characteristic equation is

D(λ) := (λ−2)2 −4 =λ(λ−4).

Hence if 0 ≤λ< 4, then r1,r2 ∈C, which give us the oscillatory
solution, while if λ> 4, we can show r1 <−1 < r2 < 0, which lead to
the more concentrated solution.
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the more concentrated solution.
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Dendritic Trees

Our Dataset

consists of 130 RGCs each of which in turn consists of
A sequence of 3D sample points along dendrite arbors obtained by
Neurolucida® (requires intensive human interaction)
Connectivity and branching information by the same software
Each soma (cell body) is represented as a sequence of points traced
along its boundary (circular/ring shape)

=⇒ Constructing a graph representing dendrite structures per RGC is very
natural and simple! In fact, we constructed a tree (i.e., a connected graph
without cycles/loops) by replacing the soma ring by a single vertex
representing a center of the soma.
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Dendritic Trees

Recap: Clustering using Features Derived by Neurolucida®
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Dendritic Trees

Our Dataset =⇒ Trees . . .

Let G be a tree representing dendrites of an RGC.
Let V =V (G) = {v1, . . . , vn} be a set of vertices representing sample
points along dendrite arbors, i.e., vk ∈R3. n ranges between 565 and
24474 depending on the RGCs.
Let E = E(G) = {e1, . . . ,en−1} be a set of edges where ek = (vi , v j )
represents a line segment connecting between adjacent vertices vi , v j

for some 1 ≤ i , j ≤ n.
We mainly consider unweighted trees in this talk, i.e., ai j = 1 if
vi ∼ v j ; otherwise 0.
Let d(vk ) = dvk be the degree of the vertex vk . In our dataset,

max
130 cells

max
k

d(vk ) = 8, min
130 cells

max
k

d(vk ) = 3.
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Dendritic Trees

Our Observations via Numerical Experiments

Unfortunately, actual dendritic trees are not starlike.
However, our numerical computations and data analysis indicate that:

0 ≤ #{ j ∈ [1,n] |d(v j )	 2}−mG ([4,∞))

n
≤ 0.047

for each cell where n = |V (G)|.
We can define the starlikeliness S`(T ) of a given tree G = T as follows:

S`(T ) := 1− #{ j ∈ [1,n] |d(v j )	 2}−mT ([4,∞))

n
.

We found S`(T ) ≡ 1 for all the dendrites in Cluster 6.
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Dendritic Trees

Dendrites with S`(T ) = 1
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Dendritic Trees

More dendrites with S`(T ) = 1
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Dendritic Trees

Dendrites with S`(T )� 1
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More dendrites with S`(T )� 1
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Dendritic Trees

Zoom up

(a) RGC #100; S`(T ) = 1 (b) RGC #155; S`(T ) = 0.953� 1
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Q1 & Q2: Why Phase Transitions at Eigenvalue 4? Analysis of Dendritic Trees

Observations =⇒ Theorems on General Graphs
Theorem (Nakatsukasa-S-Woei 2013)

For any graph G of finite volume, we have

0 ≤ mG ([4,∞)) ≤ #{ j ∈ [1,n] |d(v j )	 2}

and each eigenfunction corresponding to λ≥ 4 has its largest component
(in the absolute value) on the vertices whose degree are larger than 2.

Theorem (Nakatsukasa-S-Woei 2013)

Suppose that a graph G has a branch consisting of a path of length k, say,
{vi1 , . . . , vik } with vik being the leaf of that branch. Then for any λ> 4, the
corresponding eigenvector φ= (

φ1, · · · ,φn
)T satisfies

|φi j+1 | ≤ γ|φi j | for j = 1,2, . . . ,k −1, γ := 2/(λ−2) < 1.

Hence |φi j | ≤ γ j−1|φi1 | for j = 1, . . . ,k, that is, the eigenvector along the
branch decays exponentially with the rate γ.
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Q3: Is there any tree possessing λ= 4?

Outline

1 Motivation: Phase Transition Phenomenon on Dendritic Trees

2 Q1 & Q2: Why Phase Transitions at Eigenvalue 4?
Analysis of Starlike Trees
Analysis of Dendritic Trees

3 Q3: Is there any tree possessing λ= 4?

4 Q4: What about more general graphs possessing λ= 4?

5 Q5: How about trees with edge weights?

6 Summary

7 References/Acknowledgment
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Q3: Is there any tree possessing λ= 4?

Answers to Q3
Theorem (Guo 2006)

Let T be a tree with n vertices. Then,

λ j (T ) ≤
⌈

n

n − j

⌉
, j = 0, . . . ,n −1,

and the equality holds iff a) j 6= 0; b) n − j divides n; and c) T is spanned
by n − j vertex disjoint copies of K1, j

n− j
.

Corollary (Nakatsukasa-S-Woei 2013)

A tree has an eigenvalue exactly equal to 4 iff it consists of vertex disjoint
copies of K1,3.

Many other connections possible as long as they are vertex disjoint.
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Q3: Is there any tree possessing λ= 4?

Answers to Q3 . . .

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

j

λ j

(a) {λ j }19
j=0;S`(T ) = 1

0
1

2
3

4
5

6

−1

0

1

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

φ 1
5

(b) φ15

0
1

2
3

4
5

6

−1

0

1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

φ 1
9

(c) φ19

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/22/19 29 / 39



Q4: What about more general graphs possessing λ= 4?

Outline

1 Motivation: Phase Transition Phenomenon on Dendritic Trees

2 Q1 & Q2: Why Phase Transitions at Eigenvalue 4?
Analysis of Starlike Trees
Analysis of Dendritic Trees

3 Q3: Is there any tree possessing λ= 4?

4 Q4: What about more general graphs possessing λ= 4?

5 Q5: How about trees with edge weights?

6 Summary

7 References/Acknowledgment

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/22/19 30 / 39



Q4: What about more general graphs possessing λ= 4?

Q4: Can a graph have the eigenvalue λ= 4?

The answer is clearly Yes: a regular finite lattice graph in Rd , d > 1
has repeated eigenvalue 4.
The eigenvalues and the corresponding eigenfunctions of a graph
representing the regular finite lattice of size n ×n ×·· ·×n = nd are

λ j1,..., jd = 4
d∑

i=1
sin2

(
jiπ

2n

)

φ j1,..., jd (x1, . . . , xd ) =
d∏

i=1
cos

(
jiπ(xi + 1

2 )

n

)
,

where ji , xi ∈Z/nZ for each i ; see Burden and Hedstrom: “The
distribution of the eigenvalues of the discrete Laplacian,” BIT, vol.12,
pp.475–488, 1972.
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Q4: What about more general graphs possessing λ= 4?

Hence, determining mG (4) of this lattice graph is equivalent to finding
the integer solution ( j1, . . . , jd ) ∈ (Z/nZ)d to the following equation:

d∑
i=1

sin2
(

jiπ

2n

)
= 1.

For d = 1, mG (4) = 0 as shown earlier.
For d = 2, it is easy to show that mG (4) = n −1.
For d = 3, mG (4) behaves in a much more complicated manner, which
is deeply related to Number Theory.
We expect that more complicated situations occur for d > 3.
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Q5: How about trees with edge weights?
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Q5: How about trees with edge weights?
It turned out that even an extremely simple tree, i.e., a “path” can have
localized eigenfunctions like wavelets if it has non-uniform edge weights.

A simple yet weighted path

Interesting to see that such non-uniform weights can generate both global
oscillations like Fourier mode and localized wiggles like wavelets.

This indicates that weighted graphs exhibit more unexpected yet interesting
behaviors and their analysis will be more challenging compared to the
unweighted (or combinatorial) graphs.

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/22/19 34 / 39


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Q5: How about trees with edge weights?

Q5: How about trees with edge weights?
It turned out that even an extremely simple tree, i.e., a “path” can have
localized eigenfunctions like wavelets if it has non-uniform edge weights.

A simple yet weighted path

Interesting to see that such non-uniform weights can generate both global
oscillations like Fourier mode and localized wiggles like wavelets.

This indicates that weighted graphs exhibit more unexpected yet interesting
behaviors and their analysis will be more challenging compared to the
unweighted (or combinatorial) graphs.

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/22/19 34 / 39


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



Q5: How about trees with edge weights?

Q5: How about trees with edge weights?
It turned out that even an extremely simple tree, i.e., a “path” can have
localized eigenfunctions like wavelets if it has non-uniform edge weights.

A simple yet weighted path

Interesting to see that such non-uniform weights can generate both global
oscillations like Fourier mode and localized wiggles like wavelets.

This indicates that weighted graphs exhibit more unexpected yet interesting
behaviors and their analysis will be more challenging compared to the
unweighted (or combinatorial) graphs.

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/22/19 34 / 39


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}



Summary

Outline

1 Motivation: Phase Transition Phenomenon on Dendritic Trees

2 Q1 & Q2: Why Phase Transitions at Eigenvalue 4?
Analysis of Starlike Trees
Analysis of Dendritic Trees

3 Q3: Is there any tree possessing λ= 4?

4 Q4: What about more general graphs possessing λ= 4?

5 Q5: How about trees with edge weights?

6 Summary

7 References/Acknowledgment

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenfunctions 10/22/19 35 / 39



Summary

Summary

Obtained complete understanding of the eigenvalue/eigenfunction
behavior for unweighted starlike trees
Obtained a theorem on exponential amplitude decay of the
eigenfunctions corresponding to the eigenvalues > 4
Identified a class of trees having exact eigenvalue 4
Lattice graphs can have exact eigenvalue 4 with multiplicity, but tough
to analyze the relationship between mG (4) and the dimension d of the
lattice =⇒ Analytic Number Theory!
“Expect the unexpected” in analyzing graph Laplacians eigenvalues
and eigenfunctions of weighted graphs!
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