
MAT 280: Harmonic Analysis on Graphs & Networks
Lecture 9: Graph Construction from Given Datasets

Naoki Saito

Department of Mathematics
University of California, Davis

October 24, 2019

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 1 / 23

Outline

1 Motivation: How to Construct a Graph from a Given Dataset

2 Simple Graph Construction Strategies

3 Optimization Strategy by Daitch-Kelner-Spielman

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 2 / 23

Motivation: How to Construct a Graph from a Given
Dataset

Outline

1 Motivation: How to Construct a Graph from a Given Dataset

2 Simple Graph Construction Strategies

3 Optimization Strategy by Daitch-Kelner-Spielman

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 3 / 23

Motivation: How to Construct a Graph from a Given
Dataset

From Datasets to Graphs

Suppose we have deployed a set of sensors at scattered (i.e.,
unequally-spaced) locations and each sensor records time series (or
waveform) data measuring certain properties of interest, e.g.,

seismometers to monitor volcanic activities;
acoustic sensors to detect underground tunnels;
biosensors to detect pathogens, . . .

In order to analyze such data in an efficient manner not only along the
time axis but also across the sensors (i.e., the spatial directions), we
need to construct a graph whose vertices represent the spatial
locations where the sensors are placed.
Then an important question is how to define edges among these
vertices to form a graph.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 4 / 23

Motivation: How to Construct a Graph from a Given
Dataset

From Datasets to Graphs

Suppose we have deployed a set of sensors at scattered (i.e.,
unequally-spaced) locations and each sensor records time series (or
waveform) data measuring certain properties of interest, e.g.,

seismometers to monitor volcanic activities;
acoustic sensors to detect underground tunnels;
biosensors to detect pathogens, . . .

In order to analyze such data in an efficient manner not only along the
time axis but also across the sensors (i.e., the spatial directions), we
need to construct a graph whose vertices represent the spatial
locations where the sensors are placed.
Then an important question is how to define edges among these
vertices to form a graph.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 4 / 23

Motivation: How to Construct a Graph from a Given
Dataset

From Datasets to Graphs

Suppose we have deployed a set of sensors at scattered (i.e.,
unequally-spaced) locations and each sensor records time series (or
waveform) data measuring certain properties of interest, e.g.,

seismometers to monitor volcanic activities;
acoustic sensors to detect underground tunnels;
biosensors to detect pathogens, . . .

In order to analyze such data in an efficient manner not only along the
time axis but also across the sensors (i.e., the spatial directions), we
need to construct a graph whose vertices represent the spatial
locations where the sensors are placed.
Then an important question is how to define edges among these
vertices to form a graph.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 4 / 23

Motivation: How to Construct a Graph from a Given
Dataset

From Datasets to Graphs

Suppose we have deployed a set of sensors at scattered (i.e.,
unequally-spaced) locations and each sensor records time series (or
waveform) data measuring certain properties of interest, e.g.,

seismometers to monitor volcanic activities;
acoustic sensors to detect underground tunnels;
biosensors to detect pathogens, . . .

In order to analyze such data in an efficient manner not only along the
time axis but also across the sensors (i.e., the spatial directions), we
need to construct a graph whose vertices represent the spatial
locations where the sensors are placed.
Then an important question is how to define edges among these
vertices to form a graph.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 4 / 23

Motivation: How to Construct a Graph from a Given
Dataset

From Datasets to Graphs

Suppose we have deployed a set of sensors at scattered (i.e.,
unequally-spaced) locations and each sensor records time series (or
waveform) data measuring certain properties of interest, e.g.,

seismometers to monitor volcanic activities;
acoustic sensors to detect underground tunnels;
biosensors to detect pathogens, . . .

In order to analyze such data in an efficient manner not only along the
time axis but also across the sensors (i.e., the spatial directions), we
need to construct a graph whose vertices represent the spatial
locations where the sensors are placed.
Then an important question is how to define edges among these
vertices to form a graph.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 4 / 23

Motivation: How to Construct a Graph from a Given
Dataset

From Datasets to Graphs

Suppose we have deployed a set of sensors at scattered (i.e.,
unequally-spaced) locations and each sensor records time series (or
waveform) data measuring certain properties of interest, e.g.,

seismometers to monitor volcanic activities;
acoustic sensors to detect underground tunnels;
biosensors to detect pathogens, . . .

In order to analyze such data in an efficient manner not only along the
time axis but also across the sensors (i.e., the spatial directions), we
need to construct a graph whose vertices represent the spatial
locations where the sensors are placed.
Then an important question is how to define edges among these
vertices to form a graph.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 4 / 23

Motivation: How to Construct a Graph from a Given
Dataset

From Datasets to Graphs . . .

Unless the restrictive and predefined cases (e.g., each sensor/vertex is
physically forced to connect to only a handful of its neighbors), we need to
answer the following questions:

Should we connect each vertex to every other vertex to make a
complete graph?
Or should we create a sparse graph for efficiency without deteriorating
the performance of the task at hand (e.g., detection, classification,
regression, missing data recovery, etc.)?
What weight should we assign to each edge?

These questions are also important in completely different and more
general scenarios where each vertex represents not the sensor location but
simply a vector in Rd (e.g., an image patch for denoising and feature
extraction, etc.)

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 5 / 23

Motivation: How to Construct a Graph from a Given
Dataset

From Datasets to Graphs . . .

Unless the restrictive and predefined cases (e.g., each sensor/vertex is
physically forced to connect to only a handful of its neighbors), we need to
answer the following questions:

Should we connect each vertex to every other vertex to make a
complete graph?
Or should we create a sparse graph for efficiency without deteriorating
the performance of the task at hand (e.g., detection, classification,
regression, missing data recovery, etc.)?
What weight should we assign to each edge?

These questions are also important in completely different and more
general scenarios where each vertex represents not the sensor location but
simply a vector in Rd (e.g., an image patch for denoising and feature
extraction, etc.)

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 5 / 23

Motivation: How to Construct a Graph from a Given
Dataset

From Datasets to Graphs . . .

Unless the restrictive and predefined cases (e.g., each sensor/vertex is
physically forced to connect to only a handful of its neighbors), we need to
answer the following questions:

Should we connect each vertex to every other vertex to make a
complete graph?
Or should we create a sparse graph for efficiency without deteriorating
the performance of the task at hand (e.g., detection, classification,
regression, missing data recovery, etc.)?
What weight should we assign to each edge?

These questions are also important in completely different and more
general scenarios where each vertex represents not the sensor location but
simply a vector in Rd (e.g., an image patch for denoising and feature
extraction, etc.)

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 5 / 23

Motivation: How to Construct a Graph from a Given
Dataset

From Datasets to Graphs . . .

Unless the restrictive and predefined cases (e.g., each sensor/vertex is
physically forced to connect to only a handful of its neighbors), we need to
answer the following questions:

Should we connect each vertex to every other vertex to make a
complete graph?
Or should we create a sparse graph for efficiency without deteriorating
the performance of the task at hand (e.g., detection, classification,
regression, missing data recovery, etc.)?
What weight should we assign to each edge?

These questions are also important in completely different and more
general scenarios where each vertex represents not the sensor location but
simply a vector in Rd (e.g., an image patch for denoising and feature
extraction, etc.)

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 5 / 23

Motivation: How to Construct a Graph from a Given
Dataset

From Datasets to Graphs . . .

Unless the restrictive and predefined cases (e.g., each sensor/vertex is
physically forced to connect to only a handful of its neighbors), we need to
answer the following questions:

Should we connect each vertex to every other vertex to make a
complete graph?
Or should we create a sparse graph for efficiency without deteriorating
the performance of the task at hand (e.g., detection, classification,
regression, missing data recovery, etc.)?
What weight should we assign to each edge?

These questions are also important in completely different and more
general scenarios where each vertex represents not the sensor location but
simply a vector in Rd (e.g., an image patch for denoising and feature
extraction, etc.)

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 5 / 23

Simple Graph Construction Strategies

Outline

1 Motivation: How to Construct a Graph from a Given Dataset

2 Simple Graph Construction Strategies

3 Optimization Strategy by Daitch-Kelner-Spielman

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 6 / 23

Simple Graph Construction Strategies

Criteria for Good Graphs

What is a good graph?
Obviously, this question depends on the task at hand (e.g.,
classification, regression, missing data recovery, . . .).
Yet, the “goodness” of a graph should be measured in the following
three criteria:

C1 Computational efficiency for constructing a graph from given data;
C2 Computational efficiency for processing data on the constructed graph;
C3 Performance of the tasks at hand using that graph.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 7 / 23

Simple Graph Construction Strategies

Criteria for Good Graphs

What is a good graph?
Obviously, this question depends on the task at hand (e.g.,
classification, regression, missing data recovery, . . .).
Yet, the “goodness” of a graph should be measured in the following
three criteria:

C1 Computational efficiency for constructing a graph from given data;
C2 Computational efficiency for processing data on the constructed graph;
C3 Performance of the tasks at hand using that graph.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 7 / 23

Simple Graph Construction Strategies

Criteria for Good Graphs

What is a good graph?
Obviously, this question depends on the task at hand (e.g.,
classification, regression, missing data recovery, . . .).
Yet, the “goodness” of a graph should be measured in the following
three criteria:

C1 Computational efficiency for constructing a graph from given data;
C2 Computational efficiency for processing data on the constructed graph;
C3 Performance of the tasks at hand using that graph.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 7 / 23

Simple Graph Construction Strategies

Criteria for Good Graphs

What is a good graph?
Obviously, this question depends on the task at hand (e.g.,
classification, regression, missing data recovery, . . .).
Yet, the “goodness” of a graph should be measured in the following
three criteria:

C1 Computational efficiency for constructing a graph from given data;
C2 Computational efficiency for processing data on the constructed graph;
C3 Performance of the tasks at hand using that graph.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 7 / 23

Simple Graph Construction Strategies

Criteria for Good Graphs

What is a good graph?
Obviously, this question depends on the task at hand (e.g.,
classification, regression, missing data recovery, . . .).
Yet, the “goodness” of a graph should be measured in the following
three criteria:

C1 Computational efficiency for constructing a graph from given data;
C2 Computational efficiency for processing data on the constructed graph;
C3 Performance of the tasks at hand using that graph.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 7 / 23

Simple Graph Construction Strategies

Criteria for Good Graphs

What is a good graph?
Obviously, this question depends on the task at hand (e.g.,
classification, regression, missing data recovery, . . .).
Yet, the “goodness” of a graph should be measured in the following
three criteria:

C1 Computational efficiency for constructing a graph from given data;
C2 Computational efficiency for processing data on the constructed graph;
C3 Performance of the tasks at hand using that graph.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 7 / 23

Simple Graph Construction Strategies

Three Possibilities

(a) Sensor locations

(b) Complete graph

(c) Delaunay graph (d) Minimum spanning tree

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 8 / 23

Simple Graph Construction Strategies

Three Possibilities

(a) Sensor locations (b) Complete graph

(c) Delaunay graph (d) Minimum spanning tree

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 8 / 23

Simple Graph Construction Strategies

Three Possibilities

(a) Sensor locations (b) Complete graph

(c) Delaunay graph

(d) Minimum spanning tree

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 8 / 23

Simple Graph Construction Strategies

Three Possibilities

(a) Sensor locations (b) Complete graph

(c) Delaunay graph (d) Minimum spanning tree

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 8 / 23

Simple Graph Construction Strategies

Complete Graphs

Construct a complete graph K (V) = Kn by mutually connecting all the
vertices v1, . . . , vn .
Often the Gaussian weights are used for the edge weights, i.e., for
wi j = exp(−dist(vi , v j)2/ε2) where dist(·, ·) is an appropriate distance
function (e.g., `2-distance), and ε is an appropriate scale parameter,
which is often difficult to choose (more about it in the next lecture).
This is easy and good in the sense of Criterion 1.
Hence, many people in fact have been constructing and using this
strategy more or less mindlessly.
The number of its edges, however, is of course quite large, i.e.,
|E(Kn)| = n(n −1)/2, which may hinder it from being good in
Criterion 2.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 9 / 23

Simple Graph Construction Strategies

Complete Graphs

Construct a complete graph K (V) = Kn by mutually connecting all the
vertices v1, . . . , vn .
Often the Gaussian weights are used for the edge weights, i.e., for
wi j = exp(−dist(vi , v j)2/ε2) where dist(·, ·) is an appropriate distance
function (e.g., `2-distance), and ε is an appropriate scale parameter,
which is often difficult to choose (more about it in the next lecture).
This is easy and good in the sense of Criterion 1.
Hence, many people in fact have been constructing and using this
strategy more or less mindlessly.
The number of its edges, however, is of course quite large, i.e.,
|E(Kn)| = n(n −1)/2, which may hinder it from being good in
Criterion 2.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 9 / 23

Simple Graph Construction Strategies

Complete Graphs

Construct a complete graph K (V) = Kn by mutually connecting all the
vertices v1, . . . , vn .
Often the Gaussian weights are used for the edge weights, i.e., for
wi j = exp(−dist(vi , v j)2/ε2) where dist(·, ·) is an appropriate distance
function (e.g., `2-distance), and ε is an appropriate scale parameter,
which is often difficult to choose (more about it in the next lecture).
This is easy and good in the sense of Criterion 1.
Hence, many people in fact have been constructing and using this
strategy more or less mindlessly.
The number of its edges, however, is of course quite large, i.e.,
|E(Kn)| = n(n −1)/2, which may hinder it from being good in
Criterion 2.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 9 / 23

Simple Graph Construction Strategies

Complete Graphs

Construct a complete graph K (V) = Kn by mutually connecting all the
vertices v1, . . . , vn .
Often the Gaussian weights are used for the edge weights, i.e., for
wi j = exp(−dist(vi , v j)2/ε2) where dist(·, ·) is an appropriate distance
function (e.g., `2-distance), and ε is an appropriate scale parameter,
which is often difficult to choose (more about it in the next lecture).
This is easy and good in the sense of Criterion 1.
Hence, many people in fact have been constructing and using this
strategy more or less mindlessly.
The number of its edges, however, is of course quite large, i.e.,
|E(Kn)| = n(n −1)/2, which may hinder it from being good in
Criterion 2.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 9 / 23

Simple Graph Construction Strategies

Complete Graphs

Construct a complete graph K (V) = Kn by mutually connecting all the
vertices v1, . . . , vn .
Often the Gaussian weights are used for the edge weights, i.e., for
wi j = exp(−dist(vi , v j)2/ε2) where dist(·, ·) is an appropriate distance
function (e.g., `2-distance), and ε is an appropriate scale parameter,
which is often difficult to choose (more about it in the next lecture).
This is easy and good in the sense of Criterion 1.
Hence, many people in fact have been constructing and using this
strategy more or less mindlessly.
The number of its edges, however, is of course quite large, i.e.,
|E(Kn)| = n(n −1)/2, which may hinder it from being good in
Criterion 2.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 9 / 23

Simple Graph Construction Strategies

Delaunay Graphs

How to sparsify a complete graph to improve Criterion 2 while keeping
Criterion 1 in mind?
One of the possibilities may be the so-called Delaunay graph.
If vi ∈R2, i = 1, . . . ,n, then the Delaunay triangulation DT (V) for V is
a triangulation such that no vertex in V is inside the circumcircle of
any triangle in DT (V).

Figure: From Wikipedia

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 10 / 23

Simple Graph Construction Strategies

Delaunay Graphs

How to sparsify a complete graph to improve Criterion 2 while keeping
Criterion 1 in mind?
One of the possibilities may be the so-called Delaunay graph.
If vi ∈R2, i = 1, . . . ,n, then the Delaunay triangulation DT (V) for V is
a triangulation such that no vertex in V is inside the circumcircle of
any triangle in DT (V).

Figure: From Wikipedia

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 10 / 23

Simple Graph Construction Strategies

Delaunay Graphs

How to sparsify a complete graph to improve Criterion 2 while keeping
Criterion 1 in mind?
One of the possibilities may be the so-called Delaunay graph.
If vi ∈R2, i = 1, . . . ,n, then the Delaunay triangulation DT (V) for V is
a triangulation such that no vertex in V is inside the circumcircle of
any triangle in DT (V).

Figure: From Wikipedia
saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 10 / 23

Simple Graph Construction Strategies

Delaunay Graphs . . .

DT (V) maximizes the minimum angle of all the angles of the triangles
in the triangulations =⇒ tends to avoid extremely skinny triangles
Moreover, in R2, there is a fast algorithm to construct DT (V) with
O(n logn) cost.
A graph representing such Delaunay triangulation of V is called the
Delaunay graph of V , and denoted by DG(V).
By considering circumscribed spheres, the notion of Delaunay
triangulation can extend to three and higher dimensions.
The computational cost to construct DG(V) for higher dimension,
however, can be high: O(n logn +ndd/2e) if V ⊂Rd .
Hence, the Delaunay graph may be useful if the vertices represent the
physical sensor locations/coordinates in R2 or at most R3.
In more general situations where each vertex directly represent a high
dimensional vector in Rd with d > 3, then this may not be a good
approach in terms of Criterion 1.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 11 / 23

Simple Graph Construction Strategies

Delaunay Graphs . . .

DT (V) maximizes the minimum angle of all the angles of the triangles
in the triangulations =⇒ tends to avoid extremely skinny triangles
Moreover, in R2, there is a fast algorithm to construct DT (V) with
O(n logn) cost.
A graph representing such Delaunay triangulation of V is called the
Delaunay graph of V , and denoted by DG(V).
By considering circumscribed spheres, the notion of Delaunay
triangulation can extend to three and higher dimensions.
The computational cost to construct DG(V) for higher dimension,
however, can be high: O(n logn +ndd/2e) if V ⊂Rd .
Hence, the Delaunay graph may be useful if the vertices represent the
physical sensor locations/coordinates in R2 or at most R3.
In more general situations where each vertex directly represent a high
dimensional vector in Rd with d > 3, then this may not be a good
approach in terms of Criterion 1.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 11 / 23

Simple Graph Construction Strategies

Delaunay Graphs . . .

DT (V) maximizes the minimum angle of all the angles of the triangles
in the triangulations =⇒ tends to avoid extremely skinny triangles
Moreover, in R2, there is a fast algorithm to construct DT (V) with
O(n logn) cost.
A graph representing such Delaunay triangulation of V is called the
Delaunay graph of V , and denoted by DG(V).
By considering circumscribed spheres, the notion of Delaunay
triangulation can extend to three and higher dimensions.
The computational cost to construct DG(V) for higher dimension,
however, can be high: O(n logn +ndd/2e) if V ⊂Rd .
Hence, the Delaunay graph may be useful if the vertices represent the
physical sensor locations/coordinates in R2 or at most R3.
In more general situations where each vertex directly represent a high
dimensional vector in Rd with d > 3, then this may not be a good
approach in terms of Criterion 1.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 11 / 23

Simple Graph Construction Strategies

Delaunay Graphs . . .

DT (V) maximizes the minimum angle of all the angles of the triangles
in the triangulations =⇒ tends to avoid extremely skinny triangles
Moreover, in R2, there is a fast algorithm to construct DT (V) with
O(n logn) cost.
A graph representing such Delaunay triangulation of V is called the
Delaunay graph of V , and denoted by DG(V).
By considering circumscribed spheres, the notion of Delaunay
triangulation can extend to three and higher dimensions.
The computational cost to construct DG(V) for higher dimension,
however, can be high: O(n logn +ndd/2e) if V ⊂Rd .
Hence, the Delaunay graph may be useful if the vertices represent the
physical sensor locations/coordinates in R2 or at most R3.
In more general situations where each vertex directly represent a high
dimensional vector in Rd with d > 3, then this may not be a good
approach in terms of Criterion 1.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 11 / 23

Simple Graph Construction Strategies

Delaunay Graphs . . .

DT (V) maximizes the minimum angle of all the angles of the triangles
in the triangulations =⇒ tends to avoid extremely skinny triangles
Moreover, in R2, there is a fast algorithm to construct DT (V) with
O(n logn) cost.
A graph representing such Delaunay triangulation of V is called the
Delaunay graph of V , and denoted by DG(V).
By considering circumscribed spheres, the notion of Delaunay
triangulation can extend to three and higher dimensions.
The computational cost to construct DG(V) for higher dimension,
however, can be high: O(n logn +ndd/2e) if V ⊂Rd .
Hence, the Delaunay graph may be useful if the vertices represent the
physical sensor locations/coordinates in R2 or at most R3.
In more general situations where each vertex directly represent a high
dimensional vector in Rd with d > 3, then this may not be a good
approach in terms of Criterion 1.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 11 / 23

Simple Graph Construction Strategies

Delaunay Graphs . . .

DT (V) maximizes the minimum angle of all the angles of the triangles
in the triangulations =⇒ tends to avoid extremely skinny triangles
Moreover, in R2, there is a fast algorithm to construct DT (V) with
O(n logn) cost.
A graph representing such Delaunay triangulation of V is called the
Delaunay graph of V , and denoted by DG(V).
By considering circumscribed spheres, the notion of Delaunay
triangulation can extend to three and higher dimensions.
The computational cost to construct DG(V) for higher dimension,
however, can be high: O(n logn +ndd/2e) if V ⊂Rd .
Hence, the Delaunay graph may be useful if the vertices represent the
physical sensor locations/coordinates in R2 or at most R3.
In more general situations where each vertex directly represent a high
dimensional vector in Rd with d > 3, then this may not be a good
approach in terms of Criterion 1.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 11 / 23

Simple Graph Construction Strategies

Delaunay Graphs . . .

DT (V) maximizes the minimum angle of all the angles of the triangles
in the triangulations =⇒ tends to avoid extremely skinny triangles
Moreover, in R2, there is a fast algorithm to construct DT (V) with
O(n logn) cost.
A graph representing such Delaunay triangulation of V is called the
Delaunay graph of V , and denoted by DG(V).
By considering circumscribed spheres, the notion of Delaunay
triangulation can extend to three and higher dimensions.
The computational cost to construct DG(V) for higher dimension,
however, can be high: O(n logn +ndd/2e) if V ⊂Rd .
Hence, the Delaunay graph may be useful if the vertices represent the
physical sensor locations/coordinates in R2 or at most R3.
In more general situations where each vertex directly represent a high
dimensional vector in Rd with d > 3, then this may not be a good
approach in terms of Criterion 1.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 11 / 23

Simple Graph Construction Strategies

Minimum Spanning Trees
Can construct the so-called minimum spanning tree from either a
complete graph or a Delaunay graph.
A spanning tree of a given connected graph G(V ,E) is a subgraph of G
that is a tree and connects all the vertices in V together.
In general, G can have many different spanning trees, and the
minimum spanning tree MST (G) of G is a spanning tree whose total
edge weights (i.e., the sum of the edge weights in that tree) are less
than or equal to those of every other spanning tree.

(a) MST(a lattice) (b) MST(a weighted graph)

Figure: From Wikipedia

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 12 / 23

Simple Graph Construction Strategies

Minimum Spanning Trees
Can construct the so-called minimum spanning tree from either a
complete graph or a Delaunay graph.
A spanning tree of a given connected graph G(V ,E) is a subgraph of G
that is a tree and connects all the vertices in V together.
In general, G can have many different spanning trees, and the
minimum spanning tree MST (G) of G is a spanning tree whose total
edge weights (i.e., the sum of the edge weights in that tree) are less
than or equal to those of every other spanning tree.

(a) MST(a lattice) (b) MST(a weighted graph)

Figure: From Wikipedia

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 12 / 23

Simple Graph Construction Strategies

Minimum Spanning Trees
Can construct the so-called minimum spanning tree from either a
complete graph or a Delaunay graph.
A spanning tree of a given connected graph G(V ,E) is a subgraph of G
that is a tree and connects all the vertices in V together.
In general, G can have many different spanning trees, and the
minimum spanning tree MST (G) of G is a spanning tree whose total
edge weights (i.e., the sum of the edge weights in that tree) are less
than or equal to those of every other spanning tree.

(a) MST(a lattice) (b) MST(a weighted graph)

Figure: From Wikipedia

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 12 / 23

Simple Graph Construction Strategies

Minimum Spanning Trees
Can construct the so-called minimum spanning tree from either a
complete graph or a Delaunay graph.
A spanning tree of a given connected graph G(V ,E) is a subgraph of G
that is a tree and connects all the vertices in V together.
In general, G can have many different spanning trees, and the
minimum spanning tree MST (G) of G is a spanning tree whose total
edge weights (i.e., the sum of the edge weights in that tree) are less
than or equal to those of every other spanning tree.

(a) MST(a lattice) (b) MST(a weighted graph)

Figure: From Wikipedia
saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 12 / 23

Simple Graph Construction Strategies

Minimum Spanning Trees

It is well known that

MST (K (V)) ⊂ DG(V) ⊂ K (V)

MST (G) is the sparsest graph that connects all the vertices without
redundancy; but it may not be unique for a given G.
Computing MST (G) for a given G =G(V ,E) is good in Criterion 1:
there exists fast algorithms with the cost O(|E(G)| logn).
This does not depends on the dimension of the vectors d at the
vertices. Hence, MST (G) is easier to compute than DG(V) in general.
For the details of the computational algorithms for MST as well as its
history, see the references provided at the course reference webpage.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 13 / 23

Simple Graph Construction Strategies

Minimum Spanning Trees

It is well known that

MST (K (V)) ⊂ DG(V) ⊂ K (V)

MST (G) is the sparsest graph that connects all the vertices without
redundancy; but it may not be unique for a given G.
Computing MST (G) for a given G =G(V ,E) is good in Criterion 1:
there exists fast algorithms with the cost O(|E(G)| logn).
This does not depends on the dimension of the vectors d at the
vertices. Hence, MST (G) is easier to compute than DG(V) in general.
For the details of the computational algorithms for MST as well as its
history, see the references provided at the course reference webpage.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 13 / 23

Simple Graph Construction Strategies

Minimum Spanning Trees

It is well known that

MST (K (V)) ⊂ DG(V) ⊂ K (V)

MST (G) is the sparsest graph that connects all the vertices without
redundancy; but it may not be unique for a given G.
Computing MST (G) for a given G =G(V ,E) is good in Criterion 1:
there exists fast algorithms with the cost O(|E(G)| logn).
This does not depends on the dimension of the vectors d at the
vertices. Hence, MST (G) is easier to compute than DG(V) in general.
For the details of the computational algorithms for MST as well as its
history, see the references provided at the course reference webpage.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 13 / 23

Simple Graph Construction Strategies

Minimum Spanning Trees

It is well known that

MST (K (V)) ⊂ DG(V) ⊂ K (V)

MST (G) is the sparsest graph that connects all the vertices without
redundancy; but it may not be unique for a given G.
Computing MST (G) for a given G =G(V ,E) is good in Criterion 1:
there exists fast algorithms with the cost O(|E(G)| logn).
This does not depends on the dimension of the vectors d at the
vertices. Hence, MST (G) is easier to compute than DG(V) in general.
For the details of the computational algorithms for MST as well as its
history, see the references provided at the course reference webpage.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 13 / 23

Simple Graph Construction Strategies

Minimum Spanning Trees

It is well known that

MST (K (V)) ⊂ DG(V) ⊂ K (V)

MST (G) is the sparsest graph that connects all the vertices without
redundancy; but it may not be unique for a given G.
Computing MST (G) for a given G =G(V ,E) is good in Criterion 1:
there exists fast algorithms with the cost O(|E(G)| logn).
This does not depends on the dimension of the vectors d at the
vertices. Hence, MST (G) is easier to compute than DG(V) in general.
For the details of the computational algorithms for MST as well as its
history, see the references provided at the course reference webpage.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 13 / 23

Simple Graph Construction Strategies

k-Nearest Neighbor Graphs

Yet another popular approach to construct a graph from a given
dataset is the so-called k-nearest neighbor graph.
Its construction is simple: connect vi with v j if v j is among the
k-nearest neighbors of vi .
This definition leads to a directed graph. To make it undirected, there
are two approaches:

Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

or if v j is among the k-nearest neighbors of vi . The resulting graph is
usually called the k-nearest neighbor graph.
Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

and if v j is among the k-nearest neighbors of vi . The resulting graph
is usually called the mutual k-nearest neighbor graph.

Of course, the important questions are:
what distance among the vertices (or vectors) should be used?
what value of k should be used?

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 14 / 23

Simple Graph Construction Strategies

k-Nearest Neighbor Graphs

Yet another popular approach to construct a graph from a given
dataset is the so-called k-nearest neighbor graph.
Its construction is simple: connect vi with v j if v j is among the
k-nearest neighbors of vi .
This definition leads to a directed graph. To make it undirected, there
are two approaches:

Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

or if v j is among the k-nearest neighbors of vi . The resulting graph is
usually called the k-nearest neighbor graph.
Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

and if v j is among the k-nearest neighbors of vi . The resulting graph
is usually called the mutual k-nearest neighbor graph.

Of course, the important questions are:
what distance among the vertices (or vectors) should be used?
what value of k should be used?

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 14 / 23

Simple Graph Construction Strategies

k-Nearest Neighbor Graphs

Yet another popular approach to construct a graph from a given
dataset is the so-called k-nearest neighbor graph.
Its construction is simple: connect vi with v j if v j is among the
k-nearest neighbors of vi .
This definition leads to a directed graph. To make it undirected, there
are two approaches:

Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

or if v j is among the k-nearest neighbors of vi . The resulting graph is
usually called the k-nearest neighbor graph.
Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

and if v j is among the k-nearest neighbors of vi . The resulting graph
is usually called the mutual k-nearest neighbor graph.

Of course, the important questions are:
what distance among the vertices (or vectors) should be used?
what value of k should be used?

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 14 / 23

Simple Graph Construction Strategies

k-Nearest Neighbor Graphs

Yet another popular approach to construct a graph from a given
dataset is the so-called k-nearest neighbor graph.
Its construction is simple: connect vi with v j if v j is among the
k-nearest neighbors of vi .
This definition leads to a directed graph. To make it undirected, there
are two approaches:

Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

or if v j is among the k-nearest neighbors of vi . The resulting graph is
usually called the k-nearest neighbor graph.
Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

and if v j is among the k-nearest neighbors of vi . The resulting graph
is usually called the mutual k-nearest neighbor graph.

Of course, the important questions are:
what distance among the vertices (or vectors) should be used?
what value of k should be used?

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 14 / 23

Simple Graph Construction Strategies

k-Nearest Neighbor Graphs

Yet another popular approach to construct a graph from a given
dataset is the so-called k-nearest neighbor graph.
Its construction is simple: connect vi with v j if v j is among the
k-nearest neighbors of vi .
This definition leads to a directed graph. To make it undirected, there
are two approaches:

Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

or if v j is among the k-nearest neighbors of vi . The resulting graph is
usually called the k-nearest neighbor graph.
Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

and if v j is among the k-nearest neighbors of vi . The resulting graph
is usually called the mutual k-nearest neighbor graph.

Of course, the important questions are:
what distance among the vertices (or vectors) should be used?
what value of k should be used?

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 14 / 23

Simple Graph Construction Strategies

k-Nearest Neighbor Graphs

Yet another popular approach to construct a graph from a given
dataset is the so-called k-nearest neighbor graph.
Its construction is simple: connect vi with v j if v j is among the
k-nearest neighbors of vi .
This definition leads to a directed graph. To make it undirected, there
are two approaches:

Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

or if v j is among the k-nearest neighbors of vi . The resulting graph is
usually called the k-nearest neighbor graph.
Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

and if v j is among the k-nearest neighbors of vi . The resulting graph
is usually called the mutual k-nearest neighbor graph.

Of course, the important questions are:
what distance among the vertices (or vectors) should be used?
what value of k should be used?

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 14 / 23

Simple Graph Construction Strategies

k-Nearest Neighbor Graphs

Yet another popular approach to construct a graph from a given
dataset is the so-called k-nearest neighbor graph.
Its construction is simple: connect vi with v j if v j is among the
k-nearest neighbors of vi .
This definition leads to a directed graph. To make it undirected, there
are two approaches:

Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

or if v j is among the k-nearest neighbors of vi . The resulting graph is
usually called the k-nearest neighbor graph.
Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

and if v j is among the k-nearest neighbors of vi . The resulting graph
is usually called the mutual k-nearest neighbor graph.

Of course, the important questions are:
what distance among the vertices (or vectors) should be used?
what value of k should be used?

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 14 / 23

Simple Graph Construction Strategies

k-Nearest Neighbor Graphs

Yet another popular approach to construct a graph from a given
dataset is the so-called k-nearest neighbor graph.
Its construction is simple: connect vi with v j if v j is among the
k-nearest neighbors of vi .
This definition leads to a directed graph. To make it undirected, there
are two approaches:

Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

or if v j is among the k-nearest neighbors of vi . The resulting graph is
usually called the k-nearest neighbor graph.
Create an edge e = (vi , v j) if vi is among the k-nearest neighbors of v j

and if v j is among the k-nearest neighbors of vi . The resulting graph
is usually called the mutual k-nearest neighbor graph.

Of course, the important questions are:
what distance among the vertices (or vectors) should be used?
what value of k should be used?

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 14 / 23

Simple Graph Construction Strategies

The ε-Neighborhood Graph

This graph is created by connecting all vertices whose pairwise
distances are smaller than ε> 0.
Since the distances between all connected vertices are roughly of the
same scale (at most ε), weighting the edges would not incorporate
more information about the data to the graph.
Hence, the ε-neighborhood graph is usually viewed as an unweighted
graph.
Again the important questions to ask are the distance measure
between vertices and the value of ε.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 15 / 23

Simple Graph Construction Strategies

The ε-Neighborhood Graph

This graph is created by connecting all vertices whose pairwise
distances are smaller than ε> 0.
Since the distances between all connected vertices are roughly of the
same scale (at most ε), weighting the edges would not incorporate
more information about the data to the graph.
Hence, the ε-neighborhood graph is usually viewed as an unweighted
graph.
Again the important questions to ask are the distance measure
between vertices and the value of ε.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 15 / 23

Simple Graph Construction Strategies

The ε-Neighborhood Graph

This graph is created by connecting all vertices whose pairwise
distances are smaller than ε> 0.
Since the distances between all connected vertices are roughly of the
same scale (at most ε), weighting the edges would not incorporate
more information about the data to the graph.
Hence, the ε-neighborhood graph is usually viewed as an unweighted
graph.
Again the important questions to ask are the distance measure
between vertices and the value of ε.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 15 / 23

Simple Graph Construction Strategies

The ε-Neighborhood Graph

This graph is created by connecting all vertices whose pairwise
distances are smaller than ε> 0.
Since the distances between all connected vertices are roughly of the
same scale (at most ε), weighting the edges would not incorporate
more information about the data to the graph.
Hence, the ε-neighborhood graph is usually viewed as an unweighted
graph.
Again the important questions to ask are the distance measure
between vertices and the value of ε.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 15 / 23

Simple Graph Construction Strategies

Difficulty of Assessing Criterion 3

So far, we have not discussed Criterion 3, i.e., the dependency of the
task performance on constructed graphs.
Unfortunately, there is no general theory to automatically construct a
graph to optimize a given task.
We need to examine and compare the performance in each case.
This also depends on what distance (or weight) we should assign for
each edge, which will be discuss in the next lecture.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 16 / 23

Simple Graph Construction Strategies

Difficulty of Assessing Criterion 3

So far, we have not discussed Criterion 3, i.e., the dependency of the
task performance on constructed graphs.
Unfortunately, there is no general theory to automatically construct a
graph to optimize a given task.
We need to examine and compare the performance in each case.
This also depends on what distance (or weight) we should assign for
each edge, which will be discuss in the next lecture.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 16 / 23

Simple Graph Construction Strategies

Difficulty of Assessing Criterion 3

So far, we have not discussed Criterion 3, i.e., the dependency of the
task performance on constructed graphs.
Unfortunately, there is no general theory to automatically construct a
graph to optimize a given task.
We need to examine and compare the performance in each case.
This also depends on what distance (or weight) we should assign for
each edge, which will be discuss in the next lecture.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 16 / 23

Simple Graph Construction Strategies

Difficulty of Assessing Criterion 3

So far, we have not discussed Criterion 3, i.e., the dependency of the
task performance on constructed graphs.
Unfortunately, there is no general theory to automatically construct a
graph to optimize a given task.
We need to examine and compare the performance in each case.
This also depends on what distance (or weight) we should assign for
each edge, which will be discuss in the next lecture.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 16 / 23

Optimization Strategy by Daitch-Kelner-Spielman

Outline

1 Motivation: How to Construct a Graph from a Given Dataset

2 Simple Graph Construction Strategies

3 Optimization Strategy by Daitch-Kelner-Spielman

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 17 / 23

Optimization Strategy by Daitch-Kelner-Spielman

The Daitch-Kelner-Spielman Construction

Given a collection of vectors {x1, . . . , xn} ⊂Rd , we want to fit a good,
weighted, and undirected graph to them.
Viewing these vectors as vertices in a graph, it boils down to the
following question: how to determine the weight ai j ≥ 0 between x i

and x j?
No self-loop is allowed, i.e., ai i = 0.
Let X = [x1, . . . , xn] ∈Rd×n be the data matrix.
DKS proposed to find the weighted adjacency matrix A ∈Rn×n

≥0 and
AT = A such that

min
A∈Rn×n

≥0 ;AT=A

∥∥LX T
∥∥2

F = min
ai j≥0

n∑
i=1

∥∥∥∥∥ n∑
j=1

ai j (x i −x j)

∥∥∥∥∥
2

2

.

The above objective function looks quite natural since ai j becomes
small if x i and x j are far apart.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 18 / 23

Optimization Strategy by Daitch-Kelner-Spielman

The Daitch-Kelner-Spielman Construction

Given a collection of vectors {x1, . . . , xn} ⊂Rd , we want to fit a good,
weighted, and undirected graph to them.
Viewing these vectors as vertices in a graph, it boils down to the
following question: how to determine the weight ai j ≥ 0 between x i

and x j?
No self-loop is allowed, i.e., ai i = 0.
Let X = [x1, . . . , xn] ∈Rd×n be the data matrix.
DKS proposed to find the weighted adjacency matrix A ∈Rn×n

≥0 and
AT = A such that

min
A∈Rn×n

≥0 ;AT=A

∥∥LX T
∥∥2

F = min
ai j≥0

n∑
i=1

∥∥∥∥∥ n∑
j=1

ai j (x i −x j)

∥∥∥∥∥
2

2

.

The above objective function looks quite natural since ai j becomes
small if x i and x j are far apart.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 18 / 23

Optimization Strategy by Daitch-Kelner-Spielman

The Daitch-Kelner-Spielman Construction

Given a collection of vectors {x1, . . . , xn} ⊂Rd , we want to fit a good,
weighted, and undirected graph to them.
Viewing these vectors as vertices in a graph, it boils down to the
following question: how to determine the weight ai j ≥ 0 between x i

and x j?
No self-loop is allowed, i.e., ai i = 0.
Let X = [x1, . . . , xn] ∈Rd×n be the data matrix.
DKS proposed to find the weighted adjacency matrix A ∈Rn×n

≥0 and
AT = A such that

min
A∈Rn×n

≥0 ;AT=A

∥∥LX T
∥∥2

F = min
ai j≥0

n∑
i=1

∥∥∥∥∥ n∑
j=1

ai j (x i −x j)

∥∥∥∥∥
2

2

.

The above objective function looks quite natural since ai j becomes
small if x i and x j are far apart.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 18 / 23

Optimization Strategy by Daitch-Kelner-Spielman

The Daitch-Kelner-Spielman Construction

Given a collection of vectors {x1, . . . , xn} ⊂Rd , we want to fit a good,
weighted, and undirected graph to them.
Viewing these vectors as vertices in a graph, it boils down to the
following question: how to determine the weight ai j ≥ 0 between x i

and x j?
No self-loop is allowed, i.e., ai i = 0.
Let X = [x1, . . . , xn] ∈Rd×n be the data matrix.
DKS proposed to find the weighted adjacency matrix A ∈Rn×n

≥0 and
AT = A such that

min
A∈Rn×n

≥0 ;AT=A

∥∥LX T
∥∥2

F = min
ai j≥0

n∑
i=1

∥∥∥∥∥ n∑
j=1

ai j (x i −x j)

∥∥∥∥∥
2

2

.

The above objective function looks quite natural since ai j becomes
small if x i and x j are far apart.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 18 / 23

Optimization Strategy by Daitch-Kelner-Spielman

The Daitch-Kelner-Spielman Construction

Given a collection of vectors {x1, . . . , xn} ⊂Rd , we want to fit a good,
weighted, and undirected graph to them.
Viewing these vectors as vertices in a graph, it boils down to the
following question: how to determine the weight ai j ≥ 0 between x i

and x j?
No self-loop is allowed, i.e., ai i = 0.
Let X = [x1, . . . , xn] ∈Rd×n be the data matrix.
DKS proposed to find the weighted adjacency matrix A ∈Rn×n

≥0 and
AT = A such that

min
A∈Rn×n

≥0 ;AT=A

∥∥LX T
∥∥2

F = min
ai j≥0

n∑
i=1

∥∥∥∥∥ n∑
j=1

ai j (x i −x j)

∥∥∥∥∥
2

2

.

The above objective function looks quite natural since ai j becomes
small if x i and x j are far apart.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 18 / 23

Optimization Strategy by Daitch-Kelner-Spielman

The Daitch-Kelner-Spielman Construction

Given a collection of vectors {x1, . . . , xn} ⊂Rd , we want to fit a good,
weighted, and undirected graph to them.
Viewing these vectors as vertices in a graph, it boils down to the
following question: how to determine the weight ai j ≥ 0 between x i

and x j?
No self-loop is allowed, i.e., ai i = 0.
Let X = [x1, . . . , xn] ∈Rd×n be the data matrix.
DKS proposed to find the weighted adjacency matrix A ∈Rn×n

≥0 and
AT = A such that

min
A∈Rn×n

≥0 ;AT=A

∥∥LX T
∥∥2

F = min
ai j≥0

n∑
i=1

∥∥∥∥∥ n∑
j=1

ai j (x i −x j)

∥∥∥∥∥
2

2

.

The above objective function looks quite natural since ai j becomes
small if x i and x j are far apart.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 18 / 23

Optimization Strategy by Daitch-Kelner-Spielman

The Daitch-Kelner-Spielman Construction . . .

If ai j ≡ 0, ∀ j , then x i is isolated. In fact, if we allow the isolated
vertices, then clearly, the minimum is 0, i.e., a graph with no edges is
the minimizer.
To prevent this, the constraints, di =∑n

j=1 ai j > 0, i = 1, . . . ,n, are
added in the above minimization problem.
Furthermore, define a hard graph of X to be a graph minimizing
‖LX T‖2

F subject to di ≥ 1, i = 1, . . . ,n.
Since some vectors could be outliers, define an α-soft graph of X to
be a graph minimizing ‖LX T‖2

F subject to
∑

i (max(0,1−di))2 ≤αn,
which constrains the number of edges with small weights.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 19 / 23

Optimization Strategy by Daitch-Kelner-Spielman

The Daitch-Kelner-Spielman Construction . . .

If ai j ≡ 0, ∀ j , then x i is isolated. In fact, if we allow the isolated
vertices, then clearly, the minimum is 0, i.e., a graph with no edges is
the minimizer.
To prevent this, the constraints, di =∑n

j=1 ai j > 0, i = 1, . . . ,n, are
added in the above minimization problem.
Furthermore, define a hard graph of X to be a graph minimizing
‖LX T‖2

F subject to di ≥ 1, i = 1, . . . ,n.
Since some vectors could be outliers, define an α-soft graph of X to
be a graph minimizing ‖LX T‖2

F subject to
∑

i (max(0,1−di))2 ≤αn,
which constrains the number of edges with small weights.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 19 / 23

Optimization Strategy by Daitch-Kelner-Spielman

The Daitch-Kelner-Spielman Construction . . .

If ai j ≡ 0, ∀ j , then x i is isolated. In fact, if we allow the isolated
vertices, then clearly, the minimum is 0, i.e., a graph with no edges is
the minimizer.
To prevent this, the constraints, di =∑n

j=1 ai j > 0, i = 1, . . . ,n, are
added in the above minimization problem.
Furthermore, define a hard graph of X to be a graph minimizing
‖LX T‖2

F subject to di ≥ 1, i = 1, . . . ,n.
Since some vectors could be outliers, define an α-soft graph of X to
be a graph minimizing ‖LX T‖2

F subject to
∑

i (max(0,1−di))2 ≤αn,
which constrains the number of edges with small weights.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 19 / 23

Optimization Strategy by Daitch-Kelner-Spielman

The Daitch-Kelner-Spielman Construction . . .

If ai j ≡ 0, ∀ j , then x i is isolated. In fact, if we allow the isolated
vertices, then clearly, the minimum is 0, i.e., a graph with no edges is
the minimizer.
To prevent this, the constraints, di =∑n

j=1 ai j > 0, i = 1, . . . ,n, are
added in the above minimization problem.
Furthermore, define a hard graph of X to be a graph minimizing
‖LX T‖2

F subject to di ≥ 1, i = 1, . . . ,n.
Since some vectors could be outliers, define an α-soft graph of X to
be a graph minimizing ‖LX T‖2

F subject to
∑

i (max(0,1−di))2 ≤αn,
which constrains the number of edges with small weights.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 19 / 23

Optimization Strategy by Daitch-Kelner-Spielman

The Daitch-Kelner-Spielman Construction . . .
To solve such optimization is not easy; need to use quadratic
programming. The details can be found in their paper.
Here, we will describe a couple of theorems on the properties of the
hard and α-soft graphs.

Theorem (DKS, 2009)

For every α> 0, every set of n vectors in Rd has a hard and an α-soft
graph with at most (d +1)n edges. Consequently, the average degree of a
vertex in such graphs is at most 2(d +1).

=⇒ Once such a graph is constructed, the average degree of that graph
can be used for the measure of the essential dimensionality of the input
data vectors, which could be much lower than the ambient dimension d .
Theorem (DKS, 2009)

For every α> 0, every set of n vectors in R2 has a hard and an α-soft graph
that are planar (i.e., no edges cross each other when they are drawn on the
plane).

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 20 / 23

Optimization Strategy by Daitch-Kelner-Spielman

The Daitch-Kelner-Spielman Construction . . .
To solve such optimization is not easy; need to use quadratic
programming. The details can be found in their paper.
Here, we will describe a couple of theorems on the properties of the
hard and α-soft graphs.

Theorem (DKS, 2009)

For every α> 0, every set of n vectors in Rd has a hard and an α-soft
graph with at most (d +1)n edges. Consequently, the average degree of a
vertex in such graphs is at most 2(d +1).

=⇒ Once such a graph is constructed, the average degree of that graph
can be used for the measure of the essential dimensionality of the input
data vectors, which could be much lower than the ambient dimension d .
Theorem (DKS, 2009)

For every α> 0, every set of n vectors in R2 has a hard and an α-soft graph
that are planar (i.e., no edges cross each other when they are drawn on the
plane).

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 20 / 23

Optimization Strategy by Daitch-Kelner-Spielman

The Daitch-Kelner-Spielman Construction . . .
To solve such optimization is not easy; need to use quadratic
programming. The details can be found in their paper.
Here, we will describe a couple of theorems on the properties of the
hard and α-soft graphs.

Theorem (DKS, 2009)

For every α> 0, every set of n vectors in Rd has a hard and an α-soft
graph with at most (d +1)n edges. Consequently, the average degree of a
vertex in such graphs is at most 2(d +1).

=⇒ Once such a graph is constructed, the average degree of that graph
can be used for the measure of the essential dimensionality of the input
data vectors, which could be much lower than the ambient dimension d .
Theorem (DKS, 2009)

For every α> 0, every set of n vectors in R2 has a hard and an α-soft graph
that are planar (i.e., no edges cross each other when they are drawn on the
plane).

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 20 / 23

Optimization Strategy by Daitch-Kelner-Spielman

The Daitch-Kelner-Spielman Construction . . .
To solve such optimization is not easy; need to use quadratic
programming. The details can be found in their paper.
Here, we will describe a couple of theorems on the properties of the
hard and α-soft graphs.

Theorem (DKS, 2009)

For every α> 0, every set of n vectors in Rd has a hard and an α-soft
graph with at most (d +1)n edges. Consequently, the average degree of a
vertex in such graphs is at most 2(d +1).

=⇒ Once such a graph is constructed, the average degree of that graph
can be used for the measure of the essential dimensionality of the input
data vectors, which could be much lower than the ambient dimension d .
Theorem (DKS, 2009)

For every α> 0, every set of n vectors in R2 has a hard and an α-soft graph
that are planar (i.e., no edges cross each other when they are drawn on the
plane).

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 20 / 23

Optimization Strategy by Daitch-Kelner-Spielman

The Daitch-Kelner-Spielman Construction . . .
To solve such optimization is not easy; need to use quadratic
programming. The details can be found in their paper.
Here, we will describe a couple of theorems on the properties of the
hard and α-soft graphs.

Theorem (DKS, 2009)

For every α> 0, every set of n vectors in Rd has a hard and an α-soft
graph with at most (d +1)n edges. Consequently, the average degree of a
vertex in such graphs is at most 2(d +1).

=⇒ Once such a graph is constructed, the average degree of that graph
can be used for the measure of the essential dimensionality of the input
data vectors, which could be much lower than the ambient dimension d .
Theorem (DKS, 2009)

For every α> 0, every set of n vectors in R2 has a hard and an α-soft graph
that are planar (i.e., no edges cross each other when they are drawn on the
plane).

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 20 / 23

Optimization Strategy by Daitch-Kelner-Spielman

Some Results from the DKS paper

As examples, DKS used the well-known datasets from the UCI
Machine Learning Repository (Asuncion & Newman, 2007) or
LIBSVM (Chang & Lin, 2001).
Performed classification, regression, and clustering experiments on
these datasets.
Here, we show only their classification results.
Let X = {x1, . . . , xn} be the available vectors for a given classification
problem, and let T = {x i }i∈IT be a set of m labeled training vectors
(m < n), and IT ⊂ N := {1, . . . ,n} is the index set for the training
vectors, and |IT | = m. For the 10-fold cross validation, m ≈ n/10.
Then, the classification problem is to build a classifier/predictor using
the label information in T to predict a label of each vector in the test
dataset X \ T .
For a given classification problem, DKS used the whole dataset X to
construct a graph using their optimization approach.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 21 / 23

Optimization Strategy by Daitch-Kelner-Spielman

Some Results from the DKS paper

As examples, DKS used the well-known datasets from the UCI
Machine Learning Repository (Asuncion & Newman, 2007) or
LIBSVM (Chang & Lin, 2001).
Performed classification, regression, and clustering experiments on
these datasets.
Here, we show only their classification results.
Let X = {x1, . . . , xn} be the available vectors for a given classification
problem, and let T = {x i }i∈IT be a set of m labeled training vectors
(m < n), and IT ⊂ N := {1, . . . ,n} is the index set for the training
vectors, and |IT | = m. For the 10-fold cross validation, m ≈ n/10.
Then, the classification problem is to build a classifier/predictor using
the label information in T to predict a label of each vector in the test
dataset X \ T .
For a given classification problem, DKS used the whole dataset X to
construct a graph using their optimization approach.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 21 / 23

Optimization Strategy by Daitch-Kelner-Spielman

Some Results from the DKS paper

As examples, DKS used the well-known datasets from the UCI
Machine Learning Repository (Asuncion & Newman, 2007) or
LIBSVM (Chang & Lin, 2001).
Performed classification, regression, and clustering experiments on
these datasets.
Here, we show only their classification results.
Let X = {x1, . . . , xn} be the available vectors for a given classification
problem, and let T = {x i }i∈IT be a set of m labeled training vectors
(m < n), and IT ⊂ N := {1, . . . ,n} is the index set for the training
vectors, and |IT | = m. For the 10-fold cross validation, m ≈ n/10.
Then, the classification problem is to build a classifier/predictor using
the label information in T to predict a label of each vector in the test
dataset X \ T .
For a given classification problem, DKS used the whole dataset X to
construct a graph using their optimization approach.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 21 / 23

Optimization Strategy by Daitch-Kelner-Spielman

Some Results from the DKS paper

As examples, DKS used the well-known datasets from the UCI
Machine Learning Repository (Asuncion & Newman, 2007) or
LIBSVM (Chang & Lin, 2001).
Performed classification, regression, and clustering experiments on
these datasets.
Here, we show only their classification results.
Let X = {x1, . . . , xn} be the available vectors for a given classification
problem, and let T = {x i }i∈IT be a set of m labeled training vectors
(m < n), and IT ⊂ N := {1, . . . ,n} is the index set for the training
vectors, and |IT | = m. For the 10-fold cross validation, m ≈ n/10.
Then, the classification problem is to build a classifier/predictor using
the label information in T to predict a label of each vector in the test
dataset X \ T .
For a given classification problem, DKS used the whole dataset X to
construct a graph using their optimization approach.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 21 / 23

Optimization Strategy by Daitch-Kelner-Spielman

Some Results from the DKS paper

As examples, DKS used the well-known datasets from the UCI
Machine Learning Repository (Asuncion & Newman, 2007) or
LIBSVM (Chang & Lin, 2001).
Performed classification, regression, and clustering experiments on
these datasets.
Here, we show only their classification results.
Let X = {x1, . . . , xn} be the available vectors for a given classification
problem, and let T = {x i }i∈IT be a set of m labeled training vectors
(m < n), and IT ⊂ N := {1, . . . ,n} is the index set for the training
vectors, and |IT | = m. For the 10-fold cross validation, m ≈ n/10.
Then, the classification problem is to build a classifier/predictor using
the label information in T to predict a label of each vector in the test
dataset X \ T .
For a given classification problem, DKS used the whole dataset X to
construct a graph using their optimization approach.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 21 / 23

Optimization Strategy by Daitch-Kelner-Spielman

Some Results from the DKS paper

As examples, DKS used the well-known datasets from the UCI
Machine Learning Repository (Asuncion & Newman, 2007) or
LIBSVM (Chang & Lin, 2001).
Performed classification, regression, and clustering experiments on
these datasets.
Here, we show only their classification results.
Let X = {x1, . . . , xn} be the available vectors for a given classification
problem, and let T = {x i }i∈IT be a set of m labeled training vectors
(m < n), and IT ⊂ N := {1, . . . ,n} is the index set for the training
vectors, and |IT | = m. For the 10-fold cross validation, m ≈ n/10.
Then, the classification problem is to build a classifier/predictor using
the label information in T to predict a label of each vector in the test
dataset X \ T .
For a given classification problem, DKS used the whole dataset X to
construct a graph using their optimization approach.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 21 / 23

Optimization Strategy by Daitch-Kelner-Spielman

Some Results from the DKS paper . . .

Their actual classification method is based on the simple algorithm of
Zhu, Ghahramani, & Lafferty (2003). The two-class classifier can be
described as follows:

1 Construct a graph G from X via the DKS algorithm
2 Let {ci ∈ {0,1}}i∈IT be the training dataset labels (either 0 or 1). Then,

solve
ŷ = argmin

y∈Rn
yTL(G)y subject to yi = ci if i ∈ IT .

3 For each test vector x j , j ∈ N \ IT , classify it according to the following
rule:

c j =
{

0 if y j < 1/2;
1 otherwise.

One can generalize this for problems with more than two classes.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 22 / 23

Optimization Strategy by Daitch-Kelner-Spielman

Some Results from the DKS paper . . .

Their actual classification method is based on the simple algorithm of
Zhu, Ghahramani, & Lafferty (2003). The two-class classifier can be
described as follows:

1 Construct a graph G from X via the DKS algorithm
2 Let {ci ∈ {0,1}}i∈IT be the training dataset labels (either 0 or 1). Then,

solve
ŷ = argmin

y∈Rn
yTL(G)y subject to yi = ci if i ∈ IT .

3 For each test vector x j , j ∈ N \ IT , classify it according to the following
rule:

c j =
{

0 if y j < 1/2;
1 otherwise.

One can generalize this for problems with more than two classes.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 22 / 23

Optimization Strategy by Daitch-Kelner-Spielman

Some Results from the DKS paper . . .

Their actual classification method is based on the simple algorithm of
Zhu, Ghahramani, & Lafferty (2003). The two-class classifier can be
described as follows:

1 Construct a graph G from X via the DKS algorithm
2 Let {ci ∈ {0,1}}i∈IT be the training dataset labels (either 0 or 1). Then,

solve
ŷ = argmin

y∈Rn
yTL(G)y subject to yi = ci if i ∈ IT .

3 For each test vector x j , j ∈ N \ IT , classify it according to the following
rule:

c j =
{

0 if y j < 1/2;
1 otherwise.

One can generalize this for problems with more than two classes.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 22 / 23

Optimization Strategy by Daitch-Kelner-Spielman

Some Results from the DKS paper . . .

Their actual classification method is based on the simple algorithm of
Zhu, Ghahramani, & Lafferty (2003). The two-class classifier can be
described as follows:

1 Construct a graph G from X via the DKS algorithm
2 Let {ci ∈ {0,1}}i∈IT be the training dataset labels (either 0 or 1). Then,

solve
ŷ = argmin

y∈Rn
yTL(G)y subject to yi = ci if i ∈ IT .

3 For each test vector x j , j ∈ N \ IT , classify it according to the following
rule:

c j =
{

0 if y j < 1/2;
1 otherwise.

One can generalize this for problems with more than two classes.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 22 / 23

Optimization Strategy by Daitch-Kelner-Spielman

Some Results from the DKS paper . . .

Their actual classification method is based on the simple algorithm of
Zhu, Ghahramani, & Lafferty (2003). The two-class classifier can be
described as follows:

1 Construct a graph G from X via the DKS algorithm
2 Let {ci ∈ {0,1}}i∈IT be the training dataset labels (either 0 or 1). Then,

solve
ŷ = argmin

y∈Rn
yTL(G)y subject to yi = ci if i ∈ IT .

3 For each test vector x j , j ∈ N \ IT , classify it according to the following
rule:

c j =
{

0 if y j < 1/2;
1 otherwise.

One can generalize this for problems with more than two classes.

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 22 / 23

Optimization Strategy by Daitch-Kelner-Spielman

Classification Results from the DKS paper

Fitting a Graph to Vector Data

Table 2. Classification error (%), 10-fold cross validation. The best result for each data set is bold. The experiments that
do not perform better than ours have a grey background.

Data set hard 0.1-soft knn thresh libsvm FBC AODE HGC NB C4.5 BP SMO

glass 27.78 28.30 26.92 33.30 31.44 37.56 38.27 41.64 50.55 32.37 32.68 42.64
heart 18.18 17.81 16.05 16.1 17.01 16.19 16.37 17.41 16.41 21.85 16.70 16.19
ionosphere 4.75 5.57 18.50 6.34 6.20 9.20 8.26 6.60 17.83 10.26 12.93 12.07
iris 4.87 4.21 4.46 6.20 3.87 6.27 6.00 3.93 4.47 5.27 15.20 15.13
pima 26.64 26.61 24.54 26.45 23.24 25.15 23.43 24.08 24.25 25.51 22.96 22.93
sonar 9.16 8.64 13.80 14.94 11.71 22.62 20.09 30.84 32.29 26.39 21.33 22.12
vehicle 23.03 22.47 27.70 29.98 14.87 25.77 28.35 31.90 55.32 27.72 18.89 25.92
vowel990 1.19 0.95 2.62 0.98 0.64 6.54 10.36 7.30 37.10 19.80 7.27 29.39
wine 2.92 2.62 2.86 3.64 2.57 2.54 6.80 1.98 1.24

Table 3. Regression mean-square error, k-fold cross validation (k=2 for Abalone, k=10 for other data sets). For each
data set, the labels have been rescaled to have variance one. The best result for each data set is bold. The experiments
that do not perform better than ours have a grey background.

Data set hard 0.1-soft knn thresh epsilon-svr gproc

abalone 0.479 0.482 0.492 0.657
housing 0.136 0.138 0.224 0.507 0.138 0.112
machine 0.170 0.185 0.164 0.608 0.394 0.890
mpg 0.120 0.118 0.137 0.145 0.128 0.129

graphs with the knn and thresh graphs described
above. In the knn and thresh regression experi-
ments, we ran each experiment 10 times. The hard and
0.1-soft graphs outperform these graphs for all but one
data set, and even in that data set the performance is
very close.

We again also ran experiments using LIBSVM (Chang
& Lin, 2001). We modified the classification routine
easy to search the same parameter ranges but do ε-
support vector regression instead of classification. We
fed this routine nine tenths of the data to choose pa-
rameters and train the support vector machine, which
we then used to predict values on the remaining tenth
of the data. We did this for each of the 10 partitions
of data, and repeated the whole experiment 20 times.

We also ran 10-way cross validation experiments using
the gproc Gaussian process regression algorithm from
Spider (Weston et al., 2008), repeating each experi-
ment 5 times.

Due to the size of Abalone, we were unable to run
regression tests on it with LIBSVM or Spider. On
the other three sets of regression data that we tested,
our graphs outperformed LIBSVM on all of them, and
Spider on all but one.

4.3. Clustering

Given the graph associated with a set of unlabeled
vectors x 1, . . . ,xn, one may obtain a clustering of the

vectors into k subsets by finding a good k-partition of
the corresponding graph. We did this with a spectral
algorithm; it remains an interesting question whether
other graph partitioning algorithms would improve the
results.

The graph partitioning algorithm that we applied is
essentially the same as that used by Ng, Jordan, and
Weiss (Ng et al., 2001). We formed the normalized

Laplacian L̃ = D−1/2LD−1/2, where D is the diagonal
matrix whose ith diagonal entry is the weighted degree
of vertex i. We then found its eigenvectors v1, . . . , vn,
where the v i are sorted in increasing order of the cor-
responding eigenvalues.

Let V = [v1, . . . , v t] be the n×t matrix whose columns
are given by the first t eigenvectors. (We shall discuss
the correct value of t below.) Following Ng, Jordan,
and Weiss, we let W be the matrix obtained by scal-
ing the rows of V to each have norm 1. The rows of
W give us n points in IRt, which we clustered using
k-means. We then lifted this clustering back to the
original vectors.

It is not immediately obvious how best to choose t.
A standard answer, which was the one employed by
Ng, Jordan, and Weiss, is to set it equal to the desired
number of clusters k. However, we found that this was
not the best strategy with our graphs. Intuitively, one
may view the matrix V as a low-rank approximation
to L. If one works in a model in which the graph is
expected to have a very sparse cut that breaks it into

206

FBC: Full Bayes Classifier; AODE: Averaged One-Dependence Estimators;
HGC: the Hill Climbing Bayesian network learning algorithm; NB: Naive
Bayesian networks; C4.5: a decision tree algorithm; BP: Back Propagation;
SMO: Sequential Minimal Optimization

saito@math.ucdavis.edu (UC Davis) Graph Construction 10/24/19 23 / 23

	Motivation: How to Construct a Graph from a Given Dataset
	Simple Graph Construction Strategies
	Optimization Strategy by Daitch-Kelner-Spielman

